8V128M.00-2

1 General information

- Modular mechanical design using plug-in modules
- Integrated line filter
- Integrated or optional external braking resistor
- Integrated electronic restart inhibit

2 Order data

Table 1: 8V128M.00-2 - Order data

3 Technical data

Order number	8V128M.00-2
General information	0x12F3
B\&R ID code	4
Slots for plug-in modules	
Certifications	Yes
CE	Yes
Functional safety ${ }^{1)}$	CULus E225616
UL	Power conversion equipment
EAC	Yes
KC	Yes

Table 2: 8V128M.00-2 - Technical data

Order number	8V128M.00-2
Mains connection	
Permissible network configurations	TT, TN ${ }^{\text {2) }}$
Mains input voltage	3 x 400 VAC to 480 VAC $\pm 10 \%$
Frequency	$50 / 60 \mathrm{~Hz} \pm 4 \%$
Installed load	Max. 98 kVA
Inrush current at 400 VAC	26 A
Switch-on interval	$>10 \mathrm{~s}$
Integrated line filter per EN 61800-3, category C3 ${ }^{3}$	Yes
Power dissipation at device nominal power without braking resistor	Approx. 3200 W
DC bus connection	
DC bus capacitance	$6600 \mu \mathrm{~F}$
24 VDC power supply	
Input voltage	24 VDC +25\% / -20\%
Input capacitance	32,800 $\mu \mathrm{F}$
Current consumption at 24 VDC ${ }^{4)}$	
Mains input voltage applied	${ }^{-5)}$
Mains input voltage not applied	Max. 5.7 A + 1.4 * (Current for motor holding brake + Current on 24 VDC output)
DC bus power supply unit	
Switch-on voltage	455 VDC
24 VDC output	
Output voltage	
Mains input voltage applied	22 to 24 VDC
Mains input voltage not applied	16.7 to $30 \mathrm{VDC}{ }^{6)}$
Output current	Max. 0.5 A
Motor connection	
Quantity	1
Continuous current ${ }^{7)}$	$128 \mathrm{~A}_{\text {eff }}$
Reduction of continuous current depending on ambient temperature	
Mains input voltage: 400 VAC	
Switching frequency 5 kHz	No reduction ${ }^{8)}$
Switching frequency 10 kHz	$1.65 \mathrm{~A}_{\text {eff }}$ per ${ }^{\circ} \mathrm{C}$ (starting at $52^{\circ} \mathrm{C}$)
Switching frequency 20 kHz	$1.65 \mathrm{~A}_{\text {eff }}$ per ${ }^{\circ} \mathrm{C}$ (starting at $12^{\circ} \mathrm{C}$)
Mains input voltage: 480 VAC	
Switching frequency 5 kHz	No reduction ${ }^{8)}$
Switching frequency 10 kHz	$1.65 \mathrm{~A}_{\text {eff }}$ per ${ }^{\circ} \mathrm{C}$ (starting at $36^{\circ} \mathrm{C}$)
Switching frequency 20 kHz	$1.65 \mathrm{~A}_{\text {eff }} \mathrm{per}{ }^{\circ} \mathrm{C}\left(\text { starting at } 10^{\circ} \mathrm{C}\right)^{9}$
Reduction of continuous current depending on installation elevation	
Starting at 500 m above sea level	$12.8 \mathrm{~A}_{\text {eff }}$ per 1000 m
Peak current	$300 \mathrm{~A}_{\text {eff }}$
Nominal switching frequency	5 kHz
Possible switching frequencies	$5 / 10 / 20 \mathrm{kHz}$
Insulation stress of the connected motor per IEC TS 60034-25:2004 ${ }^{10}$	Limit value curve A
Max. motor cable length	25 m
Protective measures	
Overload protection	Yes
Short circuit and ground fault protection	Yes
Max. output frequency	$598 \mathrm{~Hz}{ }^{11)}$
Terminal connection cross section	
Flexible and fine-stranded wires	
With wire end sleeves	10 to $70 \mathrm{~mm}^{2}$
Approbation data	
UL/C-UL-US	6 to 2/0 AWG
CSA	6 to 2/0 AWG
Motor holding brake connection	
Response threshold for open circuit monitoring	Approx. 210 mA
Max. output current	3 A
Max. number of switching cycles	Approx. 80,000
Braking resistor	
Peak power int./ext.	8.5 / 250 kW
Continuous power int./ext.	$0.24 / 24 \mathrm{~kW}^{\text {12) }}$
Minimum braking resistance (ext.)	2.5Ω
Rated current of built-in fuse	30 A (fast-acting)
Limit switch and reference inputs	
Quantity	3
Circuit	Sink
Electrical isolation	
Input - ACOPOS	Yes
Input - Input	No

Table 2: 8V128M.00-2 - Technical data

Order number	8V128M.00-2
Input voltage	
Nominal	24 VDC
Maximum	30 VDC
Switching threshold	
Low	<5 V
High	$>15 \mathrm{~V}$
Input current at nominal voltage	Approx. 4 mA
Switching delay	Max. 2.0 ms
Modulation compared to ground potential	Max. $\pm 38 \mathrm{~V}$
Enable inputs	
Quantity	1
Circuit	Sink
Electrical isolation	
Input - ACOPOS	Yes
Input voltage	
Nominal	24 VDC
Maximum	30 VDC
Input current at nominal voltage	Approx. 30 mA
Switching threshold	
Low	<5 V
High	$>15 \mathrm{~V}$
Switching delay	
Enable $0 \rightarrow 1$, ready for PWM	Max. $100 \mu \mathrm{~s}$
Enable $1 \rightarrow 0$, PWM off	Max. 2.0 ms
Modulation compared to ground potential	Max. $\pm 38 \mathrm{~V}$
OSSD signal connections ${ }^{13)}$	Not permitted
Trigger inputs	
Quantity	2
Circuit	Sink
Electrical isolation	
Input - ACOPOS	Yes
Input - Input	No
Input voltage	
Nominal	24 VDC
Maximum	30 VDC
Switching threshold	
Low	$<5 \mathrm{~V}$
High	$>15 \mathrm{~V}$
Input current at nominal voltage	Approx. 10 mA
Switching delay	
Rising edge	$52 \mu \mathrm{~s} \pm 0.5 \mu \mathrm{~s}$ (digitally filtered)
Falling edge	$53 \mu \mathrm{~s} \pm 0.5 \mu \mathrm{~s}$ (digitally filtered)
Modulation compared to ground potential	Max. $\pm 38 \mathrm{~V}$
Electrical properties	
Discharge capacitance	$5.4 \mu \mathrm{~F}$
Energy efficiency (IE classification) ${ }^{14)}$	
Efficiency data	IE2 $(10,25) 0.5 \%$ IE2 $(50,25) 0.6 \%$ IE2 $(10,50) 0.8 \%$ IE2 $(50,50) 0.8 \%$ IE2 $(90,50)$ 1\% IE2 $(10,100) 1.6 \%$ IE2 $(50,100) 1.8 \%$ IE2 $(90,100)$ 2.3\%
Nominal losses in standby mode	38.6 W
Operating conditions	
Permissible mounting orientations	
Hanging vertically	Yes
Horizontal, face up	Yes
Standing horizontally	No
Installation elevation above sea level	
Nominal	0 to 500 m
Maximum ${ }^{15}$	2000 m
Pollution degree per EN 61800-5-1	2 (non-conductive pollution)
Overvoltage category per EN 61800-5-1	11
Degree of protection per EN 60529	IP20
Ambient conditions	
Temperature	
Operation	
Nominal	5 to $40^{\circ} \mathrm{C}$
Maximum ${ }^{16)}$	$55^{\circ} \mathrm{C}$
Storage	-25 to $55^{\circ} \mathrm{C}$
Transport	-25 to $70^{\circ} \mathrm{C}$

Table 2: 8V128M.00-2 - Technical data

Order number	8V128M.00-2
Relative humidity	
Operation	5 to 85%
Storage	5 to 95%
Transport	Max. 95% at $40^{\circ} \mathrm{C}$
Mechanical properties	
Dimensions	402 mm
Width	460 mm
Height	295 mm
Depth	33.8 kg
Weight	

Table 2: 8V128M.00-2 - Technical data

1) Achievable safety classifications (safety integrity level, safety category, performance level) are documented in the user's manual (section "Safety technology").
2) TT and TN power systems are commonly referred to as "Delta/Wye with grounded wye neutral" in the USA.
3) Limit values from EN 61800-3 C3 (second environment).
4) Current consumption depends on the respective configuration of the ACOPOS servo drive.

The inrush current is significantly higher than the value for current consumption and can be estimated according to the input capacitance.
5) If the mains input voltage is present (3×400 VAC to 480 VAC $\pm 10 \%$), the 24 VDC supply voltage for the ACOPOS servo drive is generated by the internal DC bus power supply unit, reducing the 24 VDC current consumption ($I_{24 \mathrm{VDC}}$) to 0 .
6) If the mains input voltage ($3 x 400$ VAC to 480 VAC $\pm 10 \%$) is not present, the voltage on the 24 VDC output is generated from the 24 VDC power supply of the ACOPOS servo drive; in this case, it lies between the maximum permissible and the (reduced by a maximum of 2.5 V) minimum permissible 24 VDC power supply of the ACOPOS servo drive.
7) Valid under the following conditions: mains input voltage 400 VAC , nominal switching frequency, $40^{\circ} \mathrm{C}$ ambient temperature, installation elevation $<500 \mathrm{~m}$ above sea level.
8) Value for the nominal switching frequency.
9) A maximum continuous current of $95 \mathrm{~A}_{\text {eff }}$ is permissible with a mains input voltage of 480 VAC and switching frequency of 20 kHz . In addition, a reduction of the continuous current of $1.65 \mathrm{~A}_{\text {eff }}$ per ${ }^{\circ} \mathrm{C}$ must be taken into account at ambient temperatures $>10^{\circ} \mathrm{C}$.
10) If necessary, the stress of the motor isolation system can be reduced by an additional externally wired dv/dt choke. For example, the RWK 305 three-phase dU/dt choke from Schaffner (www.schaffner.com) can be used. Important: Even when using a dv/dt choke, it is necessary to ensure that an EMC-compatible, low inductance shield connection is used!
11) The module's electrical output frequency (SCTRL_SPEED_ACT * MOTOR_POLEPAIRS) is monitored to protect against dual use in accordance with Regulation (EC) 428/2009 | 3A225. If the electrical output frequency of the module exceeds the limit value of 598 Hz uninterrupted for more than 0.5 s , then the current movement is aborted and error 6060 is output ("Power unit: Limit speed exceeded").
12) Continuous power refers to the maximum braking power the ACOPOS servo drive can exchange continuously. Depending on the application, the actual continuous power provided by the external braking resistor is limited by the rated current of fuse I_{B} (integrated in the ACOPOS servo drive), and the value of the external braking resistance $R_{B R}$.
13) OSSD (output signal switching device) signals are used to monitor signal lines for short circuits and cross faults.
14) The IE classification of the module is based on drive losses. This includes components such as EMC filters, etc. The efficiency data was determined at a switching frequency of 5 kHz . Classification is performed at 90% of the frequency and at 100% of the current. When operating the module in connection with an induction motor, the module is only permitted to be operated with a switching frequency of 5 kHz .
15) Continuous operation of ACOPOS servo drives at an installation elevation from 500 m to 2000 m above sea level is possible (taking the specified continuous current reductions into account).
16) Continuous operation of the ACOPOS servo drive at an ambient temperature of $40^{\circ} \mathrm{C}$ to max. $55^{\circ} \mathrm{C}$ is possible taking the specified reduction of continuous torque into account, but this results in premature aging of components.

4 Status indicators

ACOPOS servo drives are equipped with three LEDs for direct diagnostics:

Figure 1: ACOPOS servo drive indicators
LED status indicators

Label	Color	Function	Description	
READY	Green	Ready	Solid green	The module is operational and the power stage can be enabled (operating system present and booted, no permanent or temporary errors).
			Blinking green ${ }^{1)}$	The module is not ready for operation. Examples: - No signal on one or both enable inputs - DC bus voltage outside the tolerance range - Overtemperature on the motor (temperature sensor) - Motor feedback not connected or defective - Motor temperature sensor not connected or defective - Overtemperature on the module (IGBT junction, heat sink, etc.) - Disturbance on network
RUN	Orange	Run	Solid orange	The module's power stage is enabled.
ERROR	Red	Error	Solid red ${ }^{1)}$	There is a permanent error on the module. Examples: - Permanent overcurrent - Invalid data in EPROM

Table 3: ACOPOS servo drive - LED status indicators

1) Firmware V2.130 and later.

If no LED is lit up, the ACOPOS servo drive is not supplied with 24 VDC mains voltage.

Danger!

After switching off the device, wait for the DC bus to discharge for at least five minutes. To avoid a hazard, the current voltage on the DC bus must be measured with a suitable measuring instrument and less than 42 VDC before starting work. An unlit operating LED does not indicate that the device is de-energized!

4.1 Status changes when starting up the operating system loader

The following intervals are used for the LED status indicators:
Width of box: 125 ms
Repeats after: 3000 ms

Status	LED											Display									
1. Boot procedure for base hardware active	Green																				
	Orange																				
	Red																				
2. Network plug-in module configuration active	Green																				
	Orange																				
	Red																				
3. Waiting for network telegram	Green																				
	Orange																				
	Red																				
4. Network communication active	Green																				
	Orange																				
	Red																				

Table 4: Status changes when starting up the operating system loader

Error status with reference to CAN plug-in module AC110

Table 5: Error status with reference to CAN plug-in module AC110

1) Possible errors:

- The ACOPOS servo drive is defective
- The plug-in module is defective
- The plug-in module is not connected properly in the slot.

Error status with reference to POWERLINK V2 plug-in module AC114

Status Invalid hardware ID ${ }^{\text {1) }}$	LED	Display																			
	Green																				
Invalid hardware ID ${ }^{1)}$	Orange																				
	Red																				
Boot error in POWERLINK base hardware	Green																				
	Orange																				
	Red																				
Error booting the AC114-ARM	Green																				
	Orange																				
	Red																				
The POWERLINK station number is 0 .	Green																				
	Orange																				
	Red																				

Table 6: Error status with reference to POWERLINK V2 plug-in module AC114

1) Possible errors:

- The ACOPOS servo drive is defective (plug-in module not detected)
- The plug-in module is defective
- The plug-in module is not connected properly in the slot.
- The plug-in module works but is not automatically detected by the ACOPOS servo drive (old bootstrap loader).

5 Dimension diagram and installation dimensions

Figure 2: Dimension diagram and installation dimensions

1) For sufficient air circulation, a clearance of at least 80 mm must be provided above and below the ACOPOS servo drive. Approx. 160 mm free space is required under the ACOPOS servo drive to prevent cabling problems.

6 Wiring

Pinout overview

Figure 3: ACOPOS 1640, 128M - Pinout overview

1) When using an external 24 VDC supply for the ACOPOS 1640 and 128 M servo drives, both +24 VDC connections ($\mathrm{X} 1 / 14, \mathrm{X} 1 / 15$) and at least two of the three COM connections (X1/16, X1/17, X1/18) must always be wired so that the individual terminals are not overloaded.

6.1 X1 - Pinout

X1	Pin	Description	Function
	1	Trigger1	Trigger 1
	2	Quickstop / Trigger 2	Quickstop / Trigger 2
	3	$\operatorname{COM}(1,2)$	Trigger 1, quickstop / Trigger 20 V
	4	Shield	Shield
	5	Limit+	Positive hardware end position
	6	Limit-	Negative hardware end position
	7	Ref	Reference switch
	8	Enable ${ }^{1)}$	Enable
	9	Enable ${ }^{1)}$	Enable
	10	$\operatorname{COM}(8,9)$	Enable 0 V
	11	COM (8, 9)	Enable 0 V
	12	---	---
	13	+24 V out / 0.5 A	+24 V output / 0.5 A
	14	+24 V	+24 V power supply ${ }^{2)}$
	15	+24V	+24 V power supply ${ }^{2)}$
	16	COM (5-7, 13-15)	0 V power supply ${ }^{2}$
	17	COM (5-7, 13-15)	0 V power supply ${ }^{2}$
	18	COM (5-7, 13-15)	0 V power supply ${ }^{2)}$
	follow P - P P P	onnections are connec \rightarrow Pin 9 (enable) \rightarrow Pin 11 (enable 0 V) \rightarrow Pin 15 (power supp \rightarrow Pin $17 \rightarrow$ Pin 18 (po	e device:

Table 7: X1 - Pinout

1) Wiring is not permitted to exceed a total length of 30 m .
2) When using an external 24 VDC supply for the ACOPOS 1640 and 128 M servo drives, both +24 VDC connections ($\mathrm{X} 1 / 14, \mathrm{X} 1 / 15$) and at least two of the three COM connections ($\mathrm{X} 1 / 16, \mathrm{X} 1 / 17, \mathrm{X} 1 / 18$) must always be wired so that the individual terminals are not overloaded.

Information:

To obtain a defined reference of ground to ground potential, B\&R recommends grounding the COM connections (5-7, 13-15) on connector X1.

6.2 X2 - Pinout

Table 8: X2 - Pinout

6.3 X3 - Pinout

Danger!

Servo drives are not permitted to be operated directly on IT power systems and corner-grounded TNS power systems with protective ground conductor!

Table 9: X3 - Pinout

X4a	Pin	Description	Function
	1	S2 ${ }^{1)}$	Enabling, power supply of external holding brake (+)
	2	S1 ${ }^{1)}$	Enabling of external holding brake (+)
	3	S4	Enabling, power supply of external holding brake (-)
	4	S3	Enabling of external holding brake (-)

Table 10: X4a - Pinout

1) If the holding brake is connected via an additional external relay contact (ground-in e.g. via connections $\mathrm{S} 1 / \mathrm{S} 2$) instead of only via the internal transistor, then the internal quenching circuit has no effect! In this case, the customer must make sure that neither the relay contact nor the braking coil are damaged when switching off the brake. This can be done by interconnecting the coil or - better still - interconnecting the contact with a quenching circuit.

X4b	Pin	Description	Function
	1	T-	Temperature sensor -
	2	T+	Temperature sensor +
	3	B- ${ }^{1}$	Brake -
110	4	B+ ${ }^{1}$	Brake +
$\square \square$ \square \square \square B_{+} $B-$ T_{+} T-			

Table 11: X4b - Pinout

1) If the holding brake is connected via an additional external relay contact (ground-in e.g. via connections S1/S2) instead of only via the internal transistor, then the internal quenching circuit has no effect! In this case, the customer must make sure that neither the relay contact nor the braking coil are damaged when switching off the brake. This can be done by interconnecting the coil or - better still - interconnecting the contact with a quenching circuit.

Danger!

The connections for the motor temperature sensors and the motor holding brake are safely isolated circuits. These connections are therefore only permitted to be connected to devices or components that have sufficient isolation per IEC 60364-4-41 or EN 61800-5-1.

Caution!

If $\mathrm{B}+$ and B - are swapped when connecting the permanent magnet holding brakes, then the brakes cannot be opened! ACOPOS servo drives cannot determine if a holding brake is connected with reverse polarity!

6.4.1 Wiring the connections for the motor holding brake

The power supply, enabling and monitoring of the output for the motor holding brake can be carried out in three different ways via the wiring of connector X4a:

	Figure	Description
1		- Power supply: Internal via the ACOPOS servo drive - Enabling: Internal via the ACOPOS servo drive - Monitoring: Internal via the ACOPOS servo drive Jumpers must be placed between connections S1 and S2 as well as S3 and S4 on connector X4a. ${ }^{1)}$
2		- Power supply: Internal via the ACOPOS servo drive - Enabling: Possible internally by the ACOPOS servo drive and externally by dry contacts ${ }^{2)}$ - Monitoring: Internal via the ACOPOS servo drive Information: ACOPOS-internal monitoring must be configured according to the requirements of the application. ${ }^{3)}$
3		- Power supply: External - Enabling: External - Monitoring: External Information: ACOPOS-internal monitoring cannot be used here; it must therefore be disabled using software. ${ }^{4)}$

Table 12: Enabling the external holding brake

1) The two jumpers are already wired on connector $X 4$ a supplied with ACOPOS servo drives.
2) External dry contacts can be connected between $S 1$ and $S 2$ and between $S 3$ and $S 4$. This makes it possible to enable the holding brake via external safety circuits independently of the control integrated in the ACOPOS servo drive.
3) Configuration takes place using ParID 90 (1 ... Internal monitoring active, 5 ... Internal monitoring not active)
4) Disabling takes place using ParID 90 (5 ... Internal monitoring not active).

8V128M.00-2

6.5 X5 - Pinout

Table 13: X5 - Pinout

6.6 X6 - Pinout

X6	Pin	Description	Function
	1	PE	Protective ground conductor
	2	RB-	Braking resistor -
	3	RB+	Braking resistor +
(D) \square \square $\mathrm{RB}+$ \square $\mathrm{RB}-$ \square			

Table 14: X6 - Pinout

6.7 Input/Output circuit diagram

Figure 4: Trigger

Figure 5: Limit

Figure 6: Enable

Figure 7: ACOPOS 1640, 128M - Input/Output circuit diagram

