
X20CS2770

X20CS2770

1 General information

In addition to the standard I/O, complex devices often need to be connected. The X20 CS communication modules
are intended precisely for cases like this. As normal X20 electronics modules, they can be placed anywhere on
the remote backplane.

• 2 CAN bus interfaces for serial, remote connection of complex devices to the X20 system
• Integrated terminating resistors

2 Order data
Order number Short description Figure

X20 electronics module communication
X20CS2770 X20 interface module, 2 CAN bus interfaces, max. 1 Mbit/s, ob-

ject buffer in the transmit and receive directions
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-

ternal I/O power supply connected through
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20CS2770 - Order data

Data sheet V 3.30 1

X20CS2770

3 Technical data
Order number X20CS2770
Short description
Communication module 2x CAN bus
General information
B&R ID code 0xA009
Status indicators Data transfer, terminating resistor, operating state, module status
Diagnostics

Module run/error Yes, using LED status indicator and software
Data transfer Yes, using LED status indicator
Terminating resistor Yes, using LED status indicator

Power consumption
Bus 0.01 W
Internal I/O 0.55 W (Rev. ≤D0 1.5 W)

Additional power dissipation caused by actuators
(resistive) [W]

-

Certifications
CE Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

EAC Yes
KC Yes

Interfaces
Interface IF1

Signal CAN bus
Variant Connection made using 12-pin terminal block X20TB12
Max. distance 1000 m
Transfer rate Max. 1 Mbit/s
Terminating resistor Integrated in module
Controller SJA 1000

Interface IF2
Signal CAN bus
Variant Connection made using 12-pin terminal block X20TB12
Max. distance 1000 m
Transfer rate Max. 1 Mbit/s
Terminating resistor Integrated in module
Controller SJA 1000

Electrical properties
Electrical isolation CAN (IF1, IF2) isolated from bus and I/O power supply

CAN (IF1, IF2) not isolated from each other
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating See section "Derating".
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately.

Order 1x bus module X20BM11 separately.
Pitch 12.5+0.2 mm

Table 2: X20CS2770 - Technical data

2 Data sheet V 3.30

X20CS2770

4 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" in the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash RESET mode
Double flash BOOT mode (during firmware update)1)

Blinking PREOPERATIONAL mode

r Green

On RUN mode
Off No power to module or everything OK
Single flash I/O error occurred

• CAN bus: Warning, passive or off
• Buffer overflow

e Red

On Error or reset status
e + r Red on / Green single flash Invalid firmware
Tx1/2 Yellow On The module is sending data via the CAN bus interface IF1/IF2
Rx1/2 Yellow On The module is receiving data via the CAN bus interface IF1/IF2

 
 

T1/2 Yellow On The integrated terminating resistor for the CAN bus interface IF1/IF2 is turned on

1) Depending on the configuration, a firmware update can take up to several minutes.

5 Pinout

CAN high 1

CAN ground

Tx1

X2
0

C
S

27
70

r e
Rx1

CAN low 1

CAN ground

T1 T2
Tx2 Rx2

CAN high 2

CAN ground

CAN low 2

CAN ground

Data sheet V 3.30 3

X20CS2770

6 Terminating resistors

On Off

IF1 - Switch for terminating resistor

IF2 - Switch for terminating resistor

Two terminating resistors are integrated in the communication module. The respective resistor can be turned on
and off with a switch on the bottom of the housing. An active terminating resistor is indicated by the "T1" or "T2" LED.

7 Derating

Up to hardware revision ≤D0
There is no derating when operated below 55°C.
During operation over 55°C, the power dissipation of the modules to the left and right of this module is not permitted
to exceed 1.15 W!
For an example of calculating the power dissipation of I/O modules, see section "Mechanical and electrical config-
uration - Power dissipation of I/O modules" in the X20 user's manual.

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

Th
is

 m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

Hardware revision >D0 and later
No derating

8 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream transfer.
For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

4 Data sheet V 3.30

X20CS2770

9 Register description

9.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X20 system user's
manual.

9.2 Function model 0 - Flat

In the "Flat" function model, CAN information is transferred via cyclic input and output registers. All data for a CAN
object (8 CAN data bytes, identifier, status, etc.) is accessible as individual data points (see also "CAN object"
on page 9).
To transmit a CAN object, the CAN identifier, the CAN data (max. 8 bytes) and the number of bytes to be transmitted
must be written to the cyclic I/O data points. Then, "TX0[x]Count" is increased to send the transmission. The data
is held in the module's internal buffer (max. 18 objects) and transmitted over the CAN network at the next available
opportunity.
Receiving information from the CAN network uses the same algorithm. The module saves the CAN messages in
its internal buffer along with the respective identifiers. Then the CAN identifier, the CAN data (max. 8 bytes) and
the number of bytes to be processed are written to the cyclic I/O data points. RX0[x]Count tells the application how
much new data must be taken from these input data points.

Information:
• Libraries "ArCAN" and "CAN_Lib" cannot be used.

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Interface - Configuration
257 Config01Baudrate USINT ●
259 Config01SJW USINT ●
261 Config01SPO USINT ●
266 Config01TXtrigger UINT ●
673 Cfo_FIFOTXlimit01 USINT ●
677 Cfo_TXRXinfoFlags01 USINT ●
769 Config02Baudrate USINT ●
771 Config02SJW USINT ●
773 Config02SPO USINT ●
778 Config02TXtrigger UINT ●
1185 Cfo_FIFOTXlimit02 USINT ●
1189 Cfo_TXRXinfoFlags02 USINT ●

Interface - Communication
641 TX01Count USINT ●
513 TX01CountReadBack USINT ●
515 RX01Count USINT ●
1153 TX02Count USINT ●
1025 TX02CountReadBack USINT ●
1027 RX02Count USINT ●

Transmit buffer IF1
645 TX01DataSize USINT ●
652 TX01Ident UDINT ●

Index * 2 + 657 TX01DataByte0 to TX01DataByte7 USINT ●
Index * 4 + 658 TX01DataWord0 to TX01DataWord3 UINT ●
Index * 8 + 660 TX01DataLong0 to TX01DataLong1 UDINT ●

Receive buffer IF1
517 RX01DataSize USINT ●
524 RX01Ident UDINT ●

Index * 2 + 529 RX01DataByte0 to RX01DataByte7 USINT ●
Index * 4 + 530 RX01DataWord0 to RX01DataWord3 UINT ●
Index * 8 + 532 RX01DataLong0 to RX01DataLong1 UDINT ●

Transmit buffer IF2
1157 TX02DataSize USINT ●
1164 TX02Ident UDINT ●

Index * 2 + 1170 TX02DataByte0 to TX02DataByte7 USINT ●
Index * 4 + 658 TX02DataWord0 to TX02DataWord3 UINT ●
Index * 8 + 1172 TX02DataLong0 to TX02DataLong1 UDINT ●

Receive buffer IF2
1029 RX02DataSize USINT ●

Data sheet V 3.30 5

X20CS2770

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

1036 RX02Ident UDINT ●
Index * 2 + 1041 RX02DataByte0 to RX02DataByte7 USINT ●
Index * 4 + 1042 RX02DataWord0 to RX02DataWord3 UINT ●
Index * 8 + 1044 RX02DataLong0 to RX02DataLong1 UDINT ●

9.3 Function model 2 - Stream and Function model 254 - Cyclic stream

Function models "Stream" and "Cyclic stream" use a module-specific driver of the CPU's operating system. The
interface can be controlled using libraries "ArCAN" and "CAN_Lib" and reconfigured at runtime.
Function model - Stream
In function model "Stream", the CPU communicates with the module acyclically. The interface is relatively conve-
nient, but the timing is very imprecise.
Function model - Cyclic stream
Function model "Cyclic stream" was implemented later. From the application's point of view, there is no difference
between function models "Stream" and "Cyclic stream". Internally, however, the cyclic I/O registers are used to
ensure that communication follows deterministic timing.

Information:
• In order to use function models "Stream" and "Cyclic stream", you must be using B&R con-

trollers of type "SG4".
• These function models can only be used in X2X Link and POWERLINK networks.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Module - Configuration
- AsynSize -

Interface - Configuration
6273 CfO_ErrorID0007 USINT ●

Interface - Communication
CAN error status USINT
CANIF1warning Bit 0
CANIF1passive Bit 1
CANIF1busoff Bit 2
CANIF1RXoverrun Bit 3
CANIF2warning Bit 4
CANIF2passive Bit 5
CANIF2busoff Bit 6

6145

CANIF2RXoverrun Bit 7

●

CAN error acknowledgment USINT
QuitCANIF1warning Bit 0
QuitCANIF1passive Bit 1
QuitCANIF1bussoff Bit 2
QuitCANIF1RXoverrun Bit 3
QuitCANIF2warning Bit 4
QuitCANIF2passive Bit 5
QuitCANIF2bussoff Bit 6

6209

QuitCANIF2RXoverrun Bit 7

●

6 Data sheet V 3.30

X20CS2770

9.4 Function model 254 - Flatstream

Flatstream provides independent communication between an X2X Link master and the module. This interface
was implemented as a separate function model for the CAN module. CAN information (identifier, status, etc.) is
transferred via cyclic input and output registers. The sequence and control bytes are used to control this data
stream (see "Flatstream communication" on page 17).
When using function model Flatstream, the user can choose whether to use library "AsFltGen" in AS for implemen-
tation or to adapt Flatstream handling directly to the individual requirements of the application.

Information:
• Libraries "ArCAN" and "CAN_Lib" cannot be used.
• Higher data rates can be achieved between X2X master and module compared to the "Flat"

function model.
Read WriteRegister Name Data type

Cyclic Acyclic Cyclic Acyclic
Interface - Configuration

257 Config01Baudrate USINT ●
259 Config01SJW USINT ●
261 Config01SPO USINT ●
266 Config01TXtrigger UINT ●
769 Config02Baudrate USINT ●
771 Config02SJW USINT ●
773 Config02SPO USINT ●
778 Config02TXtrigger UINT ●

6273 CfO_ErrorID0007 USINT ●
Interface - Communication

CAN error status USINT
CANIF1warning Bit 0
CANIF1passive Bit 1
CANIF1busoff Bit 2
CANIF1RXoverrun Bit 3
CANIF2warning Bit 4
CANIF2passive Bit 5
CANIF2busoff Bit 6

6145

CANIF2RXoverrun Bit 7

●

CAN error acknowledgment USINT
QuitCANIF1warning Bit 0
QuitCANIF1passive Bit 1
QuitCANIF1bussoff Bit 2
QuitCANIF1RXoverrun Bit 3
QuitCANIF2warning Bit 4
QuitCANIF2passive Bit 5
QuitCANIF2bussoff Bit 6

6209

QuitCANIF2RXoverrun Bit 7

●

Flatstream - Configuration
193 output01MTU USINT ●
195 input01MTU USINT ●
197 mode01 USINT ●
199 forward01 USINT ●
206 forwardDelay01 UINT ●
209 output02MTU USINT ●
211 input02MTU USINT ●
213 mode02 USINT ●
215 forward02 USINT ●
222 forwardDelay02 UINT ●

Flatstream - Communication
0 Input01Sequence USINT ●

64 Input02Sequence USINT ●
Index * 1 + 0 Rx01Byte1 to Rx01Byte27 USINT ●

Index * 1 + 64 Rx02Byte1 to Rx02Byte27 USINT ●
32 Output01Sequence USINT ●
96 Output02Sequence USINT ●

Index * 1 + 32 Tx01Byte1 to Tx01Byte27 USINT ●
Index * 1 + 96 Tx02Byte1 to Tx02Byte27 USINT ●

Data sheet V 3.30 7

X20CS2770

9.5 Function model 254 - Bus controller

The "Bus controller" function model is a reduced form of the "FlatStream" function model. Instead of up to 27 Tx
/ Rx bytes, a maximum of 7 Tx / Rx bytes can be used.

Read WriteRegister Offset1) Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Interface - Configuration
257 - Config01Baudrate USINT ●
259 - Config01SJW USINT ●
261 - Config01SPO USINT ●
266 - Config01TXtrigger UINT ●
769 - Config02Baudrate USINT ●
771 - Config02SJW USINT ●
773 - Config02SPO USINT ●
778 - Config02TXtrigger UINT ●

6273 - CfO_ErrorID0007 USINT ●
Interface - Communication

CAN error status USINT
CANIF1warning Bit 0
CANIF1passive Bit 1
CANIF1busoff Bit 2
CANIF1RXoverrun Bit 3
CANIF2warning Bit 4
CANIF2passive Bit 5
CANIF2busoff Bit 6

6145 -

CANIF2RXoverrun Bit 7

●

CAN error acknowledgment USINT
QuitCANIF1warning Bit 0
QuitCANIF1passive Bit 1
QuitCANIF1bussoff Bit 2
QuitCANIF1RXoverrun Bit 3
QuitCANIF2warning Bit 4
QuitCANIF2passive Bit 5
QuitCANIF2bussoff Bit 6

6209

-

QuitCANIF2RXoverrun Bit 7

●

FlatStream - Configuration
193 - output01MTU USINT ●
195 - input01MTU USINT ●
197 - mode01 USINT ●
199 - forward01 USINT ●
206 - forwardDelay01 UINT ●
209 - output02MTU USINT ●
211 - input02MTU USINT ●
213 - mode02 USINT ●
215 - forward02 USINT ●
222 - forwardDelay02 UINT ●

FlatStream - Communication
0 0 Input01Sequence USINT ●

64 8 Input02Sequence USINT ●
Index * 1 + 0 Index * 1 + 0 Rx01Byte1 to Rx01Byte7 USINT ●

Index * 1 + 64 Index * 1 + 8 Rx02Byte1 to Rx02Byte7 USINT ●
32 0 Output01Sequence USINT ●
96 8 Output02Sequence USINT ●

Index * 1 + 32 Index * 1 + 0 Tx01Byte1 to Tx01Byte7 USINT ●
Index * 1 + 96 Index * 1 + 8 Tx02Byte1 to Tx02Byte7 USINT ●

1) The offset specifies the position of the register within the CAN object.

9.5.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X20
user's manual (version 3.50 or later).

9.5.2 CAN I/O bus controller

The module occupies 2 analog logical slots on CAN I/O.

8 Data sheet V 3.30

X20CS2770

9.6 Using this module with SGC target systems

Information:
This module can only be used with SGC target systems if the function model is set to "Flatstream"
or "Flat".

9.7 CAN object

A CAN object is always made up of a 4-byte identifier and a maximum of 8 subsequent data bytes. This also results
in the relationship between CAN object length and the amount of CAN payload data. This is important because
the number of CAN payload data bytes for communication via "FlatStream" always has to be determined using
the frame length.
Composition of a CAN object / CAN frame

Bytes Function Information
1 ID bit 0 to 7
2 ID bit 8 to 15
3 ID bit 16 to 23
4

Code

ID bit 24 to 31
5 - 12 CAN payload data 0 to 8 CAN payload data bytes

Code
The 32 bits (4 bytes) of the CAN identifier are used as follows:

Bit Description Value Information
0 Standard frame format (SFF) with an 11-bit identifier0 Frame format
1 Extended frame format (EFF) with an 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier for telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

9.7.1 CAN module data stream

In function model 254, the data packets to be transferred in a data stream are referred to as frames.

Information:
For the CAN module, that means:

• A frame always contains one CAN object and therefore cannot be longer than 12 bytes.
• The CAN object is only transferred to the transmit buffer after the frame has been completed.
• The CAN payload data length has a fixed relationship with the frame length and the actual size

of the CAN object. The following rules apply:
° CAN payload data length = Frame length - 4
° Frame length = CAN payload data length + 4

Data sheet V 3.30 9

X20CS2770

9.8 Interface - Configuration

9.8.1 Transfer rate

Name:
Config01Baudrate to Config02Baudrate
"Baud rate" in the Automation Studio I/O configuration.
Configuration of the CAN transfer rate for the respective interface.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Description Value Information

0 Interface disabled (bus controller default setting)
1 10 kbit/s
2 20 kbit/s
3 50 kbit/s
4 100 kbit/s
5 125 kbit/s
6 250 kbit/s
7 500 kbit/s
8 800 kbit/s

0 - 3 Transfer rate

9 1000 kbit/s
4 - 7 Reserved -

9.8.2 Synchronization Jump Width

Name:
Config01SJW to Config02SJW
"Synchronization jump width" in the Automation Studio I/O configuration.
The synchronization jump width (SJW) is used to resynchronize the sample point within a CAN telegram.
A detailed description of the SJW can be found in the CAN specification.
Data type Value Meaning
USINT 0 to 4 Synchronization jump width.

Bus controller default setting: 3

9.8.3 Offset for the sampling instant

Name:
Config01SPO to Config02SPO
"Sample point offset" in the Automation Studio I/O configuration.
Offset for the sample point of the individual bits on the CAN bus.
A detailed description of the SPO can be found in the CAN specification.
Data type Value Meaning
USINT 0 to 1 Sample point offset.

Bus controller default setting: 0

9.8.4 Start of transmission

Name:
Config01TXtrigger to Config02TXtrigger
"TX objects / TX triggers" in the Automation Studio I/O configuration.
Defines the number of CAN objects that must be copied to the transmit buffer before the transmission is started.
Data type Value Meaning
UINT 0 to 8 Number of CAN objects in the transmit buffer before transmission is started.

Bus controller default setting: 1

10 Data sheet V 3.30

X20CS2770

9.8.5 Configuration of error messages

Name:
CfO_ErrorID0007
This register must be used first to configure the error messages that have to be transferred. If the corresponding
enable bit is not set, no error status will be sent to the higher-level system when the error occurs.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Description Value Information

0 Disabled (bus controller default setting)0 CANIF1warning
1 Enabled
0 Disabled (bus controller default setting)1 CANIF1passive
1 Enabled
0 Disabled (bus controller default setting)2 CANIF1bussoff
1 Enabled
0 Disabled (bus controller default setting)3 CANIF1RXoverrun
1 Enabled
0 Disabled (bus controller default setting)4 CANIF2warning
1 Enabled
0 Disabled (bus controller default setting)5 CANIF2passive
1 Enabled
0 Disabled (bus controller default setting)6 CANIF2bussoff
1 Enabled
0 Disabled (bus controller default setting)7 CANIF2RXoverrun
1 Enabled

9.8.6 Size of the transmit buffer

Name:
Cfo_FIFOTXlimit01 to Cfo_FIFOTXlimit02
"TX FIFO size" in the Automation Studio I/O configuration.
Determines the size of the transmit buffer for the respective interface.
Data type Value Meaning
USINT 0 to 18 Size of the transmit buffer

9.8.7 Display of unprocessed elements remaining in transmit/receive buffer

Name:
Cfo_TXRXinfoFlags01 to Cfo_TXRXinfoFlags02
This register can be used to specify that the number of unprocessed elements in the transmit and receive buffers is
indicated in the upper 4 bits of the "TX0[x]CountReadBack" and "RX0[x]Count" registers for the respective interface.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 The "TX0[x]Count" is read in the "TX0[x]CountReadBack" on
page 13 register.

0 TxFifoInfo
"Mode of channel TX0[x]CountReadBack" in the Automation
Studio I/O configuration 1 The "TX0[x]Count" is read in the "TX0[x]CountReadBack" on

page 13 register.
The upper 4 bits are used to return the number of frames in the
transmit buffer that have not been transmitted.

0 The number of received telegrams is shown in the
"RX0[x]Count" on page 14 register.

1 RxFifoInfo
"Mode of channel RX0[x]Count" in the Automation Studio I/O
configuration 1 The number of received telegrams is shown in the lower 4 bits

of the "RX0[x]Count" on page 14 register.
The upper 4 bits are used to indicate the number of received but
not acknowledged telegrams in the receive buffer.

2 - 7 Reserved -

Data sheet V 3.30 11

X20CS2770

9.9 Interface - Communication

9.9.1 CAN error status

Name:
CAN error status
The bits in this register indicate the error states defined in the CAN protocol. If an error occurs, the corresponding bit
is set. For an error bit to be reset, the corresponding bit must be acknowledged (see "CAN error acknowledgment"
on page 13).
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 No error0 CANIF1warning
1 CANwarning Error occurred on IF1
0 No error1 CANIF1passive
1 CANpassive Error occurred on IF1
0 No error2 CANIF1busoff
1 CANbusoff Error occurred on IF1
0 No error3 CANIF1RXoverrun
1 CANRXoverrun Error occurred on IF1
0 No error4 CANIF2warning
1 CANwarning Error occurred on IF2
0 No error5 CANIF2passive
1 CANpassive Error occurred on IF2
0 No error6 CANIF2busoff
1 CANbusoff Error occurred on IF2
0 No error7 CANIF2RXoverrun
1 CANRXoverrun Error occurred on IF2

CANwarning

A faulty frame was detected on the CAN bus. This can include bit errors, bit stuffing errors, CRC errors, format
errors in the telegram and acknowledgment errors, for example.

CANpassive

The internal transmit and/or receive error counter is greater than 127. CAN communication continues to run, but
the interface can only issue a "passive error frame". Likewise, "error passive stations" have less ability to send
new telegrams altogether.

CANbusoff

The internal transmit error counter is greater than 255. The bus is switched off, and CAN communication with the
module no longer takes place.

CANRXoverrun

An overflow occurred in the module's receive buffer.

12 Data sheet V 3.30

X20CS2770

9.9.2 CAN error acknowledgment

Name:
CAN error acknowledgment
Setting the bits in this register acknowledges the error assigned to the bit and clears the corresponding bit in the
"CAN error status" register. The application thus informs the module that it has recognized the error state.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 No acknowledgment0 QuitCANIF1warning
1 Acknowledge CANwarning error on IF1
0 No acknowledgment1 QuitCANIF1passive
1 Acknowledge CANpassive error on IF1
0 No acknowledgment2 QuitCANIF1bussoff
1 Acknowledge CANbusoff error on IF1
0 No acknowledgment3 QuitCANIF1RXoverrun
1 Acknowledge CANRXoverrun error on IF1
0 No acknowledgment4 QuitCANIF2warning
1 Acknowledge CANwarning error on IF2
0 No acknowledgment5 QuitCANIF2passive
1 Acknowledge CANpassive error on IF2
0 No acknowledgment6 QuitCANIF2bussoff
1 Acknowledge CANbusoff error on IF2
0 No acknowledgment7 QuitCANIF2RXoverrun
1 Acknowledge CANRXoverrun error on IF2

9.9.3 New CAN telegram for transmit buffer

Name:
TX01Count to TX02Count
By increasing this value, the application notifies the module that a new CAN telegram should be transferred into
the transmit buffer.
Data type Value
USINT 0 to 255

9.9.4 Read "TX0[x]Count"

Name:
TX01CountReadBack to TX02CountReadBack
The value of "TX0[x]Count" is copied from the module into this register. This makes it possible for the application
task to verify that the CAN telegram data was transfered from the module correctly.
The meaning of the value depends on the "TxFifoInfo" bit. This is located in the register "Cfo_TXRXinfoFlags0[x]"
on page 11.
Data type Value "TxFifoInfo" bit Meaning

0 Read "TX0[x]Count"USINT 0 to 255
1 See bit structure.

Bit structure:
Bit Function Value Information

0 - 3 Read "TX0[x]Count" 0 to 15 Only the lower 4 bits
4 - 7 Number of frames in the transmit buffer that have not been trans-

mitted
0 to 15 If this number exceeds the 15 (a maximum of 18 possible), the

value 15 is returned.

Data sheet V 3.30 13

X20CS2770

9.9.5 Counter for received CAN telegrams

Name:
RX01Count to RX02Count
This counter is increased by 1 with each CAN telegram. The application task can thus detect when new data is
received and get it from the corresponding "RX0[x]Data" registers.
The meaning of the value depends on the "Cfo_TXRXinfoFlags0[x]" on page 11 bit in the "Cfo_TXRXinfoFlags"
register.
Data type Value "RxFifoInfo" bit Meaning

0 Counter for received telegramsUSINT 0 to 255
1 See bit structure.

Bit structure:
Bit Function Value Information

0 - 3 Counter for received telegrams 0 to 15 Only the lower 4 bits
4 - 7 Number of unacknowledged telegrams in the receive buffer 0 to 15

14 Data sheet V 3.30

X20CS2770

9.10 Transmit buffer for IF1 and IF2

9.10.1 Number of CAN payload data bytes

Name:
TX01DataSize to TX02DataSize
Number of CAN payload data bytes to be transmitted If a value less than 0 is specified here, this CAN telegram
is marked as being invalid and is not transferred into the transmit buffer. This is useful in connection with transmit
error detection between the module and the CPU (see "Taking possible errors into consideration when transmitting"
on page 15).
Data type Value Meaning
USINT -128 to 8 Amount of CAN payload data to be transmitted

9.10.2 Identifier of the CAN telegram to be transmitted.

Name:
TX01Ident to TX02Ident
Identifier of the CAN telegram to be transmitted. The frame format and the identifier format are also defined in
this register.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Standard frame format (SFF) with an 11-bit identifier0 Frame format
1 Extended frame format (EFF) with an 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier for telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

9.10.3 Configuration of the CAN payload data being sent

Name:
TX0[x]DataByte0 to TX0[x]DataByte7
TX0[x]DataWord0 to TX0[x]DataWord3
TX0[x]DataLong0 to TX0[x]DataLong1
CAN payload data in the transmit direction. The 8 payload data bytes for a telegram can be used as data points
with 8 individual bytes, 4 words or 2 longs as needed.
Data type Value Description
USINT 0 to 255 CAN payload data transmitted as bytes
UINT 0 to 65,535 CAN payload data transmitted as words
UDINT 0 to 4.294.967.295 CAN payload data transmitted as longs

9.10.4 Taking possible errors into consideration when transmitting

Data on the POWERLINK network or X2X Link can be lost due to transmission errors. One-time failures of cyclic
data are tolerated by the I/O systems. This is possible since all I/O data is re-transferred in the subsequent cycle.
A transfer error cannot be detected from the I/O variables; they remain frozen on the value from the last cycle.
These tolerated one-time I/O failures can lead to data loss or the delayed CAN telegram transmission. The counter
feedback is derived on the module and used to detect these cases.

Register for counter feedback: "TX0[x]CountReadBack" on page 13

Data sheet V 3.30 15

X20CS2770

9.11 Receive buffer for IF1 and IF2

9.11.1 Number of valid CAN payload data bytes

Name:
RX01DataSize to RX02DataSize
Number of valid CAN payload data bytes.
This register also uses the value -1 (0xFF) to indicate a general error or gap in the input data stream. Details
regarding the error that has occurred can be seen in the "CAN error status" on page 12 register.
Data type Value Meaning

1 to 8 Number CAN payload dataUSINT
-1 Error

9.11.2 Identifier of the received data

Name:
RX01Ident to RX02Ident
Identifiers assigned to the received data. The frame format and the identifier format can also be read from this
register.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Standard frame format (SFF) with an 11-bit identifier0 Frame format
1 Extended frame format (EFF) with an 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier for telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

9.11.3 Configuration of the CAN payload data to be received

Name:
RX0[x]DataByte0 to RX0[x]DataByte7
RX0[x]DataWord0 to RX0[x]DataWord3
RX0[x]DataLong0 to RX0[x]DataLong1
These registers hold the payload data of the CAN object to be transferred from the receive buffer to the CPU in
the current cycle. If new data is received or if the receive buffer contains additional CAN objects, these registers
are overwritten with the new data in the next cycle.
To avoid losing CAN objects, the application must respond immediately to a change in the "RX0[x]Count" and
copies the data from these registers.
The maximum 8 bytes for a CAN telegram can be used as data points with 8 individual bytes, 4 words or 2 longs
as needed.
Data type Value Description
USINT 0 to 255 Received CAN payload data as bytes
UINT 0 to 65,535 Received CAN payload data as words
UDINT 0 to 4.294.967.295 Received CAN payload data as longs

16 Data sheet V 3.30

X20CS2770

9.12 Flatstream communication

9.12.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

Data sheet V 3.30 17

X20CS2770

9.12.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

18 Data sheet V 3.30

X20CS2770

9.12.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

Data sheet V 3.30 19

X20CS2770

9.12.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

9.12.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

9.12.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

20 Data sheet V 3.30

X20CS2770

9.12.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

9.12.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

9.12.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

9.12.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
Data sheet V 3.30 21

X20CS2770

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

9.12.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

22 Data sheet V 3.30

X20CS2770

9.12.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

Data sheet V 3.30 23

X20CS2770

9.12.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

24 Data sheet V 3.30

X20CS2770

9.12.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

Data sheet V 3.30 25

X20CS2770

9.12.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

26 Data sheet V 3.30

X20CS2770

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

Data sheet V 3.30 27

X20CS2770

9.12.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

28 Data sheet V 3.30

X20CS2770

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

Data sheet V 3.30 29

X20CS2770

9.12.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

30 Data sheet V 3.30

X20CS2770

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

Data sheet V 3.30 31

X20CS2770

9.12.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

32 Data sheet V 3.30

X20CS2770

9.12.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

Data sheet V 3.30 33

X20CS2770

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

34 Data sheet V 3.30

X20CS2770

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

Data sheet V 3.30 35

X20CS2770

9.12.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

36 Data sheet V 3.30

X20CS2770

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

Data sheet V 3.30 37

X20CS2770

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

38 Data sheet V 3.30

X20CS2770

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

Data sheet V 3.30 39

X20CS2770

9.12.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

9.12.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Receiver
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

40 Data sheet V 3.30

X20CS2770

9.12.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

9.12.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

9.12.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in microseconds. This is the amount of time the module
has to wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle.
The program routine for receiving sequences from a module can therefore be run in a task class whose cycle time
is slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

Data sheet V 3.30 41

X20CS2770

9.12.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

42 Data sheet V 3.30

X20CS2770

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

Data sheet V 3.30 43

X20CS2770

9.12.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

44 Data sheet V 3.30

X20CS2770

9.13 Acyclic frame size

Name:
AsynSize
When the stream is used, data is exchanged internally between the module and CPU. For this purpose, a defined
amount of acyclic bytes is reserved for this slot.
Increasing the acyclic frame size leads to increased data throughput on this slot.

Information:
This configuration involves a driver setting that cannot be changed during runtime!

Data type Value Information
- 8 to 28 Acyclic frame size in bytes. Default = 24

9.14 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

9.15 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is performed
in each cycle.

Minimum I/O update time
200 µs

Data sheet V 3.30 45

	X20CS2770
	1 General information
	2 Order data
	3 Technical data
	4 LED status indicators
	5 Pinout
	6 Terminating resistors
	7 Derating
	8 Usage after the X20IF1091-1
	9 Register description
	9.1 General data points
	9.2 Function model 0 - Flat
	9.3 Function model 2 - Stream and Function model 254 - Cyclic stream
	9.4 Function model 254 - Flatstream
	9.5 Function model 254 - Bus controller
	9.5.1 Using the module on the bus controller
	9.5.2 CAN I/O bus controller

	9.6 Using this module with SGC target systems
	9.7 CAN object
	9.7.1 CAN module data stream

	9.8 Interface - Configuration
	9.8.1 Transfer rate
	9.8.2 Synchronization Jump Width
	9.8.3 Offset for the sampling instant
	9.8.4 Start of transmission
	9.8.5 Configuration of error messages
	9.8.6 Size of the transmit buffer
	9.8.7 Display of unprocessed elements remaining in transmit/receive buffer

	9.9 Interface - Communication
	9.9.1 CAN error status
	9.9.2 CAN error acknowledgment
	9.9.3 New CAN telegram for transmit buffer
	9.9.4 Read "TX0[x]Count"
	9.9.5 Counter for received CAN telegrams

	9.10 Transmit buffer for IF1 and IF2
	9.10.1 Number of CAN payload data bytes
	9.10.2 Identifier of the CAN telegram to be transmitted.
	9.10.3 Configuration of the CAN payload data being sent
	9.10.4 Taking possible errors into consideration when transmitting

	9.11 Receive buffer for IF1 and IF2
	9.11.1 Number of valid CAN payload data bytes
	9.11.2 Identifier of the received data
	9.11.3 Configuration of the CAN payload data to be received

	9.12 Flatstream communication
	9.12.1 Introduction
	9.12.2 Message, segment, sequence, MTU
	9.12.3 The Flatstream principle
	9.12.4 Registers for Flatstream mode
	9.12.4.1 Flatstream configuration
	9.12.4.1.1 Number of enabled Tx and Rx bytes

	9.12.4.2 Flatstream operation
	9.12.4.2.1 Format of input and output bytes
	9.12.4.2.2 Transport of payload data and control bytes
	9.12.4.2.3 Control bytes
	9.12.4.2.4 Communication status of the CPU
	9.12.4.2.5 Communication status of the module
	9.12.4.2.6 Relationship between OutputSequence and InputSequence

	9.12.4.3 Synchronization
	9.12.4.4 Transmitting and receiving
	9.12.4.5 Transmitting data to a module (output)
	9.12.4.6 Receiving data from a module (input)
	9.12.4.7 Details
	9.12.4.8 Flatstream mode
	9.12.4.9 Adjusting the Flatstream

	9.12.5 Example of function "Forward" with X2X Link
	9.12.5.1 Function principle
	9.12.5.2 Configuration
	9.12.5.2.1 Number of unacknowledged sequences
	9.12.5.2.2 Delay time

	9.12.5.3 Transmitting and receiving with Forward
	9.12.5.4 Errors when using Forward

	9.13 Acyclic frame size
	9.14 Minimum cycle time
	9.15 Minimum I/O update time

