Drehstrom-Synchronmotoren 8LS...-3

Anwenderhandbuch

Version: **2.51 (Dezember 2020)**

Bestellnr.: MAMOT2-GER

Originalbetriebsanleitung

Alle Angaben entsprechen dem aktuellen Stand zum Zeitpunkt der Erstellung des Handbuches. Inhaltliche Änderungen dieses Handbuches behalten wir uns ohne Ankündigung vor. Die B&R Industrial Automation GmbH haftet nicht für technische oder redaktionelle Fehler und Mängel in diesem Handbuch. Außerdem übernimmt die B&R Industrial Automation GmbH keine Haftung für Schäden, die direkt oder indirekt auf Lieferung, Leistung und Nutzung dieses Materials zurückzuführen sind. Wir weisen darauf hin, dass die in diesem Dokument verwendeten Soft- und Hardwarebezeichnungen und Markennamen der jeweiligen Firmen dem allgemeinen warenzeichen-, marken- oder patentrechtlichen Schutz unterliegen.

Inhaltsverzeichnis

1 Allgemeines	5
1.1 Handbuchhistorie	5
1.2 Über dieses Anwenderhandbuch	5
1.3 Sicherheit	5
1.3.1 Gestaltung von Sicherheitshinweisen	5
1.3.2 Bestimmungsgemäße Verwendung	
1.3.3 Vorhersehbare Fehlanwendungen	
1.3.4 Allgemeine Gefahrenquellen	
1.3.5 Vorschriften und Sicherheitsbestimmungen	
1.3.6 Verantwortung des Betreibers	
1.3.7 Qualifiziertes Fachpersonal	
1.3.8 Sicherheitskennzeichnung	
1.3.9 Schutzausrüstung	
1.4 Drehstrom-Synchronmotoren 8LS	
1.4.1 Normen, Richtlinien und Zulassungen	
1.4.2 Typenschild	I I
2 Technische Daten	12
2.1 Allgemeine Beschreibung 2.2 Bestellschlüssel 8LS	
2.2 Bestellscriftusser 8LS	
2.2.2 Bestellbeispiel 2	
2.3 Kühlart / Bauform (b)	
2.4 Baugröße (c)	
2.5 Baulänge (d)	
2.6 Motorgebersystem (ee)	
2.6.1 EnDat 2.2	
2.6.2 Allgemeines Safety Geber	
2.6.3 Hinweis SafeMOTION	
2.6.4 Resolver	
2.6.5 Induktive EnDat Geber für Baugröße 2 und A	
2.6.6 Optische EnDat Geber für Baugröße 2 und A	
2.6.7 Induktive EnDat Geber für Baugröße 3 - 9	
2.6.8 Optische EnDat Geber für Baugröße 3 - 9	
2.7 Nenndrehzahl (nnn)	
2.7.1 Verfügbarkeit - 8LSA3	
2.7.2 Verfügbarkeit - 8LSC3	
2.7.3 Verfügbarkeit - 8LSO3 / 8LSP3	22
2.8 Motoroptionen (ff) 8LSA / 8LSC	
2.8.1 Anschlussrichtung (ff) 8LSA / 8LSC	
2.8.2 Verfügbarkeit Einkabellösung (hybrid) (ff) 8LSA / 8LSC	25
2.8.3 Wellendichtring (ff) 8LSA / 8LSC	
2.8.4 Haltebremse (ff) 8LSA / 8LSC	
2.8.5 Wellenende (ff) 8LSA / 8LSC	
2.9 Motoroptionen (ff) 8LSO / 8LSP	
2.9.1 Montageart (ff) 8LSO / 8LSP	
2.9.2 Anschlussrichtung (ff) 8LSO / 8LSP	
2.9.3 Wellendichtring (ff) 8LSO / 8LSP	
2.9.4 Wellenende (ff) 8LSO / 8LSP	
2.10 Sondermotoroptionen (gg) 8LSA / 8LSC	
2.10.1 Spezialhaltebremse für verstärktes A-Lager	
2.11 Sondermotoroptionen (gg) 8LSO / 8LSP	
2.12 Allgemeine Motordaten	
2.12.1 Lüfterbaugruppen	
2.12.2 Formelzeichen	
2.12.3 Verlustleistung	
2. 10 Statituatuttiototali	42

43
44
45
46
47
48
49
50
51
51
61
69 82
02 96
111
120
153
167
167
180
194
203
217
233
247
247
257
0 = =
257
257 267
267
267269270
267269270
267269270272
267269270272

Inhaltsverzeichnis

300
300
300
301
301
302
302
303
304
304
304
307
308
308
309
309
309
309

1 Allgemeines

1.1 Handbuchhistorie

Version	Datum	Anmerkungen
2.51	Dezember 2020	Allgemeine Überarbeitung;
		Typenschild Abbildung wurde ergänzt (siehe "Typenschild" auf Seite 11);
		Abschnitt "Vermeidung von Lagerströmen" wurde erweitert (siehe "Vermeidung von Lagerströmen [Ringbandkernausle- gung]" auf Seite 283)
		Abschnitt "Stecker fachgerecht anschließen" wurde erweitert (siehe "Stecker fachgerecht anschließen" auf Seite 287)
2.50	Dezember 2018	Allgemeine Überarbeitung
		Ergänzungen:
		Motoren (8LSAA, 8LSA5A/B/C, 8LSC5A/B/C, 8LSO9, 8LSP9);
		Fan Kit 8LSC (siehe "Ersatzteile, Anschlussrichtung, Montage" auf Seite 267);
		Montageart und Kühlung (siehe "Aufstellbedingungen" auf Seite 272);
		Stecker fachgerecht anschließen (siehe "Montage und Anschluss");
		Anschlussreihenfolge (siehe "Montage und Anschluss" auf Seite 284)
2.10	Juli 2017	Ringbandkernauslegung ergänzt (siehe "Vermeidung von Lagerströmen (Common-Mode-Ströme)" auf Seite 283)
2.00	April 2016	Erste Ausgabe der Motorversion V3

Information:

B&R stellt Anwenderhandbücher so aktuell wie möglich zur Verfügung. Neue Versionen werden in elektronischer Form auf der B&R Homepage www.br-automation.com zur Verfügung gestellt. Prüfen Sie daher regelmäßig ob Ihnen die aktuellste Version vorliegt.

1.2 Über dieses Anwenderhandbuch

Dieses Anwenderhandbuch beschreibt das Produkt, informiert Sie über den Umgang damit und warnt vor möglichen Gefahren.

Das für Installation, Bedienung, Störungsbeseitigung, Wartung und Reinigung zuständige Personal muss dieses Handbuch vor Beginn aller Arbeiten gelesen und verstanden haben. Auch zu berücksichtigen ist die Maschinen-Dokumentation, worin das hier beschriebene Produkt eine Komponente darstellt. Dadurch und durch Einhaltung aller Vorgaben und Sicherheitshinweise ist eine gefährdungsfreie Funktion und lange Nutzungsdauer möglich.

Als Bestandteil der Maschine ist dieses Handbuch frei zugänglich und in unmittelbarer Nähe der Maschine aufzubewahren.

Zusätzlich zu den Hinweisen dieses Handbuches gelten die örtlichen Unfallverhütungsvorschriften und nationalen Arbeitsschutzbestimmungen.

Dieses Dokument richtet sich nicht an Endkunden! Die für Endkunden notwendigen Sicherheitshinweise müssen vom Maschinenbauer oder Systemanbieter in die Betriebsanleitung für Endkunden in der jeweiligen Landessprache übernommen werden.

1.3 Sicherheit

In diesem Kapitel werden Ihnen sicherheitsrelevante Informationen zum Umgang mit dem Produkt bereitgestellt.

Sicherheitshinweise die während einer bestimmten Lebensphase des Produktes zu beachten sind, wurden in den jeweiligen Handbuchkapiteln dokumentiert.

1.3.1 Gestaltung von Sicherheitshinweisen

Die Sicherheitshinweise werden im vorliegenden Handbuch wie folgt gestaltet:

Sicherheitshinweis	Beschreibung
Gefahr!	Bei Missachtung der Sicherheitsvorschriften und -hinweise besteht Todesgefahr.
Warnung!	Bei Missachtung der Sicherheitsvorschriften und -hinweise besteht die Gefahr schwerer Verletzungen oder großer Sachschäden.
Vorsicht!	Bei Missachtung der Sicherheitsvorschriften und -hinweise besteht die Gefahr von Verletzungen oder von Sachschäden.
Hinweis:	Wichtige Angaben zur Vermeidung von Fehlfunktionen.

1.3.2 Bestimmungsgemäße Verwendung

B&R Motoren und Getriebemotoren sind Komponenten, die zum Einbau in elektrische Anlagen oder Maschinen bestimmt sind. Sie wurden für den gewöhnlichen Einsatz in der Industrie entworfen, entwickelt und hergestellt. Vorgesehen ist ein Betrieb in überdachten Räumen und unter normalen klimatischen Bedingungen wie sie üblicherweise in modernen Fertigungshallen vorherrschen. Bei Einsatz im Wohnbereich, in Geschäfts- und Gewerbebereichen sowie Kleinbetrieben sind zusätzliche Filtermaßnahmen durch den Anwender vorzusehen bzw. erforderlich. Betreiben Sie den Motor ausschließlich mit B&R Antriebssystemen.

Die bestimmungsgemäße Verwendung ist solange untersagt, bis:

- festgestellt wurde, dass die Maschine den Bestimmungen der EG-Richtlinie 2006/42/EG (Maschinenrichtlinie) und der EMV-Richtlinie 2014/30/EU entspricht.
- alle Angaben It. Typenschild und Anwenderhandbuch (z. B. Anschluss- und Umgebungsbedingungen) eingehalten wurden.

1.3.3 Vorhersehbare Fehlanwendungen

Eine Verwendung des Produktes in Bereichen mit verhängnisvollen Risiken oder Gefahren ist verboten!

Gefahr!

Schwere Personen- und Sachschäden durch Ausfall!

Bei Verwendungen ohne Sicherstellung von außergewöhnlich hohen Sicherheitsmaßnahmen sind Tod, Verletzung, schwere physische Beeinträchtigungen oder andere schwerwiegende Verluste möglich.

Verwenden Sie das Produkt nicht in folgenden und anderen Bereichen, welche mit verhängnisvollen Risiken oder Gefahren verbunden sind:

- in explosionsgefährdeten Bereichen
- bei der Überwachung von Kernreaktionen in Kernkraftwerken
- in der Verwendung bei Flugleitsystemen und in der Flugsicherung
- zur Steuerung von Massentransportmitteln
- bei medizinischen Lebenserhaltungssystemen
- für die Steuerung von Waffensystemen

Wenn im Sonderfall - bei Einsatz in nicht gewerblichen Anlagen - erhöhte Anforderungen gestellt werden (z. B. Berührungsschutz gegen Kinderfinger), sind diese Bedingungen bei der Aufstellung anlagenseitig zu gewährleisten.

1.3.4 Allgemeine Gefahrenquellen

Manipulation von Schutz- bzw. Sicherheitseinrichtungen

Schutz- bzw. Sicherheitseinrichtungen schützen Sie und andere Personen vor gefährlicher Spannung, sich drehenden oder bewegenden Elementen und vor heißen Oberflächen.

Gefahr!

Personen- und Sachschäden durch Manipulation von Schutzeinrichtungen!

Werden Schutz- bzw. Sicherheitseinrichtungen entfernt oder außer Betrieb gesetzt, ist kein Personenschutz mehr gegeben und es kann zu sehr schweren Personen- und Sachschäden kommen.

- Entfernen Sie keine Sicherheitseinrichtungen.
- Setzen Sie keine Sicherheitseinrichtungen außer Betrieb.
- Verwenden Sie auch bei kurzzeitigem Test- und Probebetrieb immer alle Sicherheitseinrichtungen!

Gefährliche Spannung

Zum Betrieb der Motoren ist es notwendig, dass an bestimmten Teilen eine gefährliche Spannung anliegt.

Gefahr!

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Gefahr durch Elektromagnetische Felder

Beim Betrieb von Anlagen der elektrischen Energietechnik, z. B. Transformatoren, Umrichter, Motoren usw., werden elektromagnetische Felder erzeugt.

Gefahr!

Gesundheitsgefahr durch elektromagnetische Felder!

Ein Herzschrittmacher kann durch elektromagnetische Felder in seiner Funktion beeinträchtigt werden, so dass es beim Träger zu gesundheitlichen Schäden mit möglicher Todesfolge kommen kann.

- Beachten Sie die entsprechenden nationalen Schutz- und Sicherheitsvorschriften.
- Der Aufenthalt von Personen mit Herzschrittmachern ist in gefährdeten Bereichen untersagt.
- Warnen Sie das Personal durch Information, Warnhinweise und Sicherheitskennzeichnung.
- Sichern Sie die Gefahrenzone durch Absperrungen ab.
- Sorgen Sie z. B. mit Abschirmungen dafür, dass die elektromagnetischen Felder an ihrer Quelle reduziert werden.

Gefährliche Bewegung

Durch Dreh- und Positionierbewegungen der Motoren werden Maschinenelemente bewegt oder angetrieben, wie auch Lasten befördert.

Nach dem Einschalten der Maschine ist grundsätzlich jederzeit mit Bewegungen der Motorwelle zu rechnen! Ein Schutz von Personen und Maschine kann daher nur durch übergeordnete Schutzmaßnahmen gewährleistet werden. Ein solcher Schutz kann z. B. durch ausreichend stabile mechanische Schutzeinrichtungen wie Schutzabdeckungen, Schutzzäune, Schutzgitter sowie durch Lichtschranken erreicht werden.

Bringen Sie in unmittelbarer Nähe der Maschine ausreichend und leicht zugängliche Notaus-Schalter an, um die Maschine im Unglücksfall schnellstmöglich anhalten zu können.

Gefahr!

Verletzungsgefahr durch sich drehende oder bewegende Elemente und durch Lasten!

Durch sich drehende oder bewegende Elemente können Körperteile eingezogen oder abgetrennt werden und Stöße auf den Körper ausgeübt werden.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen gegen das Betreten durch unbefugte Personen.
- Bevor Sie an der Maschine arbeiten, sichern Sie diese gegen ungewollte Bewegungen ab. Eine ggf. vorhandene Haltebremse ist nach einem Anbau von Antriebselementen sowie nach der Durchführung von Wartungs- und Reparaturarbeiten auf Funktion zu prüfen!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Motoren k\u00f6nnen durch Fernsteuerung automatisch anlaufen! Gegebenenfalls ist ein dementsprechendes Warnsymbol anzubringen und ein Schutz gegen das Betreten des Gefahrenbereiches vorzusehen!

Warnung!

Verletzungsgefahr durch fehlerhafte Ansteuerung oder Defekt!

Durch fehlerhafte Ansteuerung von Motoren oder Defekt können ungewollte und gefährliche Bewegungen ausgelöst und Verletzungen herbeigeführt werden.

Ein solches fehlerhaftes Verhalten kann ausgelöst werden durch:

- fehlerhafte Installation bzw. Fehler bei der Handhabung der Komponenten
- fehlerhafte oder unvollständige Verdrahtung
- defekte Geräte (Servoverstärker, Motor, Positionsgeber, Kabel, Bremse)
- fehlerhafte Ansteuerung (z. B. durch Softwarefehler)

Gefahr durch heiße Oberflächen

Durch Verlustleistung vom Motor und Reibung im Getriebe, können diese Komponenten wie auch deren Umfeld eine Temperatur von über 100°C erreichen.

Die entstehende Wärme wird über das Gehäuse und den Flansch an die Umgebung abgegeben.

Warnung!

Verbrennungsgefahr durch heiße Oberflächen!

Bei Berührung von heißen Oberflächen (z. B. Motor- und Getriebegehäuse, wie auch damit in Verbindung stehenden Bauteilen) kann es auf Grund der sehr hohen Temperatur dieser Teile zu sehr schweren Verbrennungen kommen.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Berühren Sie das Motor- oder Getriebegehäuse wie auch angrenzende Oberflächen niemals im Nennlastbetrieb.
- Achten Sie auch bei Stillstand auf heiße Oberflächen.
- Lassen Sie Motor und Getriebe vor Arbeiten daran ausreichend abkühlen, denn auch nach dem Abschalten besteht noch über einen längeren Zeitraum Verbrennungsgefahr.
- Betreiben Sie den Motor bzw. das Getriebe immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!

1.3.5 Vorschriften und Sicherheitsbestimmungen

Für eine ordnungsgemäße Inbetriebnahme und gefahrlose Verwendung beachten Sie:

- die allgemeinen Sicherheitsbestimmungen
- · die geltenden Arbeitsschutzbestimmungen
- die national geltenden Unfallverhütungsvorschriften (z. B. VBG 4) beim Arbeiten an Starkstromanlagen

- die nationalen, örtlichen und anlagenspezifischen Vorschriften zu Ihrem Endprodukt
- die einschlägigen Vorschriften für elektrische Installationen (z. B. Leitungsquerschnitt, Absicherung, Schutzleiteranbindung). Es sind dabei auch die Werte im Kapitel "Technische Daten" zu beachten.

Für diese und alle weiteren für den Ort der Verwendung geltenden Vorschriften etc. ist alleine der Betreiber verantwortlich!

1.3.6 Verantwortung des Betreibers

Der Betreiber ist diejenige Person, die den Motor zu gewerblichen oder wirtschaftlichen Zwecken selbst betreibt oder einem Dritten zur Nutzung/Anwendung überlässt und während des Betriebes die rechtliche Produktverantwortung für den Schutz des Benutzers, des Personals oder Dritter trägt.

Pflichten des Betreibers

- Die geltenden Arbeitsschutzbestimmungen m\u00fcssen eingehalten werden.
- Die nationalen, örtlichen und die anlagenspezifischen Vorschriften müssen eingehalten werden.
- Es müssen in einer Gefährdungsbeurteilung Gefahren ermittelt werden, die sich durch die Arbeitsbedingungen am Einsatzort ergeben.
- Es muss eine Dokumentation mit Sicherheitshinweisen für den Betrieb der fertigen Anlage (mit Motoren, Getrieben, Servoverstärkern, etc.) erstellt werden.
- Es muss regelmäßig überprüft werden, ob die eigenen Betriebsanweisungen und Handbücher dem aktuellen Stand der Regelwerke entsprechen.
- Die Zuständigkeiten für Installation, Bedienung, Störungsbeseitigung, Wartung und Reinigung müssen eindeutig geregelt und festgelegt werden.
- Es ist dafür zu sorgen, dass das zuständige Personal dieses Anwenderhandbuch gelesen und verstanden hat.
- Das Personal muss regelmäßig geschult und über die Gefahren informiert werden.
- Dem Personal muss die erforderliche Schutzausrüstung zur Verfügung gestellt werden.

1.3.7 Qualifiziertes Fachpersonal

Alle Arbeiten wie Transport, Installation, Inbetriebnahme und Service dürfen nur durch qualifiziertes Fachpersonal ausgeführt werden. Dies sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen (z. B. IEC 60364). Nationale Unfallverhütungsvorschriften sind zu beachten.

Die Sicherheitshinweise, die Angaben zu den Anschlussbedingungen (Typenschild und Dokumentation) und die in den technischen Daten angegebenen Grenzwerte sind vor der Installation und Inbetriebnahme sorgfältig durchzulesen und unbedingt einzuhalten.

1.3.8 Sicherheitskennzeichnung

Dem Produkt ist ein Warnaufkleber "Heiße Oberfläche" beigelegt. Bringen Sie diesen so am montierten Produkt an, dass dieser jederzeit sichtbar ist.

Warnaufkleber "Heiße Oberfläche"

1.3.9 Schutzausrüstung

Tragen Sie zu Ihrem persönlichen Schutz immer entsprechende Sicherheitskleidung und Ausrüstung.

1.4 Drehstrom-Synchronmotoren 8LS

Die B&R Drehstrom-Synchronmotoren 8LS sind speziell für den Einsatz in Hochleistungsanwendungen entwickelt worden. Heute werden damit Konsumgüter und Erzeugnisse in der Kunststoffindustrie, Verpackungsindustrie, Metallindustrie, Getränke- und Nahrungsmittelindustrie hergestellt und mit Handling-Systemen palettiert. Komplettlösungen aus einer Hand, dazu gehört neben den geeigneten Komponenten auch die Anpassung an die Anwendungsumgebung. Die große Auswahl an verfügbaren Drehstrom-Synchronmotoren 8LS ermöglicht dem Konstrukteur in einfacher Weise Randbedingungen wie Reduktion der Teilevielfalt, Servicefreundlichkeit und minimalen Platzbedarf einzuhalten.

Ein optimal angepasster Antrieb ist die Abrundung einer erfolgreichen Konstruktion. Um dies zu erreichen, stehen dem Anwender in den weltweiten B&R Niederlassungen Spezialisten zur Verfügung, die gerne ihr mechatronisches Know-how zur Verfügung stellen. B&R Automatisierungskomponenten, die ökonomische Kombination aus Mechanik, Elektronik, Technologie und Innovation.

1.4.1 Normen, Richtlinien und Zulassungen

Die Motoren sind für den Einsatz in gewerblichen Anlagen bestimmt und unterliegen folgenden Normen und Richtlinien:

Normen

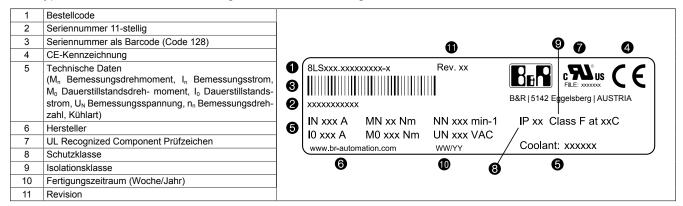
EN 60034- 1	Drehende elektrische Maschinen - Bemessung und Betriebsverhalten
EN 60034- 5	Schutzarten auf Grund der Gesamtkonstruktion von drehenden elektrischen Maschinen
EN 60034- 6	Drehende elektrische Maschinen - Kühlarten
EN 60034- 7	Drehende elektrische Maschinen - Klassifizierung der Bauarten, der Aufstellungsarten
EN 60034- 11	Drehende elektrische Maschinen - Thermischer Schutz
EN 60034- 14	Mechanische Schwingungen von bestimmten Maschinen mit einer Achshöhe von 56 mm und höher
UL1004-1	Rotating Electrical Machines, General Requirements
UL1004-6	Servo and Stepper Motors
C22.2 No.100-14	Motors and Generators

Richtlinien

Niederspannungsrichtlinie 2014/35/EU	Die Motoren dieser Baureihe entsprechen der Niederspannungsrichtlinie (Konformität).
EMV-Richtlinie 2014/30/EU	Der Betrieb des Motors in seinem bestimmungsgemäßen Gebrauch muss den Schutzanforderungen der EMV Richtlinie genügen. Die sachgerechte Installation (z. B. räumliche Trennung von Signalleitungen und Leistungskabeln, geschirmte Leitungen und Kabel etc.) liegt in der Verantwortung des Errichters der Anlage und des Systemanbieters. Im Stromrichterbetrieb sind auch die EMV - Hinweise des Stromrichter-, Geber- und Bremsenherstellers zu beachten.
RoHS-Richtlinie 2011/65/EU	Die Motoren dieser Baureihe entsprechen der RoHS-Richtlinie 2011/65/EU zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe

Hinweis:

Beachten Sie zudem die nationalen, örtlichen und anlagenspezifischen Vorschriften!


Zulassungen

Allgemeines	8LSA	8LSC	8LSO	8LSP		
C-UR-US gelistet	Ja					
UL File Nummer	E360421					

1.4.2 Typenschild

Das Typenschild identifiziert jeden Motor eindeutig. Durch die Seriennummer ist die Rückverfolgbarkeit gewährleistet

Der Typenschild-Aufkleber am Motorgehäuse beinhaltet folgende Informationen:

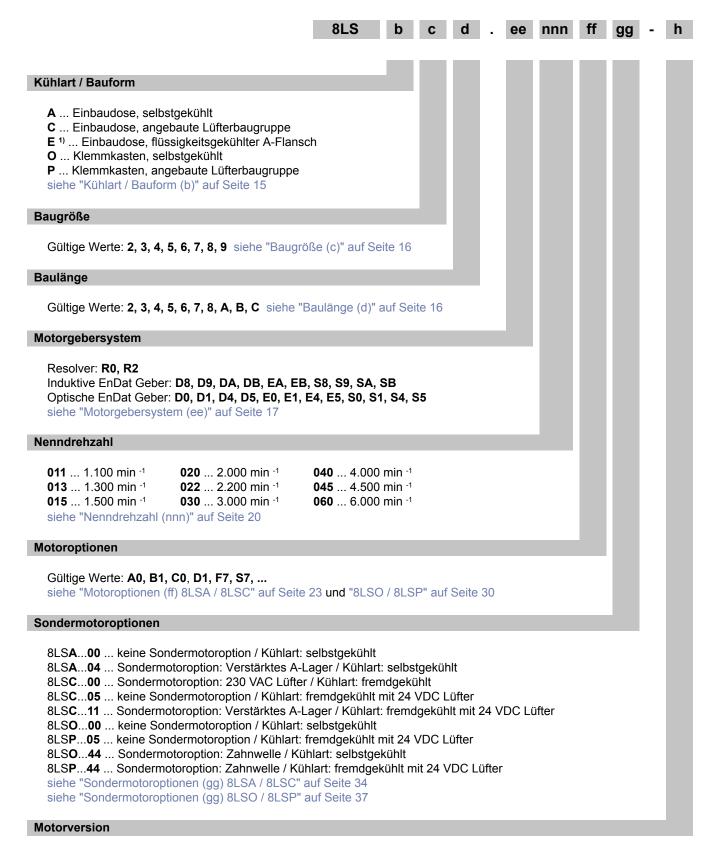
Hinweis:

Das Typenschild sollte im eingebauten Zustand jederzeit lesbar sein.

1.4.2.1 Das elektronische Typenschild

Im EnDat Geber der B&R Motoren sind alle mechanisch und elektrisch relevanten Informationen und Daten enthalten. Das bedeutet, dass vom Anwender keine Einstellungen am Servoverstärker vorgenommen werden müssen. Sobald man den Geber mit dem Servoverstärker verbindet und die Versorgung der Elektronik einschaltet, findet die automatische Identifikation des Motors statt. Der Motor sendet seine Nominal- und Grenzwerte an den Servoverstärker, daraus ermittelt dieser selbstständig die für den sicheren Betrieb des Motors notwendigen Stromgrenzwerte und Stromreglerparameter. Lediglich Drehzahl- und Lageregler müssen durch den Anwender noch optimiert werden. Hilfestellung dafür bietet die integrierte Inbetriebnahmeumgebung des B&R Automation StudioTM.

Neben der Inbetriebnahme werden damit auch routinemäßige Servicearbeiten erleichtert und der Austausch von Motoren geht ohne langwierige Parametrierarbeiten vonstatten.


2 Technische Daten

2.1 Allgemeine Beschreibung

Drehstrom-Synchronmotoren der Baureihe 8LS sind permanenterregte, elektronisch kommutierte Synchronmotoren für Applikationen mit hohen Anforderungen an Dynamik und Positioniergenauigkeit bei gleichzeitig geringem Bauvolumen und Gewicht.

- · Kleines Bauvolumen, dadurch geringes Gewicht und optimale Leistungsdichte
- · Einkabellösung (hybrid) verfügbar
- · Geringerer Konstruktionsaufwand
- Schnelle Achsen durch sehr gute dynamische Eigenschaften
- · Universeller Einsatz durch große Überlastfähigkeit
- Gute Regelbarkeit durch optimierte Drehmomentwelligkeit
- · Geber für Funktionale Sicherheit verfügbar
- · Lüfterkühlung oder selbstgekühlte Modelle
- · Extrem wartungsfreundlich
- · Niedrige Kosten

2.2 Bestellschlüssel 8LS

- 3 ... Version 3 (Die Motorversion wird als Code (h) in der Bestellnummer angegeben. Aktuell ist Motorversion 3 gültig.)
- 1) Kühlart / Bauform E ist nur auf Anfrage erhältlich und in diesem Anwenderhandbuch nicht weiter dokumentiert. Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.

Hinweis:

Bestellschlüssel geben nur in Ausnahmefällen Aufschluss über die möglichen Kombinationen. Informationen zur Kombinierbarkeit sind im CAD-Konfigurator unter <u>cad.br-automation.com</u> abrufbar.

2.2.1 Bestellbeispiel 1

Für eine Applikation wurde ein Drehstrom-Synchronmotor des Typs **8LSA45** mit einer Nenndrehzahl von 3000 min⁻¹ ausgewählt. Aufgrund der baulichen Gegebenheiten können Kabel nur an der Oberseite des Motors angeschlossen werden (Anschlussrichtung "oben"). Zusätzlich soll der Motor mit einer Haltebremse ausgerüstet sein, über ein Wellenende mit Passfeder und über einen 32-Strich EnDat Singleturn Geber verfügen.

Der Code (ee) für das Gebersystem ist EA.

Der Code (nnn) für die Nenndrehzahl von 3000 min-1 ist 030.

Der Code (ff) für die übrigen Optionen (Wellendichtring, Haltebremse, Welle mit Passfeder und Anschlussrichtung) ist **C3**.

Die Bestellnummer des benötigten Motors lautet daher: 8LSA45.EA030C300-3

2.2.2 Bestellbeispiel 2

Für eine Applikation wurde ein Drehstrom-Synchronmotor des Typs **8LSA56** mit einer Nenndrehzahl von 4500 min⁻¹ ausgewählt. Aufgrund der baulichen Gegebenheiten können Kabel nur an der Rückseite des Motors angeschlossen werden (drehbare Anschlüsse) und sie sollen so wenig Raum wie nötig benötigen, es wird die Einkabellösung (hybrid) gewünscht. Zusätzlich soll der Motor mit einer Haltebremse ausgerüstet sein, über ein glattes Wellenende, einen Wellendichtring und über einen 32-Strich EnDat Multiturn Geber verfügen.

Der Code (ee) für das Gebersystem ist DB.

Der Code (nnn) für die Nenndrehzahl von 4500 min-1 ist **045**.

Der Code (ff) für die übrigen Optionen (Wellendichtring, Haltebremse, glattes Wellenende und Einkabellösung gewinkelt, drehbar) ist **S8**.

Die Bestellnummer des benötigten Motors lautet daher: 8LSA56.DB045S800-3

2.3 Kühlart / Bauform (b)

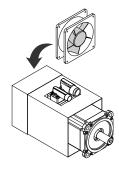
8LS b c d . ee nnn ff gg - h

siehe "Bestellschlüssel" auf Seite 13

Drehstrom-Synchronmotoren 8LS sind in den Kühlarten 8LSA, 8LSC, 8LSO und 8LSP erhältlich. Die Kühlart 8LSE ist nur auf Anfrage erhältlich. Alle Motoren basieren auf der schlanken, länglichen Kühlart A und besitzen Abweichungen bei Kühlart, Kabelanschluss oder Montageart.

Die Kühlarten werden durch einen Buchstaben (b) in der Bestellbezeichnung unterschieden.

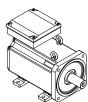
			ver	fügbare Montagearten
	Kühlart (b)	Anschlusstechnik	Anbauflansch	Anbauflansch und Montagefüße
8LS A	selbstgekühlt	Anschlussdose	Ja	
8LS C	angebaute Lüfterbaugruppe	Anschlussdose	Ja	
8LS E 1)	flüssigkeitsgekühlter A-Flansch	Anschlussdose	Ja	
8LS O	selbstgekühlt	Klemmkasten	Ja	Ja
8LS P	angebaute Lüfterbaugruppe	Klemmkasten		Ja


¹⁾ Die Kühlart E ist in den Baugrößen 4, 6 und 8 und nur auf Anfrage erhältlich.

8LSA

Kühlart 8LSA ist selbstgekühlt und hat eine schlanke, längliche Bauform. Diese Motoren müssen mit dem Anbauflansch, der gleichzeitig auch als Kühlfläche dient, an die Maschine angebaut werden.

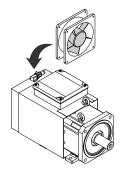
8LSC



Kühlart 8LSC basiert auf Motoren der Kühlart 8LSA. Diese Motoren sind fremdgekühlt und unterscheiden sich lediglich durch eine im Bereich des B-Lagers angebaute Lüfterbaugruppe.

Diese Motoren müssen mit dem Anbauflansch, der gleichzeitig auch als Kühlfläche dient, an die Maschine angebaut werden.

Durch die angebaute Lüfterbaugruppe erhöhen sich Nennmoment (M_N) , Nennstrom (I_N) , Stillstandsmoment (M_0) und Stillstandsstrom (I_0) je nach Anbausituation um ca. 30 % gegenüber den jeweiligen Motoren der Kühlart 8LSA.


8LSO

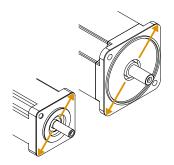
Kühlart 8LSO ist selbstgekühlt und hat eine schlanke, längliche Bauform.

Diese Motoren können mit dem Anbauflansch, der gleichzeitig auch als Kühlfläche dient, oder mit Montagefüßen an die Maschine angebaut werden. Wird der Motor nur mit den Montagefüßen und nicht mit dem Anbauflansch angebaut, reduziert sich die Dauerleistung im S1 Betrieb.

8LSP

Kühlart 8LSP basiert auf Motoren der Kühlart 8LSO. Diese Motoren sind fremdgekühlt und unterscheiden sich lediglich durch eine im Bereich des B-Lagers angebaute Lüfterbaugruppe.

Diese Motoren können mit dem Anbauflansch, der gleichzeitig auch als Kühlfläche dient, oder mit Montagefüßen an die Maschine angebaut werden. Wird der Motor nur mit den Montagefüßen und nicht mit dem Anbauflansch angebaut, reduziert sich die Dauerleistung im S1 Betrieb.


Durch die angebaute Lüfterbaugruppe erhöhen sich Nennmoment (M_N) , Nennstrom (I_N) , Stillstandsmoment (M_0) und Stillstandsstrom (I_0) je nach Anbausituation um ca. 30 % gegenüber den jeweiligen Motoren der Kühlart 8LSO.

Aus Transportgründen besitzt diese Kühlart immer Montagefüße.

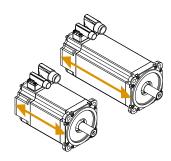
2.4 Baugröße (c)

8LS b c d . ee nnn ff gg - h

siehe "Bestellschlüssel" auf Seite 13

Drehstrom-Synchronmotoren 8LS sind in verschiedenen Baugrößen (2, A, 3 ... 9) erhältlich. Diese unterscheiden sich in den Abmessungen (insbesondere den Flanschabmessungen) und in den Leistungsdaten.

Die Baugrößen werden durch ein Zeichen (c) in der Bestellbezeichnung unterschieden. Je größer diese Ziffer, desto größer sind die Flanschabmessungen und Leistungsdaten des jeweiligen Motors.


Verfügbarkeit

	verfügbare Baugrößen (c)								
	8LSx2	8LSxA	8LSx3	8LSx4	8LSx5	8LSx6	8LSx7	8LSx8	8LSx9
8LSA	Ja	Ja	Ja	Ja	Ja	Ja	Ja	Ja	
8LSC				Ja	Ja	Ja	Ja	Ja	
8LSO									Ja
8LSP									Ja

2.5 Baulänge (d)

8LS b c d . ee nnn ff gg - h

siehe "Bestellschlüssel" auf Seite 13

Drehstrom-Synchronmotoren 8LS sind in verschiedenen Baulängen erhältlich. Diese unterscheiden sich in den Leistungsdaten bei identischen Flanschabmessungen.

Die Baulängen werden durch eine Ziffer (**d**) in der Bestellbezeichnung unterschieden. Je größer diese Ziffer, desto länger ist der jeweilige Motor.

Verfügbarkeit

		verfügbare Baulängen (d)								
	8LSxx2	8LSxx3	8LSxx4	8LSxx5	8LSxx6	8LSxx7	8LSxx8	8LSxxA	8LSxxB	8LSxxC
8LSA2		Ja	Ja	Ja	Ja					
8LSAA	Ja	Ja	Ja							
8LSA3		Ja	Ja	Ja	Ja	Ja				
8LSA4 / 8LSC4		Ja	Ja	Ja	Ja					
8LSA5 / 8LSC5		Ja	Ja	Ja	Ja	Ja		Ja	Ja	Ja
8LSA6 / 8LSC6		Ja	Ja	Ja	Ja					
8LSA7 / 8LSC7		Ja	Ja	Ja	Ja	Ja	Ja			
8LSA8 / 8LSC8		Ja	Ja	Ja	Ja					
8LSO9 / 8LSP9		Ja	Ja	Ja	Ja					

2.6 Motorgebersystem (ee)

8LS b c d . ee nnn ff gg - h siehe "Bestellschlüssel" auf Seite 13

Drehstrom-Synchronmotoren 8LS sind sowohl mit EnDat-Gebern als auch mit Resolver lieferbar. Das Motorgebersystem wird in Form eines zweistelligen Codes (ee) als Teil der Bestellnummer angegeben.

Analoge und digitale Übertragung

Der Resolver ist ein analoges Gebersystem. Resolver zeichnen sich durch hohe Robustheit gegen Vibrationen und hohen Einsatztemperaturen aus. Nachteil ist die geringe Genauigkeit von 6-10 Winkelminuten. Weiterhin ist keine Multiturnvariante mit Resolvern möglich.

Die digitalen Geber arbeiten mit einem seriellen Übertragungsprotokoll. Dieses Protokoll wird mit EnDat bezeichnet. Das EnDat Protokoll ist ein entwickelter Standard, der die Vorteile von absoluter und inkrementeller Positionsmessung in sich vereint und darüber hinaus noch einen schreib- und lesbaren Parameterspeicher im Geber zur Verfügung stellt. In diesem Geberspeicher wird von B&R das elektronische Typenschild abgespeichert. Diese Daten bilden zusammen mit den ACOPOS Systemen von B&R eine "Plug and Play" -fähige Antriebslösung. Mit den "singleturn" Varianten kann innerhalb einer Umdrehung absolut positioniert werden. Durch die absolute Positionsmessung entfällt eine notwendige Referenzfahrt. Für Anwendungen, bei denen der Motor mehrere Umdrehungen zur Positionierung zurücklegt, kann gegebenenfalls ein "multiturn" Geber, der bis zu 65535 Umdrehungen speichern kann, zum Einsatz kommen. Eine Lösung mit singleturn Geber Variante zusammen mit Referenzfahrt ist ebenso möglich. Im EnDat 2.1 analogen/digitalen Abtastverfahren, wird eine sehr feine Auflösung durch die von B&R entwickelten Auswertemodule erreicht.

2.6.1 EnDat 2.2

Bei dem weiter entwickelten voll digitalen EnDat 2.2 Protokoll werden die Positionen direkt im Geber gebildet und seriell dem Antriebssystem kommuniziert. Diese Übertragung ist sehr robust gegenüber Störungen und ist sogar für sicherheitsgerichtete Anwendungen zertifiziert.

EnDat 2.2 ist deshalb gegenüber der älteren Variante EnDat 2.1 zu bevorzugen.

2.6.2 Allgemeines Safety Geber

Sicherheitsbezogene Positionsmesssysteme

Im Maschinen - und Anlagenbau gewinnt das Thema Sicherheit immer höhere Bedeutung. Dies spiegelt sich in der Gesetzgebung und in steigenden Sicherheitsstandards in nationalen und internationalen Normen wieder. In erster Linie dienen die hohen Anforderungen dem Personenschutz, zunehmend aber auch dem Schutz von Sachwerten und der Umwelt. Ziel der funktionalen Sicherheit ist die Minimierung oder Beseitigung von Gefahren, die sowohl im ungestörten als auch im gestörten Betrieb von Maschinen oder Anlagen entstehen können. Dies wird in erster Linie durch redundante Systeme erreicht. So benötigen bewegte Achsen in sicherheitsgerichteten Anwendungen redundante Positionsinformationen, um entsprechende Sicherheitsfunktionen erfüllen zu können. Zur Gewinnung unabhängiger Positionswerte können unterschiedliche Systemkonfigurationen realisiert werden. Eine Möglichkeit bietet der Einsatz von zwei Messgeräten pro Achse. Aus Kostengründen wird jedoch in vielen Fällen eine Lösung mit nur einem Positionsmessgerät angestrebt. Bis dato wurden dazu analoge Messgeräte mit Sinus/Cosinus-Signalen verwendet. Der Geberhersteller Heidenhain bietet als erster Hersteller mit dem rein seriellen Endat 2.2 Protokoll für sicherheitsbezogene Positionsmesssysteme eine serielle Ein-Geber-Lösung nach IEC 61 508 SIL2. Somit können nun auch in Sicherheitsapplikationen alle Vorteile der seriellen Datenübertragung – wie beispielsweise Kostenoptimierung, Diagnosemöglichkeiten, automatische Inbetriebnahme oder schnelle Positionswertbildung – genutzt werden.

Eine hundertprozentige Fertigungskontrolle sowie zusätzliche Schritte bei der Endprüfung stellen bei Motoren mit Safety-Gebern den Fehlerausschluss, für die Wellen- und Kupplungsanbindung des Drehgebers, gemäß EN ISO 13849-2 sicher.

Aber auch mit D-Gebern sind eine Reihe von Sicherheitsfunktionen bereits möglich.

2.6.3 Hinweis SafeMOTION

Informationen zum Thema Einsatzbereich und Vorgehensweise zum Einrichten der verschiedenen Sicherheitsfunktionen entnehmen Sie bitte dem Anwenderhandbuch SafeMOTION (MAACPMSAFEMC-GER) im Downloadbereich der B&R Homepage www.br-automation.com.

2.6.4 Resolver

Technische Daten	Bestellcode (ee)					
reclinische Daten	R0	R2				
Genauigkeit [']	10	6				
Vibration in Betrieb [m/s²]	10 < f ≤ 500 Hz: ≤ 196	55 < f ≤ 2000 Hz: <500				
Schock in Betrieb [m/s²] (Dauer 11 ms)	≤ 981	≤ 1000				

Verfügbarkeit	Verfügbare Resolver / Bestellcode (ee)					
verrugbarkeit	R0	R2				
8LSA23	Ja					
8LSAA3	Ja					
8LSA3/4/5/6/7/83		Ja				
8LSx5 A/B/C 3		Ja				
8LSC3		Ja				
8LSO3		Ja				
8LSP3		Ja				

2.6.5 Induktive EnDat Geber für Baugröße 2 und A

Tankaisaka Batan		Gebertyp / Bes	tellcode (ee)	
Technische Daten	D8	D9	S8	S9
Funktionsprinzip		induk	ctiv	
EnDat Protokoll	2.2	2.2	2.2	2.2
Funktionale Sicherheit 1)	Ja	Ja	Ja	Ja
singleturn / multiturn	S	M	S	M
Umdrehungen	1	4096	1	4096
Auflösung [Bit singleturn / Bit multiturn]	19/0	19/12	19/0	19/12
Genauigkeit ["]		120)	
Grenzfrequenz ≥ [kHz]		digitale Pos.	im Geber	
Vibration in Betrieb Stator max [m/s2]		400)	
Vibration in Betrieb Rotor max [m/s2]		600)	
Schock in Betrieb max [m/s ²]		200	0	
PFH (Probability of dangerous Failure per Hour) SIL2		≤15 *	10 ⁻⁹	
Herstellerbezeichnung	ECI 1119 FS EnDat22	EQI 1131 FS EnDat22	ECI 1119 FS EnDat22	EQI 1131 FS EnDat22

Siehe Anwenderhandbuch SafeMOTION (MAACPMSAFEMC-GER), Anhang B "Übersicht Sicherheitslevel für die Sicherheitsfunktionen der ACOPOS Produktfamilie", im Downloadbereich der B&R Homepage www.br-automation.com.
 Bei einer Kombination von B&R Motoren mit Getriebe gibt es zusätzliche Einschränkungen, siehe Anwenderhandbuch SafeMOTION (MAACPMSA-FEMC-GER), Abschnitt "1.2.1 ACOPOSmulti SafeMOTION EnDat 2.2 und ACOPOS P3 SafeMOTION", im Downloadbereich der B&R Homepage www.br-automation.com.

Verfügbarkeit	Verfügbare Geber / Bestellcode (ee)							
	D8	D9	S8	S9				
8LSx23	Ja	Ja	Ja	Ja				
8LSAA3	Ja	Ja						

2.6.6 Optische EnDat Geber für Baugröße 2 und A

Technische Daten		Gebertyp / Bes	tellcode (ee)		
rechnische Daten	E4	E5	D4	D5	
Funktionsprinzip					
EnDat Protokoll	2.1	2.1	2.2	2.2	
Funktionale Sicherheit 1)			Ja	Ja	
singleturn / multiturn	S	M	S	M	
Umdrehungen	1	4096	1	4096	
Auflösung [Bit single / Bit multiturn]	13/0	13/12	23/0	23/12	
Genauigkeit ["]		60			
Grenzfrequenz ≥ [kHz]	19	90	digitale Pos. im Geber		
Vibration in Betrieb Stator max [m/s2]		200)		
Vibration in Betrieb Rotor max [m/s2]		200)		
Schock in Betrieb max [m/s²]		100	0		
PFH (Probability of dangerous Failure per Hour) SIL2			≤15 * 10 ⁻⁹		
Herstellerbezeichnung	ECN 1113 EnDat01	EQN 1125 EnDat01	ECN 1123 FS EnDat22	EQN 1135 FS EnDat22	

Siehe Anwenderhandbuch SafeMOTION (MAACPMSAFEMC-GER), Anhang B "Übersicht Sicherheitslevel für die Sicherheitsfunktionen der ACOPOS Produktfamilie", im Downloadbereich der B&R Homepage www.br-automation.com.
Bei einer Kombination von B&R Motoren mit Getriebe gibt es zusätzliche Einschränkungen, siehe Anwenderhandbuch SafeMOTION (MAACPMSA-FEMC-GER), Abschnitt "1.2.1 ACOPOSmulti SafeMOTION EnDat 2.2 und ACOPOS P3 SafeMOTION", im Downloadbereich der B&R Homepage

www.br-automation.com.

Verfügbarkeit	Verfügbare Geber / Bestellcode (ee)							
verlugbarkeit	E4	E5	D4	D5				
8LSx23	Ja	Ja	Ja	Ja				
8LSAA3	Ja	Ja	Ja	Ja				

2.6.7 Induktive EnDat Geber für Baugröße 3 - 9

Tankaisaka Batan			Gebertyp / Be	estellcode (ee)			
Technische Daten	EA	EB	DA	DB	SA	SB	
Funktionsprinzip			indı	uktiv			
EnDat Protokoll	2.1	2.1	2.2	2.2	2.2	2.2	
Funktionale Sicherheit 1)			Ja	Ja	Ja	Ja	
singleturn / multiturn	S	M	S	М	S	M	
Umdrehungen	1	4096	1	4096	1	4096	
Auflösung							
[Bit single / Bit multiturn]	19/0	19/12	19/0	19/12	19/0	19/12	
Genauigkeit ["]	1	80	65				
Grenzfrequenz ≥ [kHz]		6		digitale Po	s. im Geber	_	
Vibration in Betrieb Stator						_	
max [m/s2]	2	00		4	00		
Vibration in Betrieb Rotor				-		_	
max [m/s2]	2	00	600				
Schock in Betrieb max [m/s²]	20	000		20	000		
PFH (Probability of dangerous						_	
Failure per Hour) SIL2			≤15 * 10 ⁻⁹				
Herstellerbezeichnung	ECI 1319 EnDat01	EQI 1331 EnDat01	ECI 1319 FS EnDat22	EQI 1331 FS EnDat22	ECI 1319 FS EnDat22	EQI 1331 FS EnDat22	

 Siehe Anwenderhandbuch SafeMOTION (MAACPMSAFEMC-GER), Anhang B "Übersicht Sicherheitslevel für die Sicherheitsfunktionen der ACOPOS Produktfamilie", im Downloadbereich der B&R Homepage www.br-automation.com.
 Bei einer Kombination von B&R Motoren mit Getriebe gibt es zusätzliche Einschränkungen, siehe Anwenderhandbuch SafeMOTION (MAACPMSA-FEMC-GER), Abschnitt "1.2.1 ACOPOSmulti SafeMOTION EnDat 2.2 und ACOPOS P3 SafeMOTION", im Downloadbereich der B&R Homepage www.br-automation.com.

Verfügbarkeit		Verfügbare Geber / Bestellcode (ee)								
veriugbarkeit	EA	EB 3)	DA	DB	SA	SB				
8LSx23										
8LSx3/4/5/6/7/83 ²⁾	Ja	Ja	Ja	Ja	Ja	Ja				
8LSx5 A/B/C 3			Ja	Ja	Ja	Ja				
8LSO93/943 8LSP93/943			Ja	Ja	Ja	Ja				
8LSO95/963 8LSP95/963										

- 2) nicht gültig für 8LSx5A/B/C...-3
- Gebertyp EB erfordert mindestens folgende Versionsstände (ACP10_SYS Version bzw. Firmware-Version) der ACOPOS Betriebssysteme:

ACOPOS: ab V2.090ACOPOSmulti: ab V2.031

2.6.8 Optische EnDat Geber für Baugröße 3 - 9

Tankainaka Datas			Gebertyp / Be	estellcode (ee)		
Technische Daten	E0	E1	D0	D1	S0	S1
Funktionsprinzip			opt	isch		
EnDat Protokoll	2.1	2.1	2.2	2.2	2.2	2.2
Funktionale Sicherheit 1)			Ja	Ja	Ja	Ja
singleturn / multiturn	S	M	S	М	S	M
Umdrehungen	1	4096	1	4096	1	4096
Auflösung [Bit single / Bit multiturn]	13/0	13/12	25/0	25/12	25/0	25/12
Genauigkeit ["]	6	50		2	20	
Grenzfrequenz ≥ [kHz]	1	30		digitale Po	s. im Geber	
Vibration in Betrieb Stator max [m/s2]			30	00		
Vibration in Betrieb Rotor max [m/s2]			30	00		
Schock in Betrieb max [m/s²]			20	00		
PFH (Probability of dangerous Failure per Hour) SIL2			≤10 * 10·9			
Herstellerbezeichnung	ECN 1313 EnDat01	EQN 1325 EnDat01	ECN 1325 FS EnDat22	EQN 1337 FS EnDat22	ECN 1325 FS EnDat22	EQN 1337 FS EnDat22

Siehe Anwenderhandbuch SafeMOTION (MAACPMSAFEMC-GER), Anhang B "Übersicht Sicherheitslevel für die Sicherheitsfunktionen der ACOPOS Produktfamilie", im Downloadbereich der B&R Homepage www.br-automation.com.
Bei einer Kombination von B&R Motoren mit Getriebe gibt es zusätzliche Einschränkungen, siehe Anwenderhandbuch SafeMOTION (MAACPMSA-FEMC-GER), Abschnitt "1.2.1 ACOPOSmulti SafeMOTION EnDat 2.2 und ACOPOS P3 SafeMOTION", im Downloadbereich der B&R Homepage www.br-automation.com.

Technische Daten

Verfügbarkeit	Verfügbare Geber / Bestellcode (ee)								
verrugbarkeit	E0	E1	D0	D1	S0	S1			
8LSx23									
8LSx3/4/5/6/7/83 8LSx5 A/B/C 3	Ja	Ja	Ja	Ja	Ja	Ja			
8LSO3 8LSP3			Ja	Ja	Ja	Ja			

2.7 Nenndrehzahl (nnn)

8LS b c d . ee nnn ff gg - h siehe "Bestellschlüssel" auf Seite 13

Drehstrom-Synchronmotoren 8LS sind mit verschiedenen Nenndrehzahlen erhältlich.

Die Nenndrehzahl wird in Form eines dreistelligen Codes (nnn) als Teil der Bestellnummer

			Bestellcode (nnn)						
	011	013	013 015 020 022 030 040 045 060						060
Nenndrehzahl n _N [min-1]	1100	1300	1500	2000	2200	3000	4000	4500	6000

2.7.1 Verfügbarkeit - 8LSA...-3

8LSA2

		verfügbare Nenndrehzahlen n₀ [min-1]							
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSA23									Ja
8LSA24									Ja
8LSA25								Ja	Ja
8LSA26								Ja	Ja

8LSAA

		verfügbare Nenndrehzahlen n _N [min ⁻¹]							
	1100 1300 1500 2000 2200 3000 4000 4500 600							6000	
8LSAA						Ja		Ja	Ja

8LSA3

	verfügbare Nenndrehzahlen n _N [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSA33						Ja		Ja	Ja
8LSA34					Ja	Ja		Ja	Ja
8LSA35					Ja	Ja		Ja	Ja
8LSA36					Ja	Ja		Ja	Ja
8LSA37					Ja	Ja		Ja	Ja

8LSA4

		verfügbare Nenndrehzahlen n _N [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000	
8LSA43					Ja	Ja		Ja	Ja	
8LSA44					Ja	Ja		Ja	Ja	
8LSA45					Ja	Ja		Ja	Ja	
8LSA46					Ja	Ja		Ja	Ja	

8LSA5

	verfügbare Nenndrehzahlen n _N [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSA53					Ja	Ja		Ja	
8LSA54					Ja	Ja		Ja	
8LSA55					Ja	Ja		Ja	
8LSA56					Ja	Ja		Ja	
8LSA57					Ja	Ja		Ja	
8LSA5 A					Ja	Ja		Ja	
8LSA5 B					Ja	Ja	Ja		
8LSA5 C			Ja		Ja	Ja			

8LSA6

	verfügbare Nenndrehzahlen n _N [min⁻¹]									
	1100	1300	1500	2000	2200	3000	4000	4500	6000	
8LSA63					Ja	Ja		Ja		
8LSA64					Ja	Ja		Ja		
8LSA65					Ja	Ja		Ja		
8LSA66					Ja	Ja		Ja		

8LSA7

	verfügbare Nenndrehzahlen n _N [min ⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSA73					Ja	Ja		Ja	
8LSA74					Ja	Ja		Ja	
8LSA75	Ja				Ja	Ja			
8LSA76			Ja		Ja	Ja			
8LSA77						Ja			
8LSA78						Ja			

8LSA8

	verfügbare Nenndrehzahlen n₁ [min ⁻¹]									
	1100	1300	1500	2000	2200	3000	4000	4500	6000	
8LSA83			Ja		Ja	Ja				
8LSA84			Ja		Ja	Ja				
8LSA85			Ja	Ja						
8LSA86			Ja	Ja						

2.7.2 Verfügbarkeit - 8LSC...-3

8LSC4

	verfügbare Nenndrehzahlen n _N [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSC43					Ja	Ja		Ja	Ja
8LSC44					Ja	Ja		Ja	Ja
8LSC45					Ja	Ja		Ja	Ja
8LSC46					Ja	Ja		Ja	Ja

8LSC5

	verfügbare Nenndrehzahlen n _N [min ⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSC53					Ja	Ja		Ja	
8LSC54	Ja				Ja	Ja		Ja	
8LSC55					Ja	Ja		Ja	
8LSC56					Ja	Ja		Ja	
8LSC57					Ja	Ja		Ja	
8LSC5A					Ja	Ja		Ja	
8LSC5 B				Ja	Ja	Ja	Ja		
8LSC5 C			Ja		Ja	Ja			

8LSC6

	verfügbare Nenndrehzahlen n₀ [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSC63					Ja	Ja		Ja	
8LSC64					Ja	Ja		Ja	
8LSC65					Ja	Ja		Ja	
8LSC66					Ja	Ja		Ja	

8LSC7

	verfügbare Nenndrehzahlen n _N [min⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSC73					Ja	Ja		Ja	
8LSC74					Ja	Ja		Ja	
8LSC75					Ja	Ja			
8LSC76			Ja			Ja			
8LSC77						Ja			
8LSC78						Ja			

Technische Daten

8LSC8

	verfügbare Nenndrehzahlen n _N [min ⁻¹]								
	1100	1300	1500	2000	2200	3000	4000	4500	6000
8LSC83			Ja		Ja	Ja			
8LSC84			Ja		Ja	Ja			
8LSC85			Ja	Ja					
8LSC86			Ja	Ja					

2.7.3 Verfügbarkeit - 8LSO...-3 / 8LSP...-3

8LSO9

	verfügbare Nenndrehzahlen n₀ [min·¹]							
	1300	2200						
8LSO93	Ja	Ja	Ja					
8LSO94	Ja	Ja	Ja					
8LSO95	Ja	Ja	Ja					
8LSO96	Ja	Ja	Ja					

8LSP9

	verfügbare Nenndrehzahlen n _n [min ⁻¹]					
	1300	1500	2200			
8LSP93	Ja	Ja	Ja			
8LSP94	Ja	Ja	Ja			
8LSP95	Ja	Ja	Ja			
8LSP96	Ja	Ja	Ja			

22

2.8 Motoroptionen (ff) 8LSA / 8LSC

8LS b c d . ee nnn ff gg - h

siehe "Bestellschlüssel" auf Seite 13

Der entsprechende Code (**ff**) für den Bestellschlüssel kann der folgenden Tabelle entnommen werden. Die erste Stelle im Code (**ff**) definiert die Anschlussrichtung mit den Möglichkeiten $\mathbf{C}x$, $\mathbf{D}x$ und $\mathbf{S}x$. Die zweite Stelle (z. B. $x\mathbf{0}$, $x\mathbf{1}$, $x\mathbf{2}$, $x\mathbf{3}$... $x\mathbf{A}$, $x\mathbf{B}$, $x\mathbf{C}$...) definiert alle weiteren Motoroptionen It. Tabelle.

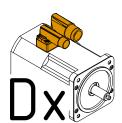
Hinweis:

- Die Kombination "verstärkte Haltebremse" mit der Sondermotoroption "verstärktes A-Lager" ist nicht möglich.
- Motoren mit verstärkter Lagerung sind nicht mit Getrieben kombinierbar.
- Für 8LSAA ist keine verstärkte Bremse verfügbar.
- Für 8LSC5C ist aus technischen Gründen keine Standardbremse und keine verstärkte Bremse verfügbar.

	Motor	option			Bestellcode (ff)
Anschlussrichtung	Wel- lendicht- ring	Haltebremse		Wellenende	
				glatte Welle	C0
				mit Passfeder	C1
gerade (oben)		Standardhaltebremse	(3)	glatte Welle	C2
~ 🔘				mit Passfeder	C3
		verstärkte Haltebremse	((3))	glatte Welle	C4
				mit Passfeder	C5
	Ja			glatte Welle	C6
	Ja			mit Passfeder	C7
	Ja	Standardhaltebremse	(3)	glatte Welle	C8
	Ja			mit Passfeder	C9
	Ja	verstärkte Haltebremse	((3))	glatte Welle	CA
	Ja		, ,	mit Passfeder	СВ
Geber- und Leistungsleitung: ge-			(T)	glatte Welle	CC
trennt mit eigenen Anschlüssen		Spezialhaltebremse 2)	+	mit Passfeder	CD
	Ja			glatte Welle	CE
	Ja			mit Passfeder	CF
				glatte Welle	D0
gewinkelt (drehbar)				mit Passfeder	D1
gennan (arenau)		Standardhaltebremse	(3)	glatte Welle	D2
		Otaliaa aliakosi oliioo		mit Passfeder	D3
	verstärkte Haltebremse	verstärkte Haltehremse	((3))	glatte Welle	D4
		verstante Haitebremse		mit Passfeder	D5
	Ja			glatte Welle	D6
	Ja			mit Passfeder	D7
	Ja Standardhaltebremse	(3)	glatte Welle	D8	
	Ja	Standardnattebrenise		mit Passfeder	D9
	Ja	verstärkte Haltebremse	((3))	glatte Welle	DA
	Ja		V:7	mit Passfeder	DB
Geber- und Leistungsleitung: ge-			(1)	glatte Welle	DC
trennt mit eigenen Anschlüssen		Spezialhaltebremse 2)	+	mit Passfeder	DD
tierint mit eigenen / tilsendssen	Ja			glatte Welle	DE
	Ja			mit Passfeder	DF
				glatte Welle	S0
Einkabellösung (hybrid) gewinkelt, drehbar				mit Passfeder	S1
		Standardhaltebremse	(F)	glatte Welle	S2
		Caa. shahon omoo	,,,,	mit Passfeder	S3
		verstärkte Haltebremse	((7))	glatte Welle	S4
				mit Passfeder	S5
	Ja			glatte Welle	S6
	Ja			mit Passfeder	S7
	Ja	Standardhaltebremse	(3)	glatte Welle	S8
	Ja			mit Passfeder	S9
	Ja	verstärkte Haltebremse	((3))	glatte Welle	SA
	Ja		1, 1,	mit Passfeder	SB
Geber- und Leistungsleitung: in ei-			(1)	glatte Welle	SC
nem Kabel zusammengefasst		Spezialhaltebremse 2)	+	mit Passfeder	SD
	Ja	- p		glatte Welle	SE
	Ja			mit Passfeder	SF

Die "Spezialhaltebremse" ist nur in Kombination mit einem "verstärkten A-Lager" erhältlich. Siehe "Sondermotoroptionen (gg) 8LSA / 8LSC".
 Siehe Seite 34.

2.8.1 Anschlussrichtung (ff) 8LSA / 8LSC


Leistungs- und Geberanschluss

Drehstrom-Synchronmotoren 8LSA und 8LSC sind mit 3 verschiedenen Anschlussoptionen verfügbar.

Gerade Einbaudose

Anschlussrichtung: gerade (oben) Geber- und Leistungsleitung: getrennt mit eigenen Anschlüssen

Gewinkelte Einbaudose

Anschlussrichtung: gewinkelt (drehbar) Geber- und Leistungsleitung: getrennt mit eigenen Anschlüssen

Prüfen Sie die Winkelangaben (max. 200-220°) bzw. die Umsetzbarkeit, entsprechend Ihren Anforderungen, mit dem CAD-Konfigurator unter cad.br-automation.com.

Einkabellösung (hybrid)

Anschlussrichtung: gewinkelt, drehbar Geber- und Leistungsleitung: in einem Kabel zusammengefasst



Lüfteranschluss

Drehstrom-Synchronmotoren **8LSC** sind ab Werk nur mit einer möglichen Lüfter Anschlussrichtung erhältlich.

Lüfteranschluss

Anschlussrichtung: gewinkelt

Andere Anschlussrichtungen sind möglich, müssen jedoch vom Anwender selbst vorgenommen werden. Anschlussdose und Haube mit Lüfter lassen sich in 90° Schritten drehen, achten Sie hierbei auf eine evtl. Kollision mit den Motoranschlüssen.

Weitere Informationen:

Lüfteranschlussrichtung ändern (Seite 267)

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23

2.8.2 Verfügbarkeit Einkabellösung (hybrid) (ff) 8LSA / 8LSC

Die Einkabellösung (hybrid) ist nur **für Motoren mit Steckergröße 1,0** (Einbaudose motorseitig) und damit grundsätzlich **bis Baugröße/-länge 65 möglich**.

Für einzelne Motoren der **Baugröße/-länge 5A, 5B, 5C** gelten folgende **Ausnahmen**. Die aufgelisteten Motoren sind daher nicht als Einkabellösung (hybrid) lieferbar.

Kühlart A	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSA5A.ee045ffgg-3	4500	1,5	
8LSA5B.ee030ffgg-3	3000	1,5	
8LSA5B.ee040ffgg-3	4000	1,5	
8LSA5C.ee022ffgg-3	2200	1,5	
8LSA5C.ee030ffgg-3	3000	1,5	

Kühlart C	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSC5A.ee045ffgg-3	4500	1,5	
8LSC5B.ee030ffgg-3	3000	1,5	
8LSC5B.ee040ffgg-3	4000	1,5	
8LSC5C.ee022ffgg-3	2200	1,5	
8LSC5C.ee030ffgg-3	3000	1,5	

Verfügbarkeit 8LSA66 / 8LSC66

Kühlart A	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSA66.ee015ffgg-3	1500	1	Ja
8LSA66.ee022ffgg-3	2200	1	Ja
8LSA66.ee030ffgg-3	3000	1	Ja
8LSA66.ee045ffgg-3	4500	1,5	

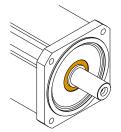
Kühlart C	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSC66.ee015ffgg-3	1500	1	Ja
8LSC66.ee022ffgg-3	2200	1	Ja
8LSC66.ee030ffgg-3	3000	1	Ja
8LSC66.ee045ffgg-3	4500	1,5	

Verfügbarkeit 8LSA7 / 8LSC7

Kühlart A	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSA73.ee030ffgg-3	3000	1	Ja
8LSA73.ee045ffgg-3	4500	1,5	
8LSA74.ee015ffgg-3	1500	1	Ja
8LSA74.ee020ffgg-3	2000	1	Ja
8LSA74.ee022ffgg-3	2200	1	Ja
8LSA74.ee030ffgg-3	3000	1	Ja
8LSA74.ee045ffgg-3	4500	1,5	
8LSA75.ee015ffgg-3	1500	1	Ja
8LSA75.ee020ffgg-3	2000	1	Ja
8LSA75.ee022ffgg-3	2200	1	Ja
8LSA75.ee030ffgg-3	3000	1	Ja
8LSA76.ee015ffgg-3	1500	1,5	
8LSA76.ee030ffgg-3	3000	1,5	

Kühlart C	Drehzahl	Steckergröße	Einkabellösung (hybrid) verfügbar
8LSC73.ee030ffgg-3	3000	1	Ja
8LSC73.ee045ffgg-3	4500	1,5	
8LSC74.ee020ffgg-3	2000	1	Ja
8LSC74.ee022ffgg-3	2200	1	Ja
8LSC74.ee030ffgg-3	3000	1	Ja
8LSC74.ee045ffgg-3	4500	1,5	
8LSC75.ee030ffgg-3	3000	1,5	
8LSC76.ee030ffgg-3	3000	1,5	

Alle weiteren Baulängen der Baugröße 7 sind mit der Steckergröße 1,5 ausgerüstet und daher nicht für die Einkabellösung (hybrid) verfügbar.


Verfügbarkeit 8LSA8 / 8LSC8

Motoren der Baugröße 8 (Steckergröße 1,5) sind nicht für die Einkabellösung (hybrid) verfügbar.

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23

2.8.3 Wellendichtring (ff) 8LSA / 8LSC

Alle Drehstrom-Synchronmotoren 8LS sind optional mit einem Wellendichtring der Form A nach DIN 3760 lieferbar.

Mit Wellendichtring erfüllen die Motoren die Schutzart IP65 nach EN 60034-5.

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23

Wartung

Damit die Funktion des Wellendichtringes auf Dauer gewährleistet ist, muss er regelmäßig mit Öl geschmiert werden. Ein nicht geschmierter Wellendichtring verhärtet durch die erhöhte Reibungswärme und kann dann nur noch die Funktion als Staubschutz auf Dauer gewährleisten.

Hinweis:

Für eine ausreichende Schmierung des Wellendichtrings ist während der gesamten Lebensdauer des Motors zu sorgen.

Daher ist der Anbau eines Getriebes an Motoren mit Wellendichtring nicht zulässig!

2.8.4 Haltebremse (ff) 8LSA / 8LSC

Funktionsprinzip

Die Haltebremse ist eine Permanentmagnetbremse und kann durch B&R Antriebssysteme angesteuert werden. Prinzipbedingt weist dieser Haltebremsen-Typ ein minimales Spiel auf. Um die Bremse zu lüften, muss eine Spannung (siehe technische Daten) angelegt werden.

Die Bremse ist als Haltebremse konzipiert. Sie darf nicht zum betriebsmäßigen Abbremsen verwendet werden! Die Bremsen besitzen unter Beachtung dieser Randbedingung eine Lebensdauer von ca. 5.000.000 Schaltzyklen (lösen und wieder einfallen lassen ist dabei ein Schaltzyklus). Lastbremsungen im Fall eines Nothaltes sind zulässig - sie reduzieren jedoch die Lebensdauer.

Information:

Das erforderliche Haltemoment der Bremse wird auf Basis des auftretenden Lastmoments bestimmt. Vom Bremsenhersteller wird generell empfohlen, einen Sicherheitsfaktor von 2 zu berücksichtigen.

Warnung!

Die Haltebremse ist keine Arbeitsbremse. Das maximale Motormoment überschreitet das Haltemoment wesentlich.

Personenschutz

Information:

Soll die Haltebremse zum Zweck des Personenschutzes eingesetzt werden, so muss vom Anwender mittels der MTTF-Werte der jeweiligen Haltebremse geprüft werden, ob der für die jeweilige Applikation erforderliche Performance level gemäß EN ISO 13849 mit dieser Haltebremse erreicht werden kann. B&R empfiehlt, die Funktion der Haltebremse zyklisch zu prüfen.

Der für die Berechnung des Performance level erforderliche **B**_{10d} Wert kann wie folgt berechnet werden:

$$B_{10d} = MTTF_d \times (0.1 \times n_{op})$$

B_{10d} Mittlere Anzahl von Zyklen, bis 10 % der Bauteile gefährlich ausgefallen sind.

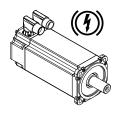
 $\mathbf{MTTF_d} \qquad \qquad \text{Mittlere Zeit bis zum gefahrbringenden Ausfall.}$

MTTF_d = MTTF x 2

Der MTTF Wert ist den technischen Daten der Haltebremsen zu entnehmen.

n_{op} Mittlere Anzahl jährlicher Betätigungen.

Motoroptionen (ff) Übersicht (Bestellcode)


siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23

Hinweis:

Neben der Standardhaltebremse und der verstärkten Haltebremse gibt es auch noch eine Spezialhaltebremse für die Sonderoption "verstärktes A-Lager".

siehe "Sondermotoroptionen (gg) 8LSA / 8LSC" auf Seite 34 siehe "Spezialhaltebremse für verstärktes A-Lager" auf Seite 36

2.8.4.1 Standardhaltebremse (ff) 8LSA / 8LSC

Die Drehstrom-Synchronmotoren **8LSA** und **8LSC** können mit einer Standardhaltebremse geliefert werden. Diese ist direkt hinter dem A-Flansch des Motors eingebaut und dient zum Festhalten der Motorwelle im spannungslosen Zustand des Servomotors.

Technische Daten - Standardhaltebremse

	8LSA2 8LSC2	8LSAA	8LSA3 8LSC3	8LSA4 8LSC4	8LSA5 8LSC5	8LSA6 8LSC6	8LSA7 8LSC7	8LSA8 8LSC8
Haltemoment M _{Br} [Nm]	2.2	3,2	4	8	15	32	47	130
Anschluss-Leistung P _{ein} [W]	8,2	10,8	13,4	18,0	24,0	26,0	20,4	50,0
Anschluss-Strom I _{ein} [A]	0,35	0,45	0,56	0,75	1,0	1,08	0,85	2,08
Anschluss-Spannung Uein [VDC]	24	1 (+10 % / -10 %	%)	24 (+6 % / -10 %)				
Trägheitsmoment J _{Br} [kgcm²]	0,12	0,38	0,38	0,54	1,66	5,85	32	53,0
Masse m _{Br} [kg]	0,19	0,60	0,29	0,46	0,9	1,6	3,8	5,35
MTTF[h]	39.150.000		9.080.000	12.060.000	48.760.000	39.150.000	5.510.000	

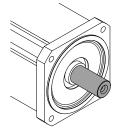
2.8.4.2 Verstärkte Haltebremse (ff) 8LSA / 8LSC

Die Drehstrom-Synchronmotoren **8LSA** und **8LSC** der Baugrößen 3 - 7 mit normaler A-Lagerung können mit einer verstärkten Haltebremse geliefert werden.

Eine Kombination "verstärktes A-Lager" mit verstärkter Haltebemse ist nicht möglich!

Technische Daten - verstärkte Haltebremse

	8LSA3 8LSC3	8LSA4 8LSC4	8LSA5 8LSC5	8LSA6 8LSC6	8LSA7 8LSC7	
Haltemoment M _{Br} [Nm]	9	15	60	60	80	
Anschluss-Leistung P _{ein} [W]	15	18,0	25,0	25,0	36,5	
Anschluss-Strom I _{ein} [A]	0,63	0,75	1,04	1,04	1,52	
Anschluss-Spannung U _{ein} [VDC]	24 (+10 % / -10 %)		24 (+6 %	/ -10 %)		
Trägheitsmoment J _{Br} [kgcm²]	0,55	1,35	14,7	14,7	27,0	
Masse m _{Br} [kg]	0,52	0,98	3,23	3,23	4,4	
MTTF[h]		39.150.000				


2.8.5 Wellenende (ff) 8LSA / 8LSC

Alle Drehstrom-Synchronmotoren 8LS besitzen Wellenenden nach DIN 748. Lieferbar ist das Wellenende in mehreren Ausführungen, die Verfügbarkeit ist der entsprechenden Tabelle zu entnehmen.

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23


Ausführungen

Glattes Wellenende

Das glatte Wellenende wird für eine kraftschlüssige Welle-Nabe-Verbindung verwendet und gewährleistet eine spielfreie Verbindung zwischen Welle und Nabe sowie hohe Laufruhe. An der Stirnseite der Welle ist eine Zentrierbohrung mit Gewinde vorhanden.

Wellenende mit Passfeder

Das Wellenende mit Passfeder kann für eine formschlüssige Drehmomentübertragung bei geringen Anforderungen an die Welle-Nabe-Verbindung und für die Aufnahme richtungskonstanter Drehmomente verwendet werden.

Die Passfedernuten der Drehstrom-Synchronmotoren 8LS entsprechen der Nutform N1 nach DIN 6885-1. Es werden Passfedern der Form A nach DIN 6885-1 eingesetzt. Die Wuchtung von Motoren mit Passfedernuten erfolgt nach der Halb-Passfeder-Vereinbarung nach DIN ISO 8821.

Zur Fixierung von Antriebselementen mit Wellenendscheiben ist an der Stirnseite der Welle eine Zentrierbohrung mit Gewinde vorgesehen.

28

Vorsicht!

Wellenbruch durch starken Reversierbetrieb.

Der Sitz der Passfeder kann bei starkem Reversierbetrieb ausschlagen. Im Extremfall bricht dadurch die Welle!

• Setzen Sie vorzugsweise glatte Wellenenden mit Spannelementen ein.

Vorsicht!

Motorschaden durch Unwucht.

Werden Motoren, welche ein Wellenende mit Passfeder besitzen, ohne die Passfeder betrieben, so kann dies zu Unwucht und in Folge zu einem Motorschaden führen.

• Setzen Sie in solchen Fällen glatte Wellenenden ein.

Warnung!

Personen- und Sachschäden durch wegschleudernde Elemente!

Bei frei drehenden Motoren können wegschleudernde Elemente Personen- und Sachschäden verursachen.

- Nachfolgende Sicherheitsvorkehrungen gelten auch bei kurzzeitigem Test- und Probebetrieb!
- Sichern Sie Passfedern.
- Sichern oder entfernen Sie Montageschrauben oder andere Montageelemente.
- Eine Wellenschutzhülse, für Transport und Lagerung, muss ebenfalls entfernt werden.

2.9 Motoroptionen (ff) 8LSO / 8LSP

8LS b c d . ee nnn ff gg - h siehe "Bestellschlüssel" auf Seite 13

Der entsprechende Code (ff) für den Bestellschlüssel kann der folgenden Tabelle entnommen werden.

Für alle Optionen gilt:

Der **Klemmkasten** befindet sich immer **oben**, die Kabelabgangs/Anschlussrichtung ist in der Optionstabelle ersichtlich.

Der Geberanschluss erfolgt gerade und in Anschlussrichtung.

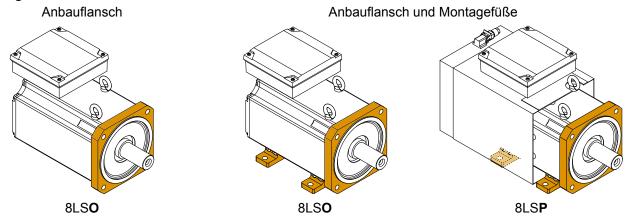
Verfügbarkeit

Motoroption				Verfügbarkeit		Bestellcode (ff)	
Montageart	Anschlussrichtung	Wellendichtring	Haltebremse	Wellenende	8LSO	8LSP	
Flansch				glatte Welle	Ja		Α0
1 🔪 🔉	270° (rechts)			mit Passfeder	Ja		A1
		Ja		glatte Welle	Ja		A6
		Ja		mit Passfeder	Ja		A7
				glatte Welle	Ja	Ja	В0
Flansch / Fuß				mit Passfeder	Ja	Ja	B1
		l-		glatte Welle	1-		В6
		Ja		Zahnwelle 1)	- Ja	Ja	B0
900		Ja		mit Passfeder	Ja	Ja	В7
Flansch				glatte Welle	Ja		E0
15.8.2	90° (links)			mit Passfeder	Ja		E1
	*	Ja		glatte Welle	Ja		E6
		Ja		mit Passfeder	Ja		E 7
				glatte Welle	Ja	Ja	F0
Flansch / Fuß				mit Passfeder	Ja	Ja	F1
				glatte Welle	Ja	Ja	
		Ja		Zahnwelle 1)			F6
Q		Ja		mit Passfeder	Ja	Ja	F7
Flansch				glatte Welle	Ja		J0
	180° (B-Lager seitig)			mit Passfeder	Ja		J1
	\	Ja		glatte Welle	Ja		J6
		Ja		mit Passfeder	Ja		J7
				glatte Welle	Ja	Ja	K0
Flansch / Fuß				mit Passfeder	Ja	Ja	K1
				glatte Welle			
		Ja		Zahnwelle 1)	Ja	Ja	K6
		Ja		mit Passfeder	Ja	Ja	K7
Flansch				glatte Welle	Ja		N0
	0° (A-Lager seitig)			mit Passfeder	Ja		N1
		Ja		glatte Welle	Ja		N6
		Ja		mit Passfeder	Ja		N7
				glatte Welle	Ja	Ja	P0
Flansch / Fuß				mit Passfeder	Ja	Ja	P1
				glatte Welle			
		Ja		Zahnwelle 1)	Ja	Ja	P6
		Ja		mit Passfeder	Ja	Ja	P7
	1						

Die "Zahnwelle" ist nur als Sondermotoroption (gg) mit Code 44 erhältlich.
 Siehe "Sondermotoroptionen (gg) 8LSO / 8LSP".

2.9.1 Montageart (ff) 8LSO / 8LSP

Die Kühlart 8LSO ist mit Anbauflansch oder mit Anbauflansch und Montagefüßen erhältlich.

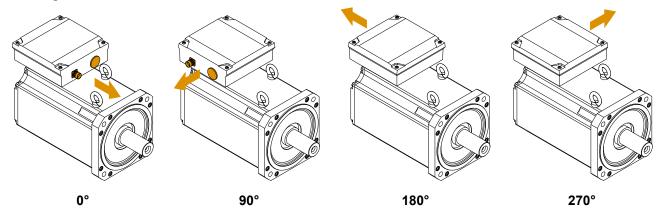

Die Kühlart 8LSP verfügt immer über einen Anbauflansch und Montagefüße.

Verfügt der Motor über einen Anbauflansch und Montagefüße, erfolgt die Montage dabei entweder am Anbauflansch oder an den Montagefüßen.

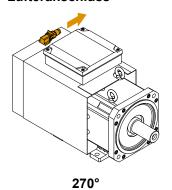
Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSO / 8LSP" auf Seite 30

Montagearten


2.9.2 Anschlussrichtung (ff) 8LSO / 8LSP

Drehstrom-Synchronmotoren **8LSO / 8LSP** verfügen über einen Klemmkasten und sind mit 4 verschiedenen Anschlussrichtungen lieferbar.


Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSO / 8LSP" auf Seite 30

Leistungs- und Geberanschluss



Lüfteranschluss

Beim Drehstrom-Synchronmotor **8LSP** beträgt die **Lüfteranschlussrichtung** immer **270°**.

2.9.3 Wellendichtring (ff) 8LSO / 8LSP

Alle Drehstrom-Synchronmotoren 8LS sind optional mit einem Wellendichtring der Form A nach DIN 3760 lieferbar.

Mit Wellendichtring erfüllen die Motoren die Schutzart IP65 nach EN 60034-5.

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSO / 8LSP" auf Seite 30

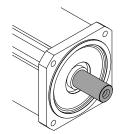
Wartung

Damit die Funktion des Wellendichtringes auf Dauer gewährleistet ist, muss er regelmäßig mit Öl geschmiert werden. Ein nicht geschmierter Wellendichtring verhärtet durch die erhöhte Reibungswärme und kann dann nur noch die Funktion als Staubschutz auf Dauer gewährleisten.

Hinweis:

Für eine ausreichende Schmierung des Wellendichtrings ist während der gesamten Lebensdauer des Motors zu sorgen.

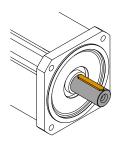
Daher ist der Anbau eines Getriebes an Motoren mit Wellendichtring nicht zulässig!


2.9.4 Wellenende (ff) 8LSO / 8LSP

Alle Drehstrom-Synchronmotoren 8LS besitzen Wellenenden nach DIN 748. Lieferbar ist das Wellenende in mehreren Ausführungen, die Verfügbarkeit ist der entsprechenden Tabelle zu entnehmen.

Motoroptionen (ff) Übersicht (Bestellcode)

siehe "Motoroptionen (ff) 8LSO / 8LSP" auf Seite 30


Ausführungen

Glattes Wellenende

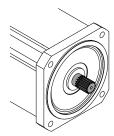
Das glatte Wellenende wird für eine kraftschlüssige Welle-Nabe-Verbindung verwendet und gewährleistet eine spielfreie Verbindung zwischen Welle und Nabe sowie hohe Laufruhe. An der Stirnseite der Welle ist eine Zentrierbohrung mit Gewinde vorhanden.

Das Wellenende mit Passfeder kann für eine formschlüssige Drehmomentübertragung bei geringen Anforderungen an die Welle-Nabe-Verbindung und für die Aufnahme richtungskonstanter Drehmomente verwendet werden.

Die Passfedernuten der Drehstrom-Synchronmotoren 8LS entsprechen der Nutform N1 nach DIN 6885-1. Es werden Passfedern der Form A nach DIN 6885-1 eingesetzt. Die Wuchtung von Motoren mit Passfedernuten erfolgt nach der Halb-Passfeder-Vereinbarung nach DIN ISO 8821.

Zur Fixierung von Antriebselementen mit Wellenendscheiben ist an der Stirnseite der Welle eine Zentrierbohrung mit Gewinde vorgesehen.

Vorsicht!


Wellenbruch durch starken Reversierbetrieb.

Der Sitz der Passfeder kann bei starkem Reversierbetrieb ausschlagen. Im Extremfall bricht dadurch die Welle!

Setzen Sie vorzugsweise glatte Wellenenden mit Spannelementen ein.

Sonderoption

siehe "Sondermotoroptionen (gg) 8LSO / 8LSP" auf Seite 37

Zahnwelle

Die nach ANSI B 92.1 gefertigte Zahnwelle ist nur als **Sondermotoroption** für die Motoren 8LSO / 8LSP verfügbar.

2.10 Sondermotoroptionen (gg) 8LSA / 8LSC

8LS b c d . ee nnn ff gg - h

siehe "Bestellschlüssel" auf Seite 13

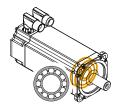
Die jeweilige Sondermotoroption wird in Form eines zweistelligen Codes (gg) als Teil der Bestellnummer angegeben.

Durch die Sondermotoroption (**gg**) wird der Code (**ff**) für die Motoroptionen eingeschränkt bzw. sind weitere (**ff**) Codes bei Verwendung der Spezialhaltebremse notwendig. Die zusätzlichen (**ff**) Codes, bei Verwendung einer Spezialhaltebremse, entnehmen Sie bitte diesem Kapitelabschnitt.

8LS

) (

d


ee nnn

ff

f g

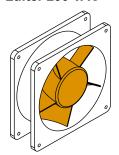
- h

Verstärktes A-Lager

Die Drehstrom-Synchronmotoren **8LSA** und **8LSC** der Baugrößen 4 - 8 sind mit der Sondermotoroption "verstärktes **A-Lager**" erhältlich.

Durch das verstärkte A-Lager können am Wellenende erhöhte Radial- und Axialkräfte (F_r und F_a) aufgenommen werden. Angaben zur Bestimmung der zulässigen Radial- und Axialkräfte sind den entsprechenden Motordaten zu entnehmen.

Bei Motoren mit Haltebremse muss die Haltebremse als Spezialhaltebremse ausgeführt sein.


siehe "Technische Daten Spezialhaltebremse" auf Seite 36

Information:

Bei Motoren mit Sondermotoroption "verstärktes A-Lager" erhöhen sich (gegenüber Motoren mit Standardlagern) die Abmessungen der Motorwelle, sowie die Gesamtlänge.

Die genauen Maße können den technischen Daten der jeweiligen Drehstrom-Synchronmotoren 8LS entnommen werden.

Lüfter 230 VAC

Die Kühlart C (8LSC) kann mit dem **24 VDC (Standardlüfter)** oder einem **230 VAC Lüfter (Sondermotoroption)** ausgestattet werden.

Technische Daten (Lüfter 230 VAC / 24 VDC)

siehe "Lüfterbaugruppen" auf Seite 39

Ersatzteile (8LSC)

siehe "Ersatzteile - Fan Kit 8LSC" auf Seite 267

Verfügbarkeit der Sondermotoroptionen

Die **Verfügbarkeit** der Sondermotoroptionen ist abhängig von der Kühlart (8LSA / 8LSC), der Baugröße (4 - 8) und auch von der Motoroption (ff). Entnehmen Sie den nachfolgenden Tabellen die Verfügbarkeit der Sondermotoroptionen.

Kühlart	Bestell-	Sondermotoroption ¹⁾		Standardlüfter	8LSA	8LSA / 8LSC
	code (gg)	Verstärktes A-Lager	230 VAC Lüfter	24 VDC	2,A,3	4,5,6,7,8
8LS A	00				Ja	Ja
8LS A	04	Ja				Ja
8LS C	00		Ja			Ja
8LS C	05			Ja		Ja
8LS C	11	Ja		Ja		Ja

Die Motoroptionen "Standard Haltebremse" und "verstärkte Haltebremse" sind nicht in Kombination mit der Sondermotoroption "verstärktes A-Lager" bestellbar.

Zulässige Kombinationen (ohne Haltebremse)

Folgende Kombinationen sind mit der Sondermotoroption verstärktes A-Lager (gg) erhältlich.

Bestellcode			Optionen (ff)			Sondermotor-
(ff)	(gg) 8LSA	(gg) 8LSC	Anschlussrichtung	Wellen- dichtring	Wellenende	optionen (gg)
C0			gerade (oben)		glatte Welle	
C1					Welle mit Passfeder	
C6				Ja	glatte Welle	
C7				Ja	Welle mit Passfeder	
D0			gewinkelt (drehbar)		glatte Welle	
D1	04	11			Welle mit Passfeder	verstärktes A-Lager
D6	(selbstgekühlt)	(Standardlüfter 24 VDC)		Ja	glatte Welle	verstarktes A-Lager
D7				Ja	Welle mit Passfeder	
S0			Einkabellösung (hybrid)		glatte Welle	
S1			gewinkelt, drehbar		Welle mit Passfeder	
S6				Ja	glatte Welle	
S7				Ja	Welle mit Passfeder	

Zulässige Kombinationen (mit Spezialhaltebremse für verstärktes A-Lager)

Folgende Kombinationen sind mit der Sondermotoroption verstärktes A-Lager (gg) erhältlich.

Bestellcode			Optionen			Sondermotor-
(ff)	(gg) 8LSA	(gg) 8LSC	Anschlussrichtung	Wellen- dichtring	Wellenende	optionen (gg)
CC			gerade (oben)		glatt Welle	
CD					Welle mit Passfeder	
CE				Ja	glatt Welle	
CF				Ja	Welle mit Passfeder	
DC			gewinkelt (drehbar)		glatt Welle	49 . 1
DD	04	11			Welle mit Passfeder	verstärktes A-Lager
DE	(selbstgekühlt)	(Standardlüfter 24 VDC)		Ja	glatt Welle	Spezialhaltebremse
DF				Ja	Welle mit Passfeder	opoziamanosi omoo
SC			Einkabellösung (hybrid)		glatt Welle	
SD			gewinkelt, drehbar		Welle mit Passfeder	
SE				Ja	glatt Welle	
SF				Ja	Welle mit Passfeder	

Bestellbeispiele

Motor mit verstärktem A-Lager - ohne Haltebremse

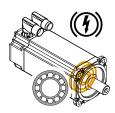
Für einen 8LSA55 mit D0 - Geber und der gewünschten Anschlussrichtung bzw. Anschlusstechnik Einkabellösung, gewinkelt (drehbar) wird folgende Auswahl getroffen: keine Haltebremse, kein Wellendichtring, mit Passfeder. Motoroption (ff) = **S1**. Zusätzlich ist ein verstärktes A-Lager erforderlich. Sondermotoroption (gg) für 8LS**A** = **04**.

Der Bestellcode lautet: 8LSA55.D0030S104-3

Für einen 8LSC55 mit D0 - Geber und der gewünschten Anschlussrichtung bzw. Anschlusstechnik Einkabellösung, gewinkelt (drehbar) wird folgende Auswahl getroffen: keine Haltebremse, kein Wellendichtring, mit Passfeder. Motoroption (ff) = **D1**. Zusätzlich ist ein verstärktes A-Lager erforderlich. Sondermotoroption (gg) für 8LS**C** = **11**.

Der Bestellcode lautet: 8LSC55.D0030S111-3

Motor mit verstärktem A-Lager - mit Spezialhaltebremse


Für einen 8LSA55 mit E0 - Geber und der gewünschten Anschlussrichtung gewinkelt (drehbar) ist ein verstärktes A-Lager erforderlich. Sondermotoroption (gg) für 8LS**A = 04**. Es wird weiterhin folgende Auswahl getroffen: Spezialhaltebremse, kein Wellendichtring, mit Passfeder. Motoroption (ff) = **DD**

Der Bestellcode lautet: 8LSA55.E0030DD04-3

Für einen 8LSC55 mit E0 - Geber und der gewünschten Anschlussrichtung gewinkelt (drehbar) ist ein verstärktes A-Lager erforderlich. Sondermotoroption (gg) für 8LSC = 11. Es wird folgende Auswahl getroffen: keine Haltebremse, kein Wellendichtring, mit Passfeder. Motoroption (ff) = **DD**.

Der Bestellcode lautet: 8LSC55.E0030DD11-3

2.10.1 Spezialhaltebremse für verstärktes A-Lager

Bei der Sondermotoroption "verstärktes A-Lager" in Verbindung mit Haltebremse ist eine Spezialhaltebremse erforderlich.

Funktionsprinzip

Die Haltebremse ist eine Permanentmagnetbremse und kann durch B&R Antriebssysteme angesteuert werden. Prinzipbedingt weist dieser Haltebremsen-Typ ein minimales Spiel auf. Um die Bremse zu lüften, muss eine Spannung (siehe technische Daten) angelegt werden.

Die Bremse ist als Haltebremse konzipiert. Sie darf nicht zum betriebsmäßigen Abbremsen verwendet werden! Die Bremsen besitzen unter Beachtung dieser Randbedingung eine Lebensdauer von ca. 5.000.000 Schaltzyklen (lösen und wieder einfallen lassen ist dabei ein Schaltzyklus). Lastbremsungen im Fall eines Nothaltes sind zulässig - sie reduzieren jedoch die Lebensdauer.

Information:

Das erforderliche Haltemoment der Bremse wird auf Basis des auftretenden Lastmoments bestimmt. Vom Bremsenhersteller wird generell empfohlen, einen Sicherheitsfaktor von 2 zu berücksichtigen.

Warnung!

Die Haltebremse ist keine Arbeitsbremse. Das maximale Motormoment überschreitet das Haltemoment wesentlich.

Information:

Soll die Haltebremse zum Zweck des Personenschutzes eingesetzt werden, so muss vom Anwender mittels der MTTF-Werte der jeweiligen Haltebremse geprüft werden, ob der für die jeweilige Applikation erforderliche Performance level gemäß EN ISO 13849 mit dieser Haltebremse erreicht werden kann. B&R empfiehlt, die Funktion der Haltebremse zyklisch zu prüfen.

siehe "Motoroptionen (ff) 8LSA / 8LSC" auf Seite 23

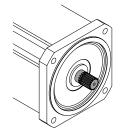
Technische Daten - Spezialhaltebremse

	8LSA4 8LSC4	8LSA5 8LSC5	8LSA6 8LSC6	8LSA7 ¹⁾ 8LSC7 ¹⁾	8LSA8 8LSC8	
Haltemoment M _{Br} [Nm]	8	28	28		120	
Anschluss-Leistung Pein [W]	16	26	26		50	
Anschluss-Strom I _{ein} [A]	0,67	1,08	1,08		1,51	
Anschluss-Spannung U _{ein} [V]	24 (+6 % / -10 %)					
Trägheitsmoment J _{Br} [kgcm²]	1,84	10,2	10,2		58,9	
Masse m _{Br} [kg]	1,55	2,1	2,1		6	
MTTF[h]	12.060.000	48.760.000			5.510.000	

¹⁾ Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.

2.11 Sondermotoroptionen (gg) 8LSO / 8LSP

8LS b c d . ee nnn ff gg - h


siehe "Bestellschlüssel" auf Seite 13

Die Sondermotoroption wird in Form eines zweistelligen Codes (gg) als Teil der Bestellnummer angegeben.

Keine Sondermotoroption

Wenn keine Sondermotoroption gewünscht wird, gibt der zweistellige Code (**gg**) als Teil der Bestellnummer nur Auskunft über die Kühlart.

Beste	llcode	Standardlüfter	
Kühlart	(gg)	24 VDC	
8LS O9	00		kaina Candarmatarantian
8LS P9	05	Ja	keine Sondermotoroption

Zahnwelle für 8LSO / 8LSP

Die nach ANSI B 92.1 gefertigte Zahnwelle ist als Sondermotoroption **44** für die Drehzahlen **1300** und **1500** erhältlich.

Die Zahnwelle ist nur mit speziellen Motoroptionen (ff) erhältlich. Dabei ist zu beachten, dass der Code (ff) im jeweiligen Kapitelabschnitt ("Motoroptionen (ff) 8LSO / 8LSP" auf Seite 30) mit einer glatten Welle angegeben ist, welche jedoch durch die Sondermotoroption 44 zu einer Zahnwelle wird.

Bestellcode		•		Standardlüfter			
Kühlart	(ff)	(gg)	Montageart	Anschlussrichtung	Wellendichtring	24 VDC	
	В6			270° (rechts)	Ja		
8LS O9	F6	44 F	Flansch / Fuß	90° (links)	Ja		
olo Us	K6	44	Flatiscii / Fuis	180° (B-Lager seitig)	Ja		
	P6	1		0° (A-Lager seitig)	Ja		
	В6			270° (rechts)	Ja	Ja	
01 000	8LS P9	F6	Flansch / Fuß	90° (links)	Ja	Ja	
OLOPS		44	Flansch / Fuls	180° (B-Lager seitig)	Ja	Ja	
	P6			0° (A-Lager seitig)	Ja	Ja	

8LS...-3 Anwenderhandbuch V2.51

Wellenende nach DIN 748 2)

Lackierung:

Farbe:

Bezeichnung:

Wellendichtring nach DIN 3760

Passfeder und Passfedernut nach DIN 6885-1

lauf des Befestigungsflansches nach DIN 42955

Wuchtung der Welle nach DIN ISO 8821

Befestigungsflansch nach DIN 42948 Rundlauf des Wellenende, Koaxialität und Plan-

Lager- und Transportbedingungen

Lagerungstemperatur

Transporttemperatur

Luftfeuchtigkeit bei Lagerung

Luftfeuchtigkeit bei Transport

2.12 Allgemeine Motordaten

Allgemeines	8LSA	8LSC	8LSO	8LSP			
C-UR-US gelistet		Ja					
UL File Nummer		E360421					
Elektrische Eigenschaften	8LSA	8LSC	8LSO	8LSP			
Netzeingangsspannung am Servoverstärker		3 x 400 VAC 3	x 480 VAC ± 10 %	•			
Anschlusstechnik konventionell: Leistungsanschluss: Geberanschluss:	SpeedTec System	stecker n, Größe 1 und 1,5 ler itec System	M10 bz	nkasten zw. M12 ler itec System			
Anschlusstechnik Einkabellösung (hybrid)		peedTec System, Größe 1	- Speed rec ou				
Thermische Eigenschaften	8LSA	8LSC	8LSO	8LSP			
Wärmeklasse des Isoliersystems nach EN 60034-1	F						
Kühlverfahren nach EN 60034-6 (IC-Code)	selbstgekühlt Ober- flächenkühlung frei (IC4A0A0)	fremdgekühlt Ober- flächenkühlung mit angebauter, unab- hängiger Lüfterbau- gruppe (IC4A0A6)	selbstgekühlt Ober- flächenkühlung frei (IC4A0A0)	fremdgekühlt Ober- flächenkühlung mit angebauter, unab- hängiger Lüfterbau- gruppe (IC4A0A6)			
Thermischer Motorschutz nach EN 60034-11	schutz ir tem auf 1	Maximale Wicklungstemperatur 155 °C (wird vom thermischen Motor- schutz im ACOPOS Servoverstärker oder im ACOPOSmulti Antriebssys- tem auf 110 °C bei EnDat und 130 °C bei Resolver Rückführung begrenzt) KTY83-110 (bis Revision C7) / AM-PTC1000 (Revision C8/C9)					
Mechanische Eigenschaften	8LSA	8LSC	8LSO	8LSP			
Schwingstärke nach EN 60034-14		Schwingstärkestufe A 1)					
Berechnung der Lagerlebensdauer		DIN ISO 281					
Zentrierbohrung DIN 332		Form F					
Ringschraube nach DIN 580	ab Bau	größe 8	Ja				

Form E

Form A

Passfeder Form A; Nutform N1

Halb-Passfeder-Vereinbarung Form A

Toleranz- R

Lack auf Wasserbasis

98160 *IDROLIN/E SM SEMIOPACO NERO RAL 9005-C.452

RAL 9005 matt; Wellenende und Flanschvorderseite metallisch blank

Einsatzbedingungen	8LSA	8LSC	8LSO	8LSP	
Bemessungsklasse, Betriebsart nach EN 60034-1	S1 - Dauerbetrieb				
Umgebungstemperatur in Betrieb	-15 °C bis +40 °C				
Reduktion des Nenn- und Stillstandsstromes sowie des Nenn- und Stillstandsmomentes bei Temperaturen über 40 °C	10 % pro 10 °C				
max. Umgebungstemperatur im Betrieb	+55 °C ³)				
Reduktion des Nenn- und Stillstandsstromes so- wie des Nenn- und Stillstandsmomentes bei Auf- stellungshöhen ab 1.000 m über NN (Meeresspie- gel)	5 % pro 1000 m				
max. Aufstellungshöhe		2000) m ⁴⁾		
max. Flanschtemperatur		65	°C		
Schutzart nach EN 60034-5 (IP-Code): Schutzart mit Option Wellendichtring (DIN 3760):	IP64 IP65	IP64, Lüfter IP20 IP65, Lüfter IP20	IP64 IP65	IP64, Lüfter IP20 IP65, Lüfter IP20	
Bau- und Aufstellungsart nach EN 60034-7 (IM- Code)	horizontal (IM3001) vertikal, Motor hängt an der Maschine (IM3011) ⁵⁾ vertikal, Motor steht auf der Maschine (IM3031)				

8LSC

8LSO

-20 bis +60 °C

max. 90 %, nicht kondensierend

-20 bis +60 °C

max. 90 %, nicht kondensierend

8LSA

38

8LSP

¹⁾ Gültig für alle Motoren mit einer Achshöhe von mehr als 56 mm.

 ² Außer Baugröße 2 regulär und verstärkte Lagerung bei Baugrößen 5,7 und 8
 3 Ein Dauerbetrieb der Servomotoren bei einer Umgebungstemperatur von +40 °C bis max. +55 °C ist möglich, führt aber zu einer frühzeitigen Alterung.

⁴⁾ Darüber hinaus gehende Anforderungen sind mit B&R zu vereinbaren.

Bei der Bau- und Aufstellungsart IM3011 (vertikal, Motor hängt an der Maschine) besteht die Gefahr, dass flanschseitig Produktionsflüssigkeiten oder Öle in den Motor eindringen. Motoren bzw. Motor-Getriebe-Kombinationen, die in dieser Aufstellungsart eingesetzt werden sollen, müssen daher flanschseitig mindestens die Schutzart IP65 aufweisen.

2.12.1 Lüfterbaugruppen

Lüfter 24 VDC (Standard)

Die eingesetzten Lüfterbaugruppen sind baugrößenabhängig.

	8LSx4	8LSx5 / 8LSx6	8LSx7 / 8LSx8	8LSP9		
Hersteller		ebm-	papst			
Herstellerbezeichnung	4184 NXH	7114 N	6424 M	W1G250-HH37-52		
C-UR-US gelistet		J	la			
Art des Lüfters	DC Lüfter mit elektronisch kommutiertem Außenläufermotor					
Rotorlagerung		Kuge	llager			
Schutzart	IP20					
Nennspannung	24 VDC +16 % / -50 %	24 VDC +25 % / -50 %	24 VDC +33 % / -50 %	24 VDC +17 % / -33 %		
Leistungsaufnahme	11 W	12	W	105 W		
Überlastschutz		utz durch PTC-Widerstand; danzgeschützt	Verpol- und Blockierschutz			
Temperaturbereich	-30 bis +70 °C	-25 bis +72 °C	-20 bis +55 °C	-25 bis +60 °C		
Betriebsgeräusch	57 dB(A)	53 dB(A)	52 dB(A)	-		
Lebensdauer						
bei 40 °C:	70000 h	80000 h		-		
bei maximal zulässiger Temperatur:	35000 h	37500 h		-		

Lüfter 230 VAC (Sondermotoroption für 8LSC)

Die eingesetzten Lüfterbaugruppen sind baugrößenabhängig.

	8LSx4	8LSx5 / 8LSx6 / 8LSx7 / 8LSx8
Hersteller	ebm	-papst
Herstellerbezeichnung	3656 ZP	7450 ES
C-UR-US gelistet		Ja
Art des Lüfters	AC Lüfter mit Außer	nläufer-Spaltpolmotor
Rotorlagerung	Kuge	ellager
Schutzart	IF	20
Nennspannung	230	VAC
Leistungsaufnahme	12 W	47 W
Überlastschutz	impedanzgeschützt	Thermoschalter
Temperaturbereicht	-40 bis +75 °C	-25 bis +50 °C
Betriebsgeräusch	37 dB(A)	60 dB(A)
0	37 UB(A)	00 db(A)
Lebensdauer bei 40 °C:	52500 h	63000 h
bei maximal zulässiger Temperatur:	22500 h	50000 h

Sondermotoroptionen (gg) für 8LSC (Lüfter 230 VAC)

siehe "Sondermotoroptionen (gg) 8LSA / 8LSC" auf Seite 34

Ersatzteile (8LSC)

siehe "Ersatzteile - Fan Kit 8LSC" auf Seite 267

2.12.2 Formelzeichen

Begriff	Zeichen	Einheit	Beschreibung		
Nenndrehzahl	n _N	min ⁻¹	Nenndrehzahl des Motors		
Nennmoment	M _N	Nm	Das Nennmoment wird vom Motor mit $n = n_N$ bei Aufnahme des Nennstroms abgegeben. Bei Einhaltung der Umgebungsbedingungen kann diese beliebig lange abgegeben werden.		
Nennleistung	P _N	kW	Die Nennleistung wird vom Motor bei $n = n_N$ abgegeben. Bei Einhaltung der Umgebungsbedingungen kann diese beliebig lange abgegeben werden.		
Nennstrom	I _N	A	Der Nennstrom ist der Effektivwert des Phasenstroms (Strom in der Motorzuleitung) für die Entwicklung des Nennmoments bei Nenndrehzahl. Bei Einhaltung der Umgebungsbedingungen kann diese beliebig lang abgegeben werden.		
Stillstandsmoment	M _o	Nm	Das Stillstandsmoment wird vom Motor bei der Drehzahl n_0 und bei Aufnahme des Stillstandsstroms abgegeben. Bei der Einhaltung der Umgebungsbedingungen kann dies beliebig lang abgegeben werden. Die Drehzahl n_0 muß so groß sein, daß die Wicklungstemperatur in allen Wicklungen homogen und stationär ist (für B&R- Motoren ist n_0 = 50 min ⁻¹). Bei echtem Stillstand verringert sich das Dauermoment.		
Stillstandsstrom	I ₀	A	Der Stillstandsstrom ist der Effektivwert des Phasenstroms (Strom in der Motorzuleitung) für Entwicklung des Stillstandsmoments bei der Drehzahl n ₀ . Bei Einhaltung der Umgebungsber gungen kann dies beliebig lang abgegeben werden. Die Drehzahl n ₀ muß so groß sein, die Wicklungstemperatur in allen Wicklungen homogen und stationär ist (für B&R- Motoren n ₀ = 50 min ⁻¹).		
Spitzenmoment	M _{max}	Nm	Das Spitzenmoment wird vom Motor bei Aufnahme des Spitzenstroms kurzzeitig abgegebe		
Spitzenstrom	I _{max}	A	Der Spitzenstrom ist der Effektivwert des Phasenstroms (Strom in der Motorzuleitung) für die Entwicklung des Spitzenmoments. Dieser darf nur kurzzeitig aufgenommen werden. Der Spit zenstrom ist durch den magnetischen Kreis festgelegt. Eine kurzzeitige Überschreitung kann be reits zur irreversiblen Entmagnetisierung des Magnetmaterial führen.		
Maximaldrehzahl	n _{max}	min-1	Maximale zulässige Drehzahl des Motors. Sie ist mechanisch (Fliehkräfte, Lagerbeanspruchung bedingt.		
Mittlere Drehzahl	n _{mittel}	min-1	Mittlere Drehzahl über einen Zyklus.		
Drehmomentkonstante	K _T	Nm/A	Die Drehmomentkonstante gibt an, welches Drehmoment der Motor bei 1 Arms Phasenstr erzeugt. Dieser Wert gilt für eine Motortemperatur von 20 °C. Bei erhöhter Temperatur nimmt Drehmomentkonstante ab (typisch bis 10 %). Bei erhöhtem Strom nimmt die Drehmomentki stante ab (typisch ab dem zweifachen Nennstrom).		
Spannungskonstante	K _E	V/1000 min ⁻¹	Die Spannungskonstante gibt den Effektivwert (Phase-Phase) der vom Motor bei einer Drehzahl von 1000 min ⁻¹ induzierten Gegenspannung (EMK) an. Dieser Wert gilt für eine Motortemperatur von 20 °C. Bei erhöhter Temperatur nimmt die Spannungskonstante ab (typisch bis 5 %). Bei erhöhtem Strom nimmt die Spannungskonstante ab (typisch ab dem zweifachen Nennstrom).		
Statorwiderstand	R _{2ph}	Ohm	Ohmscher Widerstand, der zwischen zwei Anschlüssen Phase-Phase des Motors bei 20 °C Wick- lungstemperatur gemessen wird. Bei B&R Motoren ist die Wicklung in Sternschaltung ausgeführt.		
Statorinduktivität	L _{2ph}	mH	Wicklungsinduktivität, die zwischen zwei Anschlüssen des Motors gemessen wird. Die Statorinduktivität hängt von der Rotorstellung ab.		
Elektrische Zeitkonstante	t _{el}	ms	Entspricht 1/5 der Zeit, in der sich bei gleichbleibenden Betriebsbedingungen ein konstanter Statorstrom einstellt.		
Thermische Zeitkonstante	t _{therm}	min	Entspricht 1/5 der Zeit, in der sich bei gleichbleibenden Betriebsbedingungen eine konstante Motortemperatur einstellt.		
Trägheitsmoment ohne Bremse	J	kgcm²	Trägheitsmoment des Motors ohne Haltebremse.		
Masse ohne Bremse	m	kg	Masse des Motors ohne Haltebremse.		
Trägheitsmoment der Bremse	J_{Br}	kgcm²	Trägheitsmoment der eingebauten Haltebremse.		
Masse der Bremse	m _{Br}	kg	Masse der eingebauten Haltebremse.		
Haltemoment der Bremse	M _{Br}	Nm	Drehmoment, mit dem der Rotor bei eingefallener Bremse mindestens festgehalten wird.		
Anschlussleistung	P _{ein}	W	Anschlussleistung der eingebauten Haltebremse.		
Anschlussstrom	l _{ein}	A	Anschlussstrom der eingebauten Haltebremse.		
Anschlussspannung	U _{ein}	V	Betriebsspannung der eingebauten Haltebremse.		
Einfallverzögerungszeit	t _{on}	ms	Verzögerungszeit bis das Haltemoment der Bremse aufgebaut ist, nachdem die Betriebsspannung der Haltebremse abgeschaltet wurde.		
Lüftverzögerungszeit	t _{off}	ms	Verzögerungszeit bis das Haltemoment der Haltebremse um 90 % sinkt (die Bremse gelöst wird), nachdem die Betriebsspannung der Haltebremse eingeschaltet wurde.		

2.12.3 Verlustleistung

Die Verlustleistung der Servomotoren wird über den Motorflansch und über die Motoroberfläche abgeführt. Um eine optimale Wärmeabfuhr zu gewährleisten ist folgendes zu beachten:

- · thermisch nicht isolierter Anbau
- · freie Konvektion

Die Motordaten im Nennpunkt gelten für einen thermisch nicht isolierten Anbau. Die Abmessungen der für die Messung verwendeten Flanschplatten sind der nachfolgenden Tabelle zu entnehmen.

Grundsätzlich verbessert sich die Wärmeabfuhr mit größeren Anbauflächen.

Baugröße	Abmessungen [mm]	Material
8LSx2, 8LSAA, 8LSx3	250x250x6	Aluminium
8LSx4, 8LSx5, 8LSx5A/B/C	350x350x12	Aluminium
8LSx6, 8LSx7	495x495x15	Aluminium
8LSx8	Ø450x20	Stahl
8LSO9, 8LSP9	350x395x19	Stahl

2.13 Standardmotoren

Die gebräuchlichsten Motoren der Baureihe 8LSA stehen als Standardmotoren (Vorzugsmotoren) zur Verfügung. Im Bedarfsfall sind diese Motoren kurzfristig per Expressversand verfügbar.

Übersicht Standardmotoren

Kühlart	Baugröße	Baulänge	Nenndrehzahl nN [min-1]	Motorversion	Verfügbarkeit / Technische Daten
	2	5	6000		siehe "8LSA253" auf Seite 43
	А	2	4500]	siehe "8LSAAA23 / 8LSAA43" auf Seite 44
	_ ^	4	4500		SIETIE OLSAAAZ3 / OLSAA43 dui Seite 44
	2	5	3000 / 6000	-3	siehe "8LSA353" auf Seite 45
	3	7			siehe "8LSA373" auf Seite 46
8LSA	4	4	3000 / 6000		siehe "8LSA443" auf Seite 47
	4	6			siehe "8LSA463" auf Seite 48
	5	5	3000]	siehe "8LSA553 / 8LSA573" auf Seite 49
	3	7			Sierie OLOAGO07 OLOAG70 auf Geite 49
	7	3	3000		siehe "8LSA733 / 8LSA753" auf Seite 50
	/	5			Sierie ocoaro37 ocoaro3 aui seite so

42

2.13.1 Standardmotoren 8LSA25...-3

	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA25.R0060D000-3	6000					glatte Welle
8LSA25.R0060D200-3		R0		Ja	govinkalt (drabbar)	giatte welle
8LSA25.R0060D100-3		RU			gewinkelt (drehbar) Einkabellösung (hybrid) gewinkelt, drehbar	Welle mit
8LSA25.R0060D300-3				Ja		Passfeder
8LSA25.D8060S000-3			2.2 singleture			glatte Welle
8LSA25.D8060S200-3			2.2 singleturn	Ja		
8LSA25.D9060S000-3			2.2 multiturn			
8LSA25.D9060S200-3			2.2 multiturn	Ja		
8LSA25.D8060S100-3			0.0 - in alatum			
8LSA25.D8060S300-3			2.2 singleturn	Ja		Welle mit
8LSA25.D9060S100-3			2.2 multiturn			Passfeder
8LSA25.D9060S300-3			2.2 multiturn	Ja		

Technische Daten 8LSA25...-3

Bestellnummer	8LSA25.ee060ffgg-3	
Motor		
Nenndrehzahl n _N [min-1]	6000	
Polpaarzahl	4	
Nennmoment M _n [Nm]	0,52	
Nennleistung P _N [W]	327	
Nennstrom I _N [A]	0,71	
Stillstandsmoment M ₀ [Nm]	0,6	
Stillstandsstrom I ₀ [A]	0,82	
Maximalmoment M _{max} [Nm]	2,4	
Maximalstrom I _{max} [A]	3,7	
Maximaldrehzahl n _{max} [min-1]	9000	
Drehmomentkonstante K _⊤ [Nm/A]	0,73	
Spannungskonstante K _E [V/1000 min ⁻¹]	43,98	
Statorwiderstand $R_{2ph}[\Omega]$	34,63	
Statorinduktivität L _{2ph} [mH]	49,6	
Elektrische Zeitkonstante t _{el} [ms]	1,4	
Thermische Zeitkonstante t _{therm} [min]	20	
Trägheitsmoment J [kgcm²]	0,16	
Masse ohne Bremse m [kg]	1,3	
Haltebremse		
Haltemoment der Bremse M _{Br} [Nm]	2,2	
Masse der Bremse [kg]	0,45	
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0,12	
Empfehlungen		
ACOPOS 8Vxxxx.xx	1010	
ACOPOSmulti 8BVIxxxx	0014	
ACOPOS P3 8EIxxxx	2X2X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75	
Steckergröße	1,0	

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA2...-3" auf Seite 51

2.13.2 Standardmotoren 8LSAA2...-3 / 8LSAA4...-3

8LSAA23	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSAA2.D8045S000-3			2.2 singleturn			
8LSAA2.D8045S200-3	4500		2.2 Singletum	Ja	Einkabellösung (hybrid) gewinkelt, drehbar	glatte Welle
8LSAA2.D9045S000-3			2.2 multiturn			
8LSAA2.D9045S200-3			2.2 multitum	Ja		
8LSAA2.D8045S100-3	4500		2.2 singleturn			
8LSAA2.D8045S300-3			2.2 Singletuin	Ja		Welle mit
8LSAA2.D9045S100-3			2.2 multiturn			Passfeder
8LSAA2.D9045S300-3			Z.Z mululum	Ja	1	

8LSAA43	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSAA4.D8045S000-3			2.2 singleturn			
8LSAA4.D8045S200-3			2.2 Singletum	Ja		glatte Welle
8LSAA4.D9045S000-3			2.2 multiturn		Einkabellösung (hybrid)	giatte vveile
8LSAA4.D9045S200-3	4500		2.2 multitum	Ja		
8LSAA4.D8045S100-3	4500		2.2 singleturn		gewinkelt, drehbar	
8LSAA4.D8045S300-3			2.2 Singletum	Ja		Welle mit
8LSAA4.D9045S100-3			2.2 multiturn			Passfeder
8LSAA4.D9045S300-3			2.2 mullilum	Ja		

Technische Daten 8LSAA2...-3 / 8LSAA4...-3

Bestellnummer	8LSAA2.ee045ffgg-3	8LSAA4.ee045ffgg-3		
Motor				
Nenndrehzahl n _N [min ⁻¹]	45	500		
Polpaarzahl		5		
Nennmoment M _n [Nm]	1,27	2,8		
Nennleistung P _N [W]	598	1319		
Nennstrom I _N [A]	1,31	2,89		
Stillstandsmoment M ₀ [Nm]	1,4	3,2		
Stillstandsstrom I ₀ [A]	1,42	3,3		
Maximalmoment M _{max} [Nm]	4,5	11,3		
Maximalstrom I _{max} [A]	6	15		
Maximaldrehzahl n _{max} [min ⁻¹]	70	000		
Drehmomentkonstante K _⊤ [Nm/A]	0	,97		
Spannungskonstante K _E [V/1000 min⁻¹]	58	3,64		
Statorwiderstand $R_{2ph}[\Omega]$	13,9	5,3		
Statorinduktivität L _{2ph} [mH]	27	12,4		
Elektrische Zeitkonstante t _{el} [ms]	1,94	2,34		
Thermische Zeitkonstante t _{therm} [min]	31	38		
Trägheitsmoment J [kgcm²]	0,38	1,1		
Masse ohne Bremse m [kg]	2,2	3,8		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]	3	3,2		
Masse der Bremse [kg]	C	0,6		
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0,	,38		
Empfehlungen				
ACOPOS 8Vxxxx.xx	1016	1045		
ACOPOSmulti 8BVIxxxx	0014	0028		
ACOPOS P3 8EIxxxx	2X2X	4X5X		
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75			
Steckergröße	1	1,0		

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSAA...-3" auf Seite 61

2.13.3 Standardmotoren 8LSA35...-3

	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA35.EA030D000-3	0000					
8LSA35.EA030D200-3	3000		0.4	Ja		
8LSA35.EA060D000-3	0000		2.1 singleturn			
8LSA35.EA060D200-3	6000			Ja		
8LSA35.EB030D000-3	3000					
8LSA35.EB030D200-3	3000		2.1 multiturn	Ja		alatta Malla
8LSA35.EB060D000-3	0000		2.1 multiturn		1	glatte Welle
8LSA35.EB060D200-3	6000			Ja		
8LSA35.R2030D000-3	2000				gewinkelt (drehbar)	
8LSA35.R2030D200-3	3000			Ja		
8LSA35.R2060D000-3	6000					
8LSA35.R2060D200-3	- 6000	R2		Ja		
8LSA35.R2030D100-3	3000	R2				
8LSA35.R2030D300-3	3000		Ja		Welle mit	
8LSA35.R2060D100-3	6000					Passfeder
8LSA35.R2060D300-3	- 6000			Ja		
8LSA35.DA030S000-3	3000					
8LSA35.DA030S200-3	3000		2 2 singleture	Ja		
8LSA35.DA060S000-3	6000		2.2 singleturn			
8LSA35.DA060S200-3	6000			Ja		-1-44- \\\-11-
8LSA35.DB030S000-3	2000					glatte Welle
8LSA35.DB030S200-3	3000		2.2 multiturn	Ja		
8LSA35.DB060S000-3	6000		2.2 mullilum			
8LSA35.DB060S200-3	- 6000		1	Ja	Einkabellösung (hy-	
8LSA35.DA030S100-3	3000				brid) gewinkelt, drehbar	
8LSA35.DA030S300-3	3000		0.0 = = = = +	Ja		
8LSA35.DA060S100-3	6000		2.2 singleturn		1	
8LSA35.DA060S300-3	0000			Ja	1	Welle mit
8LSA35.DB030S100-3	3000				1	Passfeder
8LSA35.DB030S300-3	3000		2.2 multiturn	Ja	1	
8LSA35.DB060S100-3	6000		Z.Z MUNITUM		1	
8LSA35.DB060S300-3	0000			Ja		

Technische Daten 8LSA35...-3

Bestellnummer	8LSA35.ee030ffgg-3	8LSA35.ee060ffgg-3		
Motor				
Nenndrehzahl n _N [min-1]	3000	6000		
Polpaarzahl		4		
Nennmoment M _n [Nm]	2,1	1,6		
Nennleistung P _N [W]	660	1005		
Nennstrom I _N [A]	1,4	2,2		
Stillstandsmoment M ₀ [Nm]	2	2,3		
Stillstandsstrom I ₀ [A]	1,6	3,2		
Maximalmoment M _{max} [Nm]	g	9,2		
Maximalstrom I _{max} [A]	6,8	13,6		
Maximaldrehzahl n _{max} [min ⁻¹]	90	000		
Drehmomentkonstante K _T [Nm/A]	1,45	0,73		
Spannungskonstante K _E [V/1000 min⁻¹]	87,96	43,98		
Statorwiderstand $R_{2ph}[\Omega]$	12,22	3,02		
Statorinduktivität L _{2ph} [mH]	63	15,6		
Elektrische Zeitkonstante t _{ei} [ms]	5,2	5,1		
Thermische Zeitkonstante t _{therm} [min]	3	34		
Trägheitsmoment J [kgcm²]	O),9		
Masse ohne Bremse m [kg]	4	1,4		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		4		
Masse der Bremse [kg]	1,	,09		
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0,	,38		
Empfehlungen				
ACOPOS 8Vxxxx.xx	1022	1045		
ACOPOSmulti 8BVIxxxx	0014 0028			
ACOPOS P3 8EIxxxx	2X2X 4X5X			
Kabelquerschnitt für B&R Motorkabel [mm²]	1 1			
Steckergröße	1	1,0		

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA3...-3" auf Seite 69

2.13.4 Standardmotoren 8LSA37...-3

	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA37.R2030D000-3	3000					
8LSA37.R2030D200-3	3000			Ja		alette Melle
8LSA37.R2060D000-3	6000	1				glatte Welle
8LSA37.R2060D200-3	6000	R2		Ja	govinkalt (drahbar)	
8LSA37.R2030D100-3	3000	R2			gewinkelt (drehbar)	
8LSA37.R2030D300-3	3000			Ja		Welle mit
8LSA37.R2060D100-3	6000	1				Passfeder
8LSA37.R2060D300-3	6000			Ja		
8LSA37.DA030S000-3	3000					
8LSA37.DA030S200-3	3000		2 2 aingleture	Ja		glatte Welle
8LSA37.DA060S000-3	6000		2.2 singleturn			
8LSA37.DA060S200-3				Ja		
8LSA37.DB030S000-3	3000					
8LSA37.DB030S200-3	3000		2.2 multiturn	Ja		
8LSA37.DB060S000-3	6000		2.2 mulululum			
8LSA37.DB060S200-3	0000			Ja	Einkabellösung (hybrid)	
8LSA37.DA030S100-3	3000				gewinkelt, drehbar	
8LSA37.DA030S300-3	3000		2.2 singleturn	Ja		
8LSA37.DA060S100-3	6000		2.2 Singletuin			
8LSA37.DA060S300-3	6000			Ja		Welle mit
8LSA37.DB030S100-3	3000					Passfeder
8LSA37.DB030S300-3	3000		2.2 multiturn	Ja		
8LSA37.DB060S100-3	6000		2.2 mullilum		1	
8LSA37.DB060S300-3	0000			Ja		

Technische Daten 8LSA37...-3

Bestellnummer	8LSA37.ee030ffgg-3	8LSA37.ee060ffgg-3			
Motor					
Nenndrehzahl n _N [min ⁻¹]	3000	6000			
Polpaarzahl	4				
Nennmoment M _n [Nm]	3,4	2			
Nennleistung P _N [W]	1068	1257			
Nennstrom I _N [A]	2,3	2,7			
Stillstandsmoment M ₀ [Nm]	3	3,6			
Stillstandsstrom I ₀ [A]	2,5	4,9			
Maximalmoment M _{max} [Nm]	1.	4,4			
Maximalstrom I _{max} [A]	10,6	21,2			
Maximaldrehzahl n _{max} [min ⁻¹]	90	000			
Drehmomentkonstante K _⊤ [Nm/A]	1,45	0,73			
Spannungskonstante K _E [V/1000 min ⁻¹]	87,96	43,98			
Statorwiderstand $R_{2ph}[\Omega]$	6,98	1,76			
Statorinduktivität L _{2ph} [mH]	37,5	9,6			
Elektrische Zeitkonstante t _{el} [ms]	5,4	5,5			
Thermische Zeitkonstante t _{therm} [min]	(38			
Trägheitsmoment J [kgcm²]	1	,38			
Masse ohne Bremse m [kg]	5	5,6			
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		4			
Masse der Bremse [kg]	0	,59			
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0	,38			
Empfehlungen					
ACOPOS 8Vxxxx.xx	1045	1090			
ACOPOSmulti 8BVIxxxx	0028	0055			
ACOPOS P3 8EIxxxx	4X5X	8X8X			
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße	1	1,0			

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA3...-3" auf Seite 69

2.13.5 Standardmotoren 8LSA44...-3

	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA44.EA030D000-3	3000					
8LSA44.EA030D200-3	3000		Ja	Ja]	
8LSA44.EA060D000-3	6000		2.1 singleturn]	
8LSA44.EA060D200-3	6000			Ja	1	
8LSA44.EB030D000-3	3000				1	
8LSA44.EB030D200-3	3000		2.1 multiturn	Ja	1	glatte Welle
8LSA44.EB060D000-3	6000		2.1 1110101010111		1	giatte vveile
8LSA44.EB060D200-3	6000			Ja	gewinkelt (drehbar)	
8LSA44.R2030D000-3	3000				gewinkeit (drenbar)	
8LSA44.R2030D200-3	3000			Ja	1	
8LSA44.R2060D000-3	6000]	
8LSA44.R2060D200-3	6000	R2		Ja	1	
8LSA44.R2030D100-3	3000	R2			1	
8LSA44.R2030D300-3	3000			Ja		Welle mit
8LSA44.R2060D100-3	6000				1	Passfeder
8LSA44.R2060D300-3	6000			Ja		
8LSA44.DA030S000-3	3000					
8LSA44.DA030S200-3	3000		2.2 singleturn	Ja		
8LSA44.DA060S000-3	6000		2.2 Singletuin			
8LSA44.DA060S200-3	6000			Ja		glatte Welle
8LSA44.DB030S000-3	3000					giatte vveile
8LSA44.DB030S200-3	3000		2.2 multiturn	Ja		
8LSA44.DB060S000-3	6000		Z.Z maintam			
8LSA44.DB060S200-3	0000			Ja	Einkabellösung (hybrid)	
8LSA44.DA030S100-3	3000				gewinkelt, drehbar	
8LSA44.DA030S300-3	3000		2.2 singleturn	Ja		
8LSA44.DA060S100-3	6000		Z.Z Sirigiciulli]	
8LSA44.DA060S300-3	0000			Ja		Welle mit
8LSA44.DB030S100-3	3000]	Passfeder
8LSA44.DB030S300-3	3000		2.2 multiturn	Ja		
8LSA44.DB060S100-3	6000		2.2 IIIuiiiiuIII			
8LSA44.DB060S300-3	0000			Ja		

Technische Daten 8LSA44...-3

Bestellnummer	8LSA44.ee030ffgg-3	8LSA44.ee060ffgg-3		
Motor				
Nenndrehzahl n _N [min ⁻¹]	3000	6000		
Polpaarzahl		5		
Nennmoment M _n [Nm]	4,62	3		
Nennleistung P _N [W]	1451	1885		
Nennstrom I _N [A]	2,8	3,7		
Stillstandsmoment M ₀ [Nm]		6		
Stillstandsstrom I ₀ [A]	3,7	7,4		
Maximalmoment M _{max} [Nm]	2:	2,8		
Maximalstrom I _{max} [A]	21,9	43,8		
Maximaldrehzahl n _{max} [min ⁻¹]	12	2000		
Drehmomentkonstante K _⊤ [Nm/A]	1,63	0,81		
Spannungskonstante K _E [V/1000 min ⁻¹]	98,44	49,22		
Statorwiderstand $R_{2ph}[\Omega]$	3,6	0,862		
Statorinduktivität L _{2ph} [mH]	24	6,2		
Elektrische Zeitkonstante t _{el} [ms]	6,7	7,2		
Thermische Zeitkonstante t _{therm} [min]	3	30		
Trägheitsmoment J [kgcm²]	2	,73		
Masse ohne Bremse m [kg]	5	5,4		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		8		
Masse der Bremse [kg]		1		
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0,	,69		
Empfehlungen				
ACOPOS 8Vxxxx.xx	1045	1090		
ACOPOSmulti 8BVIxxxx	0055	0110		
ACOPOS P3 8EIxxxx	4X5X 8X8X			
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75			
Steckergröße	1	1,0		

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA4...-3" auf Seite 82

2.13.6 Standardmotoren 8LSA46...-3

	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA46.R2030D000-3	3000					
8LSA46.R2030D200-3	3000			Ja		-1-44- \\\/-11-
8LSA46.R2060D000-3	6000	1				glatte Welle
8LSA46.R2060D200-3	0000	R2		Ja	govinkelt (drobber)	
8LSA46.R2030D100-3	3000	K2			gewinkelt (drehbar)	
8LSA46.R2030D300-3	3000			Ja		Welle mit
8LSA46.R2060D100-3	6000	1				Passfeder
8LSA46.R2060D300-3	6000			Ja		
8LSA46.DA030S000-3	3000					
8LSA46.DA030S200-3	3000					
8LSA46.DA060S000-3	6000		2.2 singleturn		Einkabellösung (hybrid)	glatte Welle
8LSA46.DA060S200-3	0000			Ja		
8LSA46.DB030S000-3	3000					
8LSA46.DB030S200-3	3000		2.2 multiturn	Ja		
8LSA46.DB060S000-3	6000		2.2 multitum			
8LSA46.DB060S200-3	0000			Ja		
8LSA46.DA030S100-3	3000				gewinkelt, drehbar	
8LSA46.DA030S300-3	3000		2.2 singleturn	Ja		
8LSA46.DA060S100-3	6000		2.2 Singletum			
8LSA46.DA060S300-3	0000			Ja]	Welle mit
8LSA46.DB030S100-3	3000					Passfeder
8LSA46.DB030S300-3	3000		2.2 multiturn	Ja		
8LSA46.DB060S100-3	6000		Z.Z IIIUIUIUIII			
8LSA46.DB060S300-3	0000			Ja		

Technische Daten 8LSA46...-3

Bestellnummer	8LSA46.ee030ffgg-3	8LSA46.ee060ffgg-3		
Motor				
Nenndrehzahl n _N [min-1]	3000	6000		
Polpaarzahl		5		
Nennmoment M _n [Nm]	7,7	5		
Nennleistung P _N [W]	2419	3142		
Nennstrom I _N [A]	4,7	6,1		
Stillstandsmoment M ₀ [Nm]	1	10		
Stillstandsstrom I ₀ [A]	6,1	12,3		
Maximalmoment M _{max} [Nm]	3	38		
Maximalstrom I _{max} [A]	36,5	72,9		
Maximaldrehzahl n _{max} [min ⁻¹]	12	000		
Drehmomentkonstante K _⊤ [Nm/A]	1,63	0,81		
Spannungskonstante K _E [V/1000 min ⁻¹]	98,44	49,22		
Statorwiderstand R_{2ph} [Ω]	1,92	0,48		
Statorinduktivität L _{2ph} [mH]	17,44	4,36		
Elektrische Zeitkonstante t _{el} [ms]	9),1		
Thermische Zeitkonstante t _{therm} [min]	4	40		
Trägheitsmoment J [kgcm²]	4,	,39		
Masse ohne Bremse m [kg]	7	7,3		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		8		
Masse der Bremse [kg]		1		
Trägheitsmoment der Bremse J _{Br} [kgcm²]	0,	,69		
Empfehlungen				
ACOPOS 8Vxxxx.xx	1090	1180		
ACOPOSmulti 8BVIxxxx	0055	0110		
ACOPOS P3 8EIxxxx	8X8X	017X		
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75 1,5			
Steckergröße	1	,0		

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA4...-3" auf Seite 82

2.13.7 Standardmotoren 8LSA55...-3 / 8LSA57...-3

8LSA553	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA55.EA030D000-3			2.1 singleture			
8LSA55.EA030D200-3			2.1 singleturn	Ja		
8LSA55.EB030D000-3			2.1 multiturn			alette Welle
8LSA55.EB030D200-3			2.1 mullitum	Ja		glatte Welle
8LSA55.R2030D000-3		R2			gewinkelt (drehbar)	
8LSA55.R2030D200-3				Ja		
8LSA55.R2030D100-3		R2				Welle mit Passfeder
8LSA55.R2030D300-3	3000			Ja		
8LSA55.DA030S000-3	3000		2.2 singleture			
8LSA55.DA030S200-3			2.2 singleturn	Ja		glotto Wallo
8LSA55.DB030S000-3			2.2 multiturn			glatte Welle
8LSA55.DB030S200-3			2.2 mullitum	Ja	Einkabellösung (hybrid)	
8LSA55.DA030S100-3			2.2 singleture		gewinkelt, drehbar	
8LSA55.DA030S300-3			2.2 singleturn	Ja	1	Welle mit
8LSA55.DB030S100-3					Passfeder	
8LSA55.DB030S300-3			2.2 multiturn	Ja		

8LSA573	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende
8LSA57.R2030D000-3						glatte Welle
8LSA57.R2030D200-3		R2		Ja	gewinkelt (drehbar)	giatte vveile
8LSA57.R2030D100-3		R2			gewinkeit (drenbar)	Welle mit
8LSA57.R2030D300-3	7			Ja		Passfeder
8LSA57.DA030S000-3			0.0 = = = = +			-l-#- \\/-II-
8LSA57.DA030S200-3	2000		2.2 singleturn	Ja		
8LSA57.DB030S000-3	3000		0.0			glatte Welle
8LSA57.DB030S200-3			2.2 multiturn	Ja	Einkabellösung (hybrid)	
8LSA57.DA030S100-3			2.2 singleture		gewinkelt, drehbar	
8LSA57.DA030S300-3			2.2 singleturn	Ja	1	Welle mit
8LSA57.DB030S100-3			O O moultitum			Passfeder
8LSA57.DB030S300-3			2.2 multiturn	Ja	1	

Technische Daten 8LSA55...-3 / 8LSA57...3

Bestellnummer	8LSA55.ee030ffgg-3	8LSA57.ee030ffgg-3				
Motor						
Nenndrehzahl n _N [min ⁻¹]	3000					
Polpaarzahl		4				
Nennmoment M _n [Nm]	11,6	17,5				
Nennleistung P _N [W]	3644	5498				
Nennstrom I _N [A]	7,1	10,7				
Stillstandsmoment M ₀ [Nm]	12,5	20				
Stillstandsstrom I ₀ [A]	7,7	12,3				
Maximalmoment M _{max} [Nm]	41,4	69				
Maximalstrom I _{max} [A]	33	52,6				
Maximaldrehzahl n _{max} [min-1]	90	000				
Drehmomentkonstante K _T [Nm/A]	1,	,63				
Spannungskonstante K _E [V/1000 min⁻¹]	98	3,44				
Statorwiderstand R _{2ph} [Ω]	1,127	0,62				
Statorinduktivität L _{2ph} [mH]	12,5	7,21				
Elektrische Zeitkonstante t _{ei} [ms]	11,1	11,6				
Thermische Zeitkonstante t _{therm} [min]	40	46				
Trägheitsmoment J [kgcm²]	8,19	13,13				
Masse ohne Bremse m [kg]	10,4	14,5				
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]	•	15				
Masse der Bremse [kg]	1,5	1,3				
Trägheitsmoment der Bremse J _{Br} [kgcm²]	1,	,66				
Empfehlungen						
ACOPOS 8Vxxxx.xx	1090	1180				
ACOPOSmulti 8BVIxxxx	0.	110				
ACOPOS P3 8EIxxxx	8X8X	017X				
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75	1,5				
Steckergröße	1	1,0				

Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

siehe "Technische Daten 8LSA5...-3" auf Seite 96

8LS...-3 Anwenderhandbuch V2.51

2.13.8 Standardmotoren 8LSA73...-3 / 8LSA75...-3

8LSA733	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende				
8LSA73.R2030D000-3						glatte Welle				
8LSA73.R2030D200-3		R2		Ja	govinkalt (drahbar)	giatte vveile				
8LSA73.R2030D100-3		R2			gewinkelt (drehbar)	Welle mit				
8LSA73.R2030D300-3				Ja		Passfeder				
8LSA73.DA030S000-3			2.2 singleturn							
8LSA73.DA030S200-3	3000		2.2 singletum 2.2 multitum	Ja		glatte Welle				
8LSA73.DB030S000-3	3000			2.2 multiturn			gialle vvelle			
8LSA73.DB030S200-3					Z.Z multitum	2.2 mullitum	2.2 mulululum	2.2 multitum	Ja	Ja
8LSA73.DA030S100-3			2.2 singleture		gewinkelt, drehbar					
8LSA73.DA030S300-3			2.2 singleturn	Ja		Welle mit				
8LSA73.DB030S100-3			2.2 multiturn			Passfeder				
8LSA73.DB030S300-3			Ja							

8LSA753	Nenndrehzahl nN [min-1]	Resolver	EnDat (induktiv)	Haltebremse	Anschlussrichtung	Wellenende		
8LSA75.R2030D000-3						glatte Welle		
8LSA75.R2030D200-3		R2		Ja	govinkalt (drahbar)	giatte vveile		
8LSA75.R2030D100-3		R2			gewinkelt (drehbar)	Welle mit		
8LSA75.R2030D300-3						Ja		Passfeder
8LSA75.DA030S000-3			2.2 singleturn					
8LSA75.DA030S200-3	3000			Ja		glatte Welle		
8LSA75.DB030S000-3	-					giatte vveile		
8LSA75.DB030S200-3			2.2 multiturn	Ja	Einkabellösung (hybrid)			
8LSA75.DA030S100-3			2.2 singleture		gewinkelt, drehbar			
8LSA75.DA030S300-3			2.2 singleturn	Ja	1	Welle mit		
8LSA75.DB030S100-3			2.2 multiturn			Passfeder		
8LSA75.DB030S300-3			Z.Z multitum	Ja				

Technische Daten 8LSA73...-3 / 8LSA75...-3

Bestellnummer	8LSA73.ee030ffgg-3	8LSA75.ee030ffgg-3				
Motor						
Nenndrehzahl n _N [min ⁻¹]	3000					
Polpaarzahl		5				
Nennmoment M _n [Nm]	20,5	30				
Nennleistung P _N [W]	6440	9425				
Nennstrom I _N [A]	12,58	18,4				
Stillstandsmoment M ₀ [Nm]	26	43				
Stillstandsstrom I ₀ [A]	15,95	26,38				
Maximalmoment M _{max} [Nm]	107	187				
Maximalstrom I _{max} [A]	96,54	169				
Maximaldrehzahl n _{max} [min-1]	6000	4500				
Drehmomentkonstante K _⊤ [Nm/A]	1,	63				
Spannungskonstante K _E [V/1000 min⁻¹]	98	,44				
Statorwiderstand $R_{2ph}[\Omega]$	0,395	0,21				
Statorinduktivität L _{2ph} [mH]	6,5	3,9				
Elektrische Zeitkonstante t _{ei} [ms]	15,48	18,57				
Thermische Zeitkonstante t _{therm} [min]	37	46				
Trägheitsmoment J [kgcm²]	46	74				
Masse ohne Bremse m [kg]	20	28				
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]	4	17				
Masse der Bremse [kg]		0				
Trägheitsmoment der Bremse J _{Br} [kgcm²]	3	32				
Empfehlungen						
ACOPOS 8Vxxxx.xx	1180	1320				
ACOPOSmulti 8BVIxxxx	0220	0330				
ACOPOS P3 8EIxxxx	024X	034X				
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5	4				
Steckergröße	1,0					

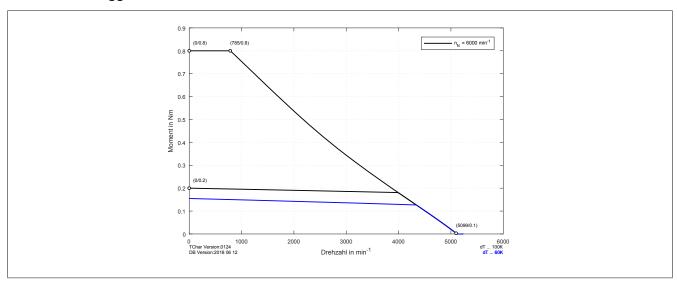
Weitere Technische Daten

Drehzahl-Drehmomentkennlinien, Zulässige Wellenbelastung und Abmessungen

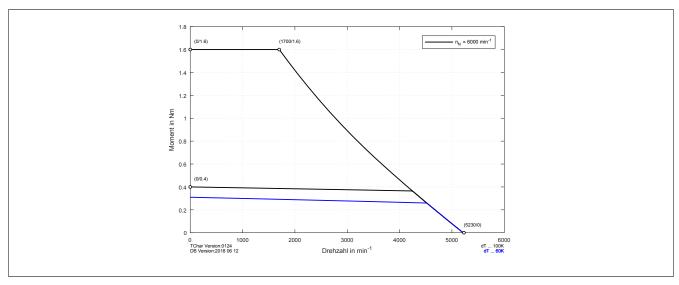
siehe "Technische Daten 8LSA7...-3" auf Seite 135

2.14 Technische Daten 8LSA

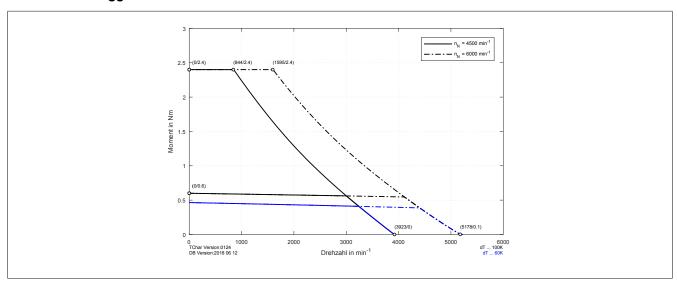
2.14.1 Technische Daten 8LSA2...-3


Bestellnummer	8LSA23. ee060ffgg-3	8LSA24. ee060ffgg-3	8LSA25. ee045ffgg-3	8LSA25. ee060ffgg-3	8LSA26. ee045ffgg-3	8LSA26. ee060ffgg-3		
Motor						,		
Nenndrehzahl n _N [min-1]	6000		4500	6000	4500	6000		
Polpaarzahl				4		,		
Nennmoment M _n [Nm]	0,17	0,35	0,54	0,52	0,72	0,69		
Nennleistung P _N [W]	107	220	254	327	339	434		
Nennstrom I _N [A]	0,23	0,48	0,56	0,71	0,8	0,95		
Stillstandsmoment M ₀ [Nm]	0,2	0,4	0	,6	0	,8		
Stillstandsstrom I ₀ [A]	0,27	0,55	0,62	0,82	0,89	1,1		
Maximalmoment M _{max} [Nm]	0,8	1,6	2	,4	3	,2		
Maximalstrom I _{max} [A]	1,25	2,5	2,77	3,7	4,05	5		
Maximaldrehzahl n _{max} [min ⁻¹]		ļ.	90	000	ı	,		
Drehmomentkonstante K _⊤ [Nm/A]	0,	73	0,97	0,73	0,9	0,73		
Spannungskonstante K _E [V/1000 min ⁻¹]	43	,98	58,64	43,98	54,45	43,98		
Statorwiderstand R _{2ph} [Ω]	159	52,3	63,4	34,63	33,75	22,8		
Statorinduktivität L _{2ph} [mH]	165	67,5	87,8	49,6	52,9	36,6		
Elektrische Zeitkonstante tel [ms]	1	1,3	1	,4	1	,6		
Thermische Zeitkonstante t _{therm} [min]	13	16	2	20	23			
Trägheitsmoment J [kgcm²]	0,07	0,12	0,	16	0,2			
Masse ohne Bremse m [kg]	0,9	1,1	1	,3	1	,5		
Haltebremse								
Haltemoment der Bremse M _{Br} [Nm]			2	,2				
Masse der Bremse [kg]			0,	45				
Trägheitsmoment der Bremse J _{Br} [kgcm²]			0,	12				
Empfehlungen								
ACOPOS 8Vxxxx.xx			1010			1016		
ACOPOSmulti 8BVIxxxx		0014						
ACOPOS P3 8EIxxxx		2X2X						
Kabelquerschnitt für B&R Motorkabel [mm²]			0,	75				
Steckergröße			1	,0				

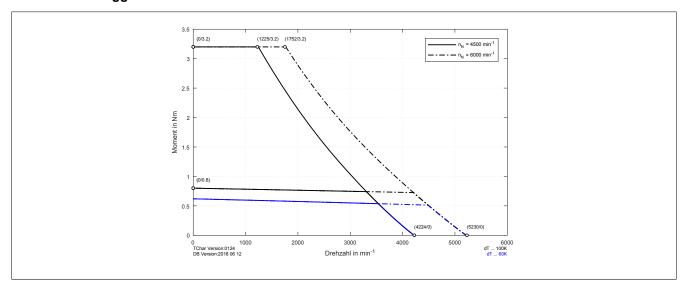
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.


8LS...-3 Anwenderhandbuch V2.51

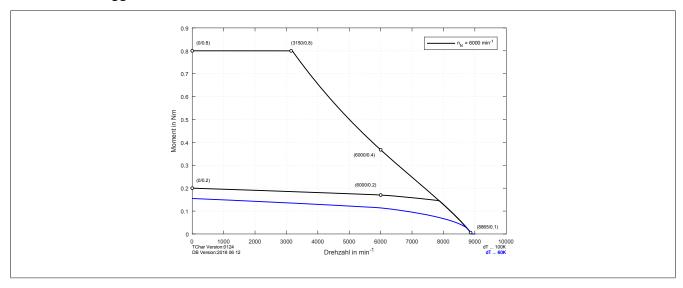
2.14.1.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSA23.eennnffgg-3

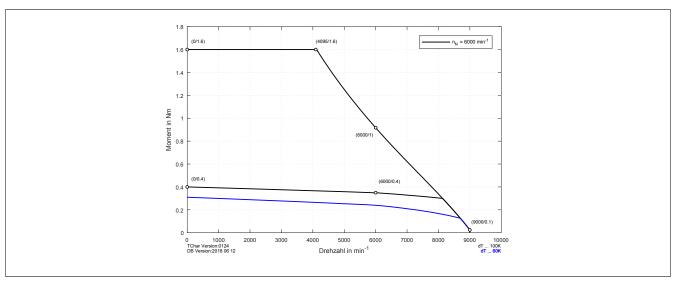
8LSA24.eennnffgg-3



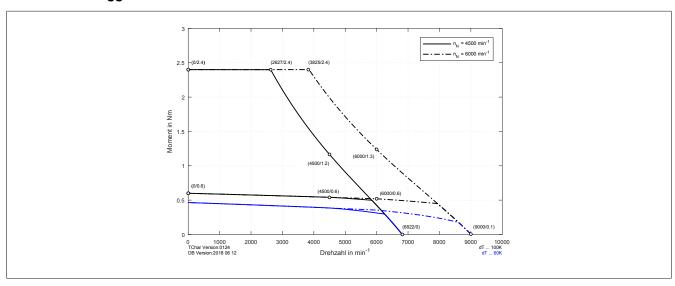
8LSA25.eennnffgg-3

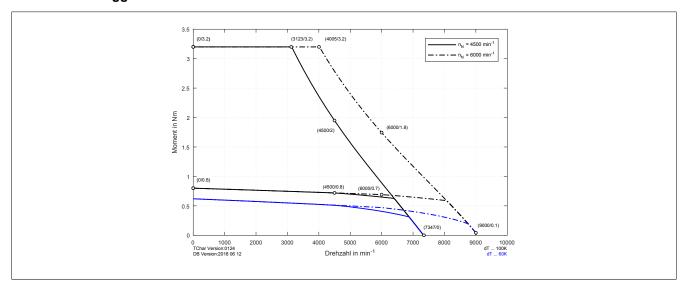

52

8LSA26.eennnffgg-3

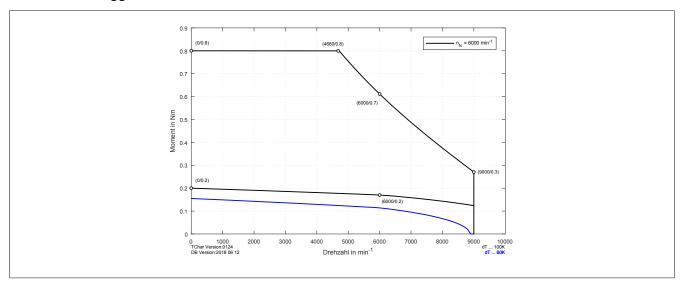


2.14.1.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

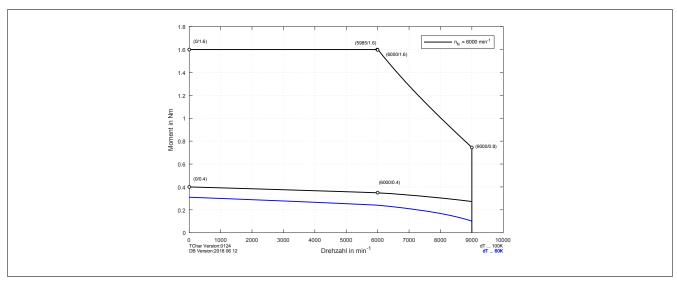

8LSA23.eennnffgg-3


8LSA24.eennnffgg-3

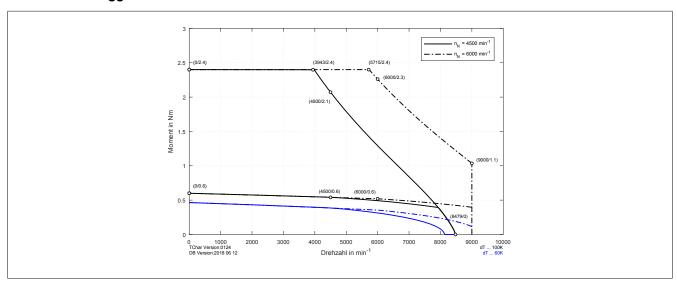
8LSA25.eennnffgg-3

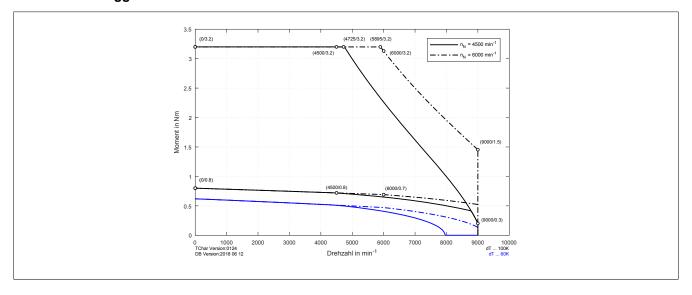


8LSA26.eennnffgg-3

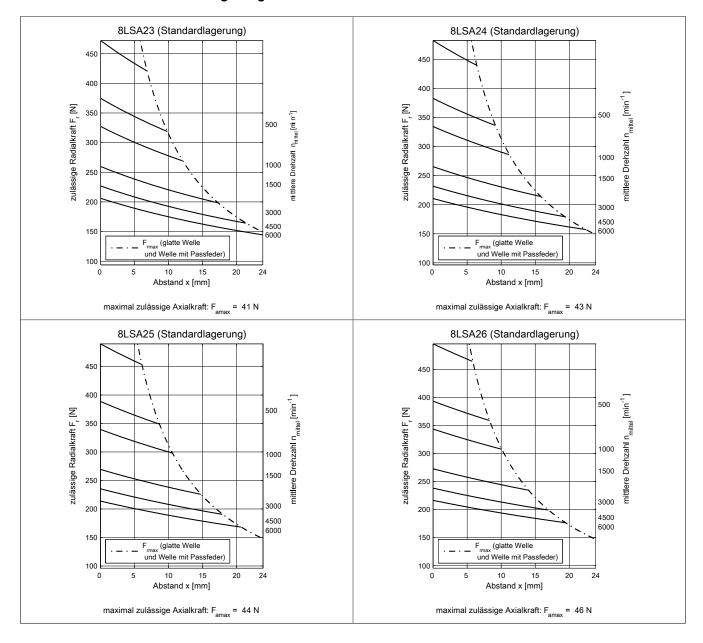


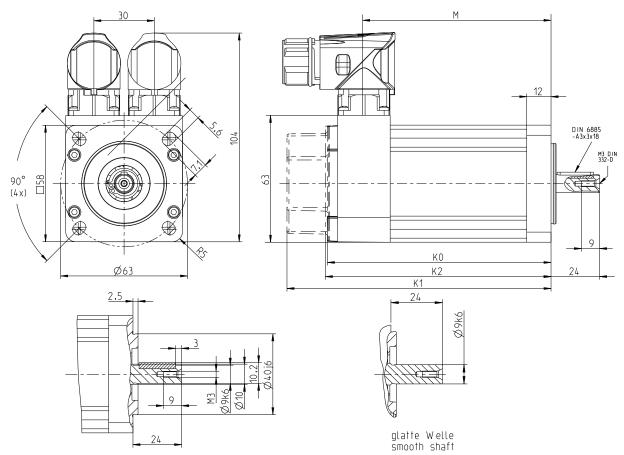
2.14.1.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA23.eennnffgg-3


8LSA24.eennnffgg-3

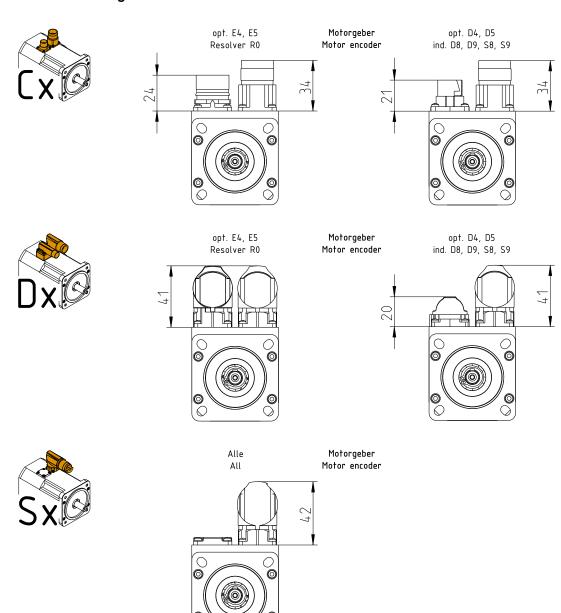
8LSA25.eennnffgg-3


8LSA26.eennnffgg-3


2.14.1.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

2.14.1.4.1 8LSA2...-3 Standardlagerung


2.14.1.5 Abmessungen 8LSA2...-3

						on K ₀ , K ₁ , K ₂ und M ab- Motoroption [mm]
Bestellnummer	K ₀	K ₁	K ₂	M	Haltebremse	Wellendichtring
Geberzuordnung	R0	E4,E5,D4,D5,D8,D9,S4,S5,S8,S9	E8,E9			
8LSA23.eennnffgg-3	91	111	111	73	24	7
8LSA24.eennnffgg-3	101	121	121	83	24	7
8LSA25.eennnffgg-3	111	131	131	93	24	7
8LSA26.eennnffgg-3	121	141	141	103	24	7

ACHTUNG: Verlängerung des Geberdeckels bei bestimmten Gebern, siehe Maß " K_2 "

2.14.1.6 Abmessungen Anschluss 8LSA2...-3

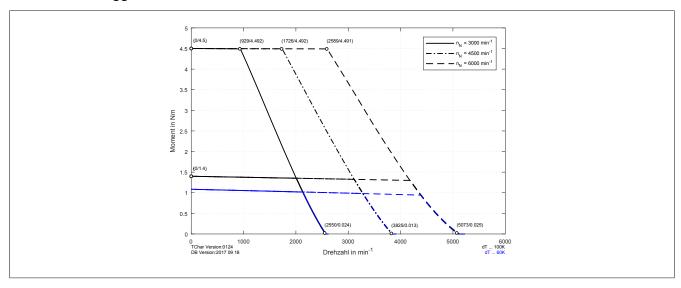
2.14.2 Technische Daten 8LSAA...-3

Bestellnummer	8LSAA2. ee030ffgg-3	8LSAA2. ee045ffgg-3	8LSAA2. ee060ffgg-3	8LSAA3. ee030ffgg-3	8LSAA3. ee045ffgg-3	8LSAA3. ee060ffgg-3	
Motor							
Nenndrehzahl n _N [min-1]	3000	4500	6000	3000	4500	6000	
Polpaarzahl			:	5			
Nennmoment M _n [Nm]	1,3	1,27	1,23	2,11	2,05	1,97	
Nennleistung P _N [W]	408	598	773	663	966	1238	
Nennstrom I _N [A]	0,9	1,31	1,69	1,46	2,11	2,7	
Stillstandsmoment M ₀ [Nm]		1,4			2,24		
Stillstandsstrom I ₀ [A]	0,95	1,42	1,89	1,54	2,31	3,1	
Maximalmoment M _{max} [Nm]		4,5			7,5		
Maximalstrom I _{max} [A]	4	6	8	6,5	9,8	13	
Maximaldrehzahl n _{max} [min-1]		,	70	00		,	
Drehmomentkonstante K _⊤ [Nm/A]	1,45	0,97	0,73	1,45	0,97	0,73	
Spannungskonstante K _E [V/1000 min ⁻¹]	87,96	58,64	43,98	87,96	58,64	43,98	
Statorwiderstand R _{2ph} [Ω]	30,3	13,9	7,6	18,6	7,8	4,7	
Statorinduktivität L _{2ph} [mH]	59,2	27	14,8	40,5	17,5	10,1	
Elektrische Zeitkonstante tel [ms]	1,95	1,94	1,95	2,18	2,24	2,15	
Thermische Zeitkonstante t _{therm} [min]		31		34			
Trägheitsmoment J [kgcm²]		0,38		0,6			
Masse ohne Bremse m [kg]		2,2			2,9		
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			3	,2			
Masse der Bremse [kg]			0	,6			
Trägheitsmoment der Bremse J _{Br}			0,	38			
[kgcm ²]							
Empfehlungen							
ACOPOS 8Vxxxx.xx				022 1045			
ACOPOSmulti 8BVIxxxx	0014 0028 0014					28	
ACOPOS P3 8EIxxxx	2X2X 4X5X						
Kabelquerschnitt für B&R Motorkabel [mm²]		0,75					
Steckergröße			1	,0			

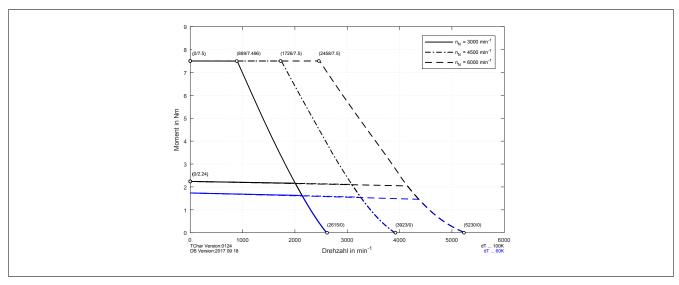
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

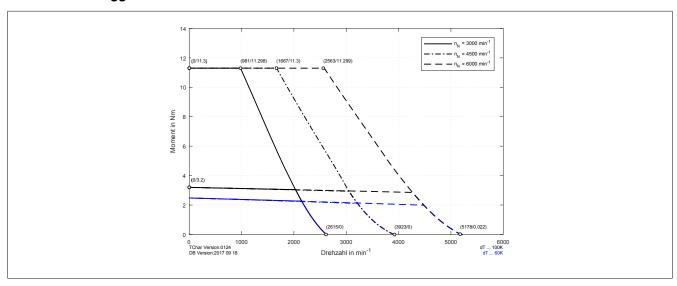
Technische Daten


Bestellnummer	8LSAA4.ee030ffgg-3	8LSAA4.ee045ffgg-3	8LSAA4.ee060ffgg-3				
Motor							
Nenndrehzahl n _N [min-1]	3000	4500	6000				
Polpaarzahl		5					
Nennmoment M _n [Nm]	2,96	2,8	2,7				
Nennleistung P _N [W]	930	1319	1696				
Nennstrom I _N [A]	2,05	2,89	3,7				
Stillstandsmoment M ₀ [Nm]		3,2					
Stillstandsstrom I ₀ [A]	2,21	3,3	4,38				
Maximalmoment M _{max} [Nm]		11,3					
Maximalstrom I _{max} [A]	10	15	20,1				
Maximaldrehzahl n _{max} [min ⁻¹]		7000					
Drehmomentkonstante K _T [Nm/A]	1,45	0,97	0,73				
Spannungskonstante K _E [V/1000 min⁻¹]	87,96	58,64	43,98				
Statorwiderstand R _{2ph} [Ω]	10,6	5,3	2,7				
Statorinduktivität L _{2ph} [mH]	26,1	12,4	6,5				
Elektrische Zeitkonstante t _{el} [ms]	2,46	2,34	2,41				
Thermische Zeitkonstante t _{therm} [min]		38					
Trägheitsmoment J [kgcm²]		1,1					
Masse ohne Bremse m [kg]		3,8					
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]		3,2					
Masse der Bremse [kg]		0,6					
Trägheitsmoment der Bremse J _{Br} [kgcm²]		0,38					
Empfehlungen							
ACOPOS 8Vxxxx.xx	10)45	1090				
ACOPOSmulti 8BVIxxxx	0028 0055						
ACOPOS P3 8EIxxxx	4X5X 8X8X						
Kabelquerschnitt für B&R Motorkabel [mm²]		0,75					
Steckergröße		1,0					

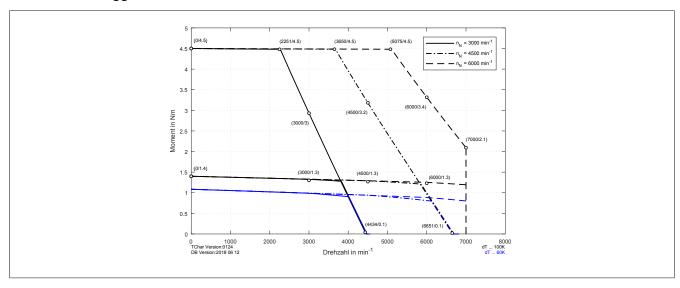
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.


62

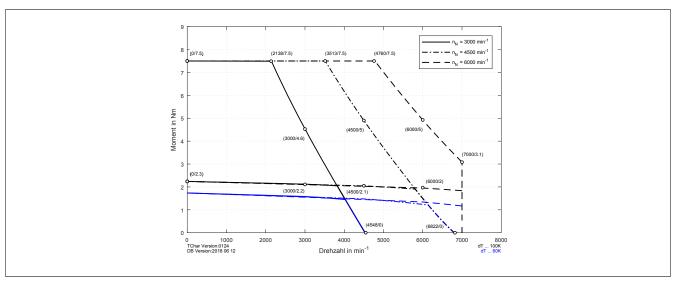
2.14.2.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSAA2.eennnffgg-3

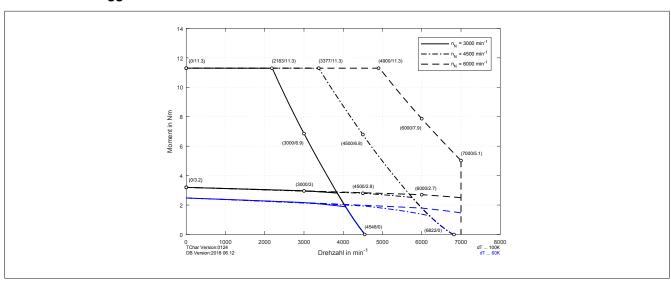
8LSAA3.eennnffgg-3



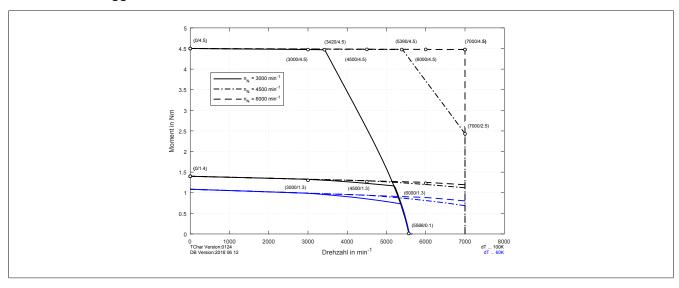
8LSAA4.eennnffgg-3



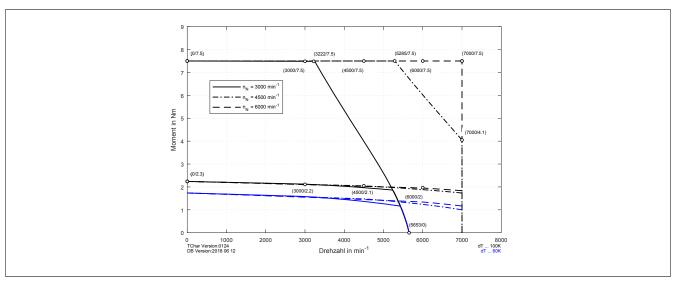
2.14.2.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSAA2.eennnffgg-3

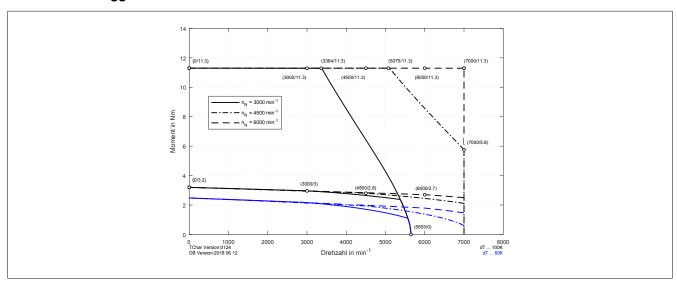
8LSAA3.eennnffgg-3



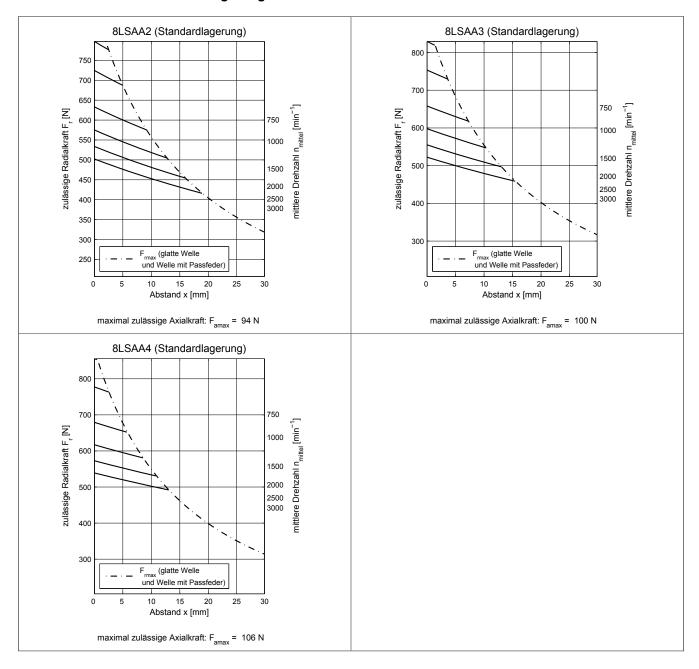
8LSAA4.eennnffgg-3



2.14.2.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSAA2.eennnffgg-3

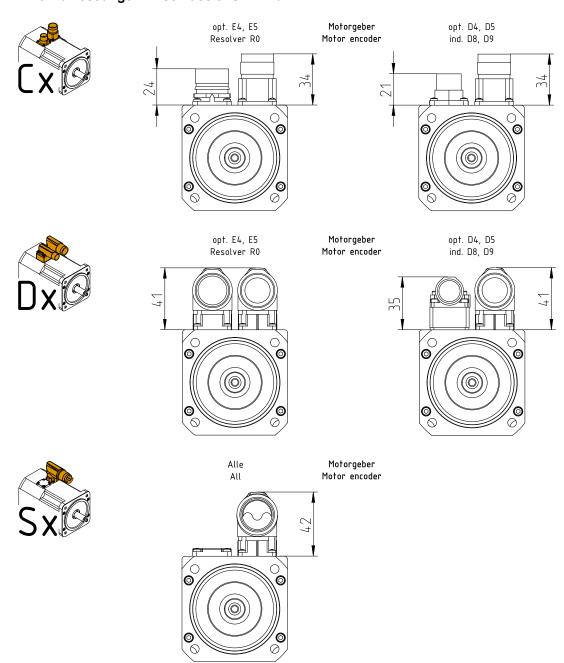
8LSAA3.eennnffgg-3


8LSAA4.eennnffgg-3

2.14.2.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

2.14.2.4.1 8LSAA...-3 Standardlagerung


2.14.2.5 Abmessungen 8LSAA...-3

EnDat / Resolver Rückführung	9	Verlängerung von K₀ und M abhängig von der Motoroption [mm]		
	K ₀	K ₁	M	Haltebremse
Geberzuordnung	R0, D8, D9	E4, E5, D4, D5		
8LSAA23	135	150,5	111,5	31
8LSAA33	155	170,5	131,5	31
8LSAA43	180	195.5	156.5	31

ACHTUNG: Maße \mathbf{K}_0 und \mathbf{K}_1 sind abhängig von der Länge des Geberdeckels

2.14.2.6 Abmessungen Anschluss 8LSAA...-3

2.14.3 Technische Daten 8LSA3...-3

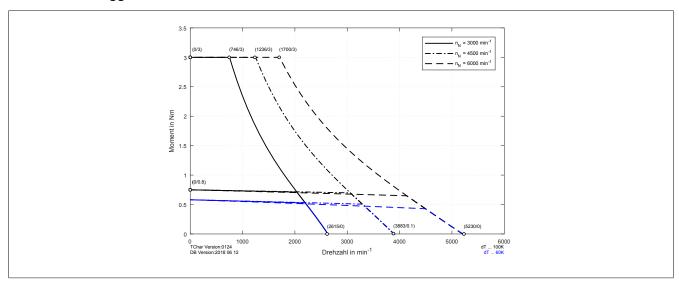
Bestellnummer	8LSA33. ee030ffgg-3	8LSA33. ee045ffgg-3	8LSA33. ee060ffgg-3	8LSA34. ee022ffgg-3	8LSA34. ee030ffgg-3	8LSA34. ee045ffgg-3	
Motor							
Nenndrehzahl n _N [min-1]	3000	4500	6000	2200	3000	4500	
Polpaarzahl				4			
Nennmoment M _n [Nm]	0,7	0,67	0,6	1,44	1,4	1,3	
Nennleistung P _N [W]	220	316	377	332	440	613	
Nennstrom I _N [A]	0,48	0,69	0,82	0,72	0,96	1,34	
Stillstandsmoment M ₀ [Nm]		0,75			1,5	-	
Stillstandsstrom I ₀ [A]	0,52	0,77	1,03	0,75	1,03	1,55	
Maximalmoment M _{max} [Nm]		3			6		
Maximalstrom I _{max} [A]	2,2	3,3	4,4	3,2	4,4	6,6	
Maximaldrehzahl n _{max} [min-1]			90	000		,	
Drehmomentkonstante K _⊤ [Nm/A]	1,45	0,97	0,73	1,99	1,45	0,97	
Spannungskonstante K _E [V/1000 min ⁻¹]	87,96	58,64	43,98	120,43	87,96	58,64	
Statorwiderstand R _{2ph} [Ω]	56,5	27,56	15,98	40,62	22,83	9,35	
Statorinduktivität L _{2ph} [mH]	214	98,4	58,2	184,2	102,3	43,7	
Elektrische Zeitkonstante t _{el} [ms]	3,8	3	3,6	4	,5	4,7	
Thermische Zeitkonstante t _{therm} [min]		30		32			
Trägheitsmoment J [kgcm²]		0,4	_	0,65			
Masse ohne Bremse m [kg]		3,2		3,8			
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]				4			
Masse der Bremse [kg]			1,	07			
Trägheitsmoment der Bremse J _{Br}			0,	38			
[kgcm ²]						-	
Empfehlungen				T		1	
ACOPOS 8Vxxxx.xx	10	10	1016	1010	1016	1022	
ACOPOSmulti 8BVIxxxx	0014						
ACOPOS P3 8EIxxxx	2X2X						
Kabelquerschnitt für B&R Motorkabel [mm²]				75			
Steckergröße			1	,0			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

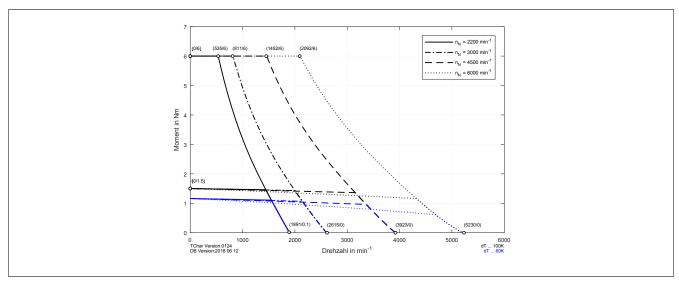
Technische Daten

Bestellnummer	8LSA34. ee060ffgg-3	8LSA35. ee022ffgg-3	8LSA35. ee030ffgg-3	8LSA35. ee045ffgg-3	8LSA35. ee060ffgg-3	8LSA36. ee022ffgg-3
Motor						
Nenndrehzahl n _N [min ⁻¹]	6000	2200	3000	4500	6000	2200
Polpaarzahl			4	4		
Nennmoment M _n [Nm]	1	2	,1	1,8	1,6	2,7
Nennleistung P _N [W]	628	484	660	848	1005	622
Nennstrom I _N [A]	1,37	1,1	1,4	1,9	2,2	1,4
Stillstandsmoment M ₀ [Nm]	1,5		2	,3		3
Stillstandsstrom I ₀ [A]	2,06	1,2	1,6	2,4	3,2	1,5
Maximalmoment M _{max} [Nm]	6		9	,2		12
Maximalstrom I _{max} [A]	8,9	5	6,8	10,2	13,6	6,5
Maximaldrehzahl n _{max} [min-1]			90	000		,
Drehmomentkonstante K _⊤ [Nm/A]	0,73	1,99	1,45	0,97	0,73	1,99
Spannungskonstante K _E [V/1000 min ⁻¹]	43,98	120,43	87,96	58,64	43,98	120,43
Statorwiderstand $R_{2ph} [\Omega]$	5,08	24,26	12,22	6,16	3,02	15,18
Statorinduktivität L _{2ph} [mH]	23,86	119,9	63	29,7	15,6	83,4
Elektrische Zeitkonstante t _{el} [ms]	4,7	4,9	5,2	4,8	5,1	5,5
Thermische Zeitkonstante t _{therm} [min]	32		3	34		36
Trägheitsmoment J [kgcm²]	0,65		0	,9		1,15
Masse ohne Bremse m [kg]	3,8		4	,4		5
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]				4		
Masse der Bremse [kg]	1,07		1,	09		1,07
Trägheitsmoment der Bremse J _{Br} [kgcm²]			0,	38		
Empfehlungen						
ACOPOS 8Vxxxx.xx	1045	1016	1022	10)45	1022
ACOPOSmulti 8BVIxxxx	0028	0014 0028				0014
ACOPOS P3 8EIxxxx	4X5X 2X2X 4X5X 2X2X					
Kabelquerschnitt für B&R Motorkabel [mm²]				75		
Steckergröße			1	,0		

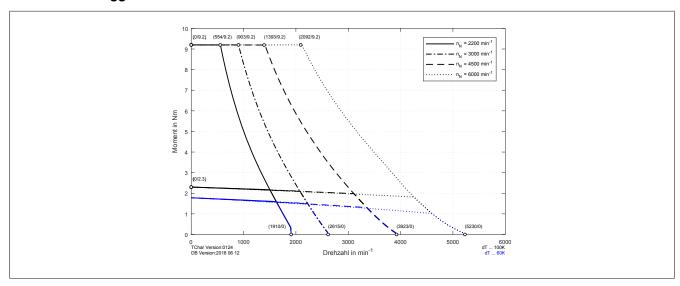
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

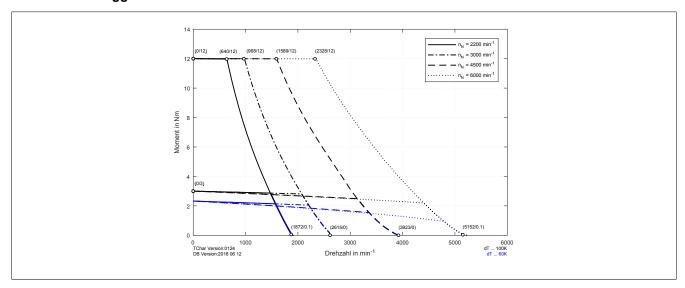

70

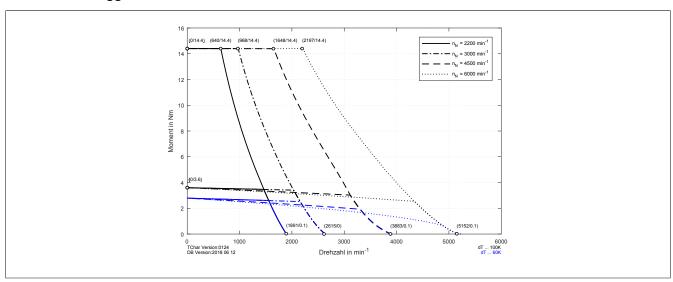
Bestellnummer	8LSA36. ee030ffgg-3	8LSA36. ee045ffgg-3	8LSA36. ee060ffgg-3	8LSA37. ee022ffgg-3	8LSA37. ee030ffgg-3	8LSA37. ee045ffgg-3	8LSA37. ee060ffgg-3
Motor							
Nenndrehzahl n _N [min ⁻¹]	3000	4500	6000	2200	3000	4500	6000
Polpaarzahl				4			
Nennmoment M _n [Nm]	2,7	2,2	1,8	3	,4	2,7	2
Nennleistung P _N [W]	848	1037	1131	783	1068	1272	1257
Nennstrom I _N [A]	1,9	2,3	2,5	1,7	2,3	2,8	2,7
Stillstandsmoment M ₀ [Nm]		3			3	,6	
Stillstandsstrom I ₀ [A]	2,1	3,1	4,1	1,8	2,5	3,7	4,9
Maximalmoment M _{max} [Nm]		12	,		14	1,4	
Maximalstrom I _{max} [A]	8,9	13,3	17,7	7,8	10,6	16	21,2
Maximaldrehzahl n _{max} [min-1]			,	9000	,		
Drehmomentkonstante K _⊤ [Nm/A]	1,45	0,97	0,73	1,99	1,45	0,97	0,73
Spannungskonstante K _E [V/1000 min ⁻¹]	87,96	58,64	43,98	120,43	87,96	58,64	43,98
Statorwiderstand R _{2ph} [Ω]	8,18	3,73	1,95	12,59	6,98	2,93	1,76
Statorinduktivität L _{2ph} [mH]	44,91	20,3	10,6	68,9	37,5	16,2	9,6
Elektrische Zeitkonstante t _{el} [ms]	5,5	5,4	5	,5	5,4	5	,5
Thermische Zeitkonstante t _{therm} [min]		36	,		3	18	
Trägheitsmoment J [kgcm²]		1,15			1,	38	
Masse ohne Bremse m [kg]		5			5	,6	
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]				4			
Masse der Bremse [kg]		1,07			0,	59	-
Trägheitsmoment der Bremse J _{Br} [kgcm²]				0,38			
Empfehlungen							
ACOPOS 8Vxxxx.xx	10	45	1090	1022	10)45	1090
ACOPOSmulti 8BVIxxxx	00	28	0055	00	28	00)55
ACOPOS P3 8EIxxxx	4X5X 8X8X 2X2X 4X5X					8X8X	
Kabelquerschnitt für B&R Motorkabel [mm²]				0,75			
Steckergröße				1,0			


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

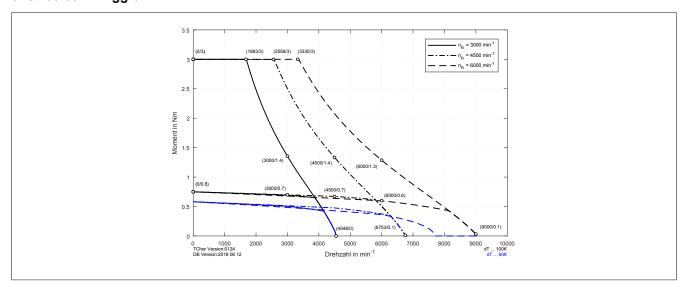
2.14.3.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSA33.eennnffgg-3

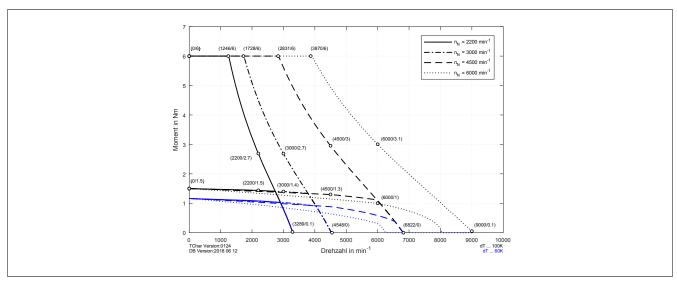

8LSA34.eennnffgg-3


8LSA35.eennnffgg-3

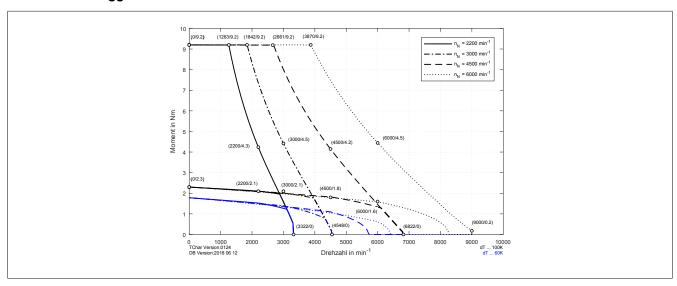
8LSA36.eennnffgg-3



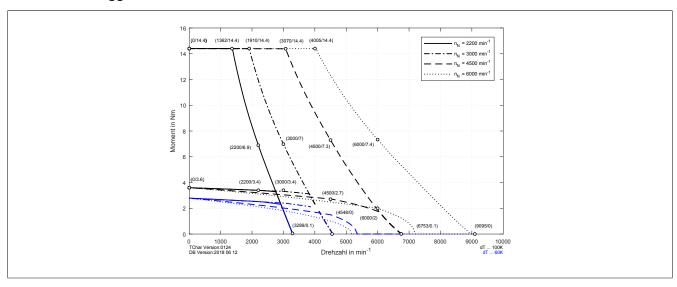
8LSA37.eennnffgg-3



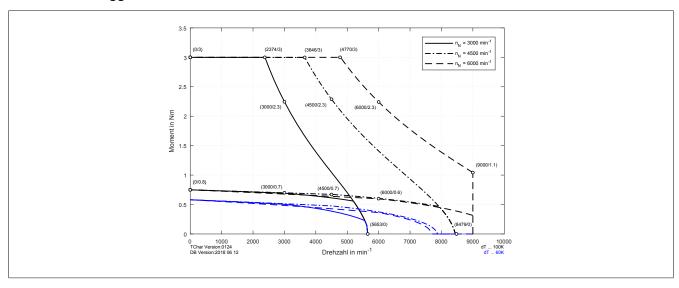
2.14.3.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSA33.eennnffgg-3

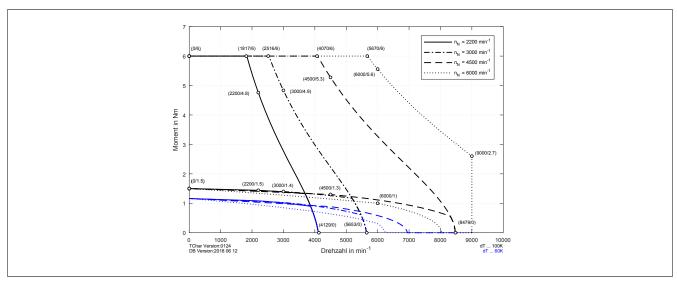
8LSA34.eennnffgg-3


8LSA35.eennnffgg-3

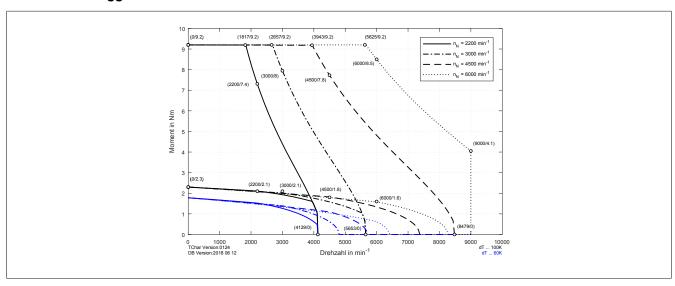
8LSA36.eennnffgg-3



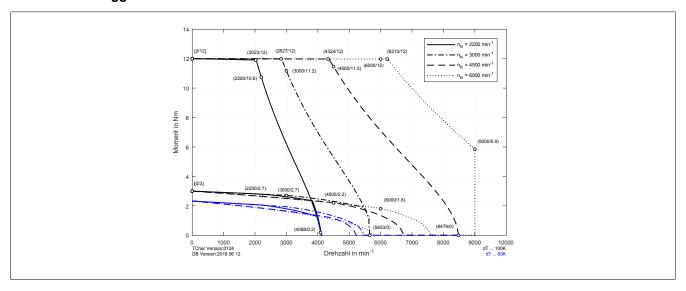
8LSA37.eennnffgg-3



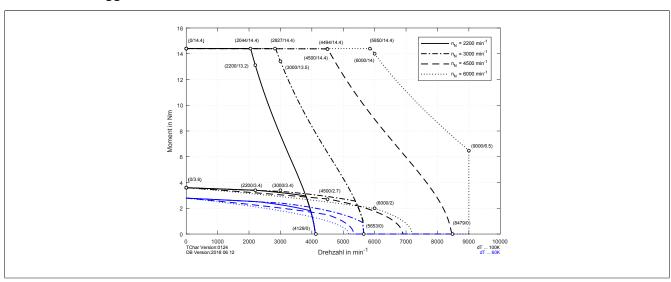
2.14.3.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA33.eennnffgg-3

8LSA34.eennnffgg-3



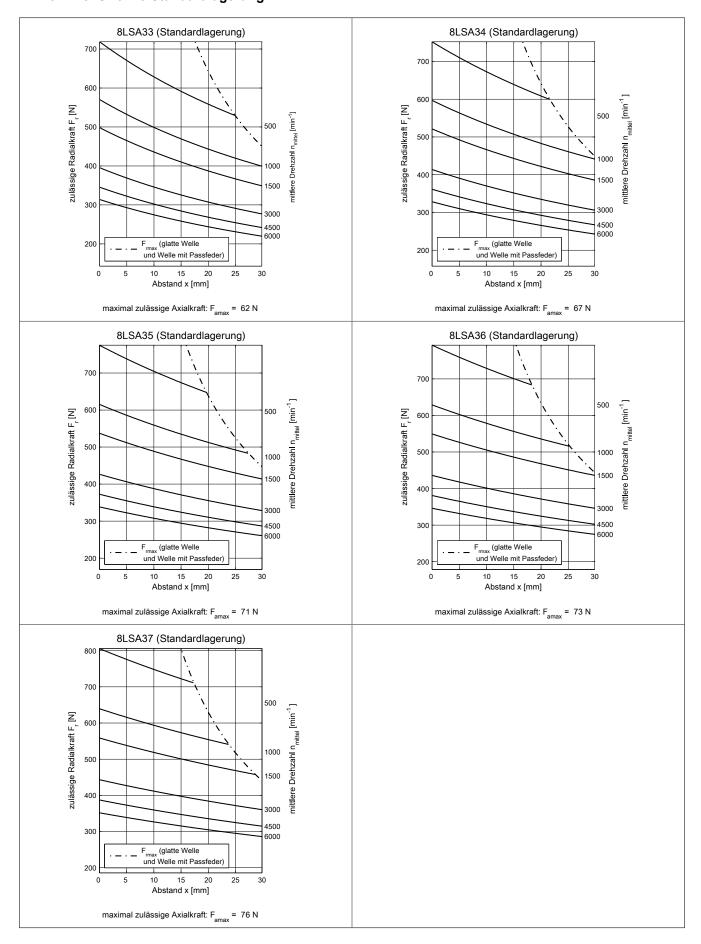
8LSA35.eennnffgg-3



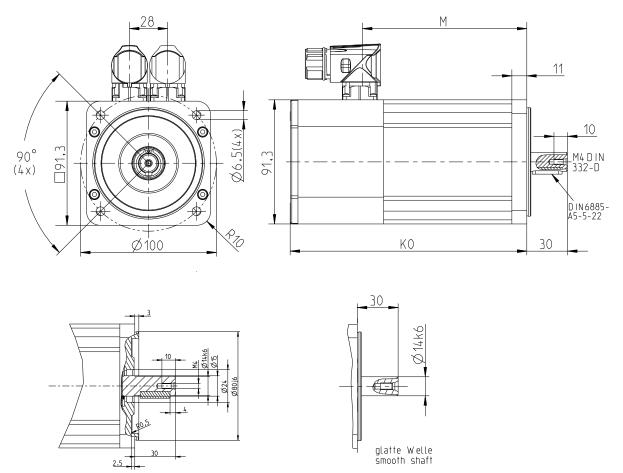
76

8LSA36.eennnffgg-3

8LSA37.eennnffgg-3



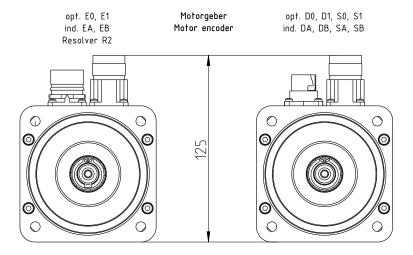
Technische Daten


2.14.3.4 Zulässige Wellenbelastung

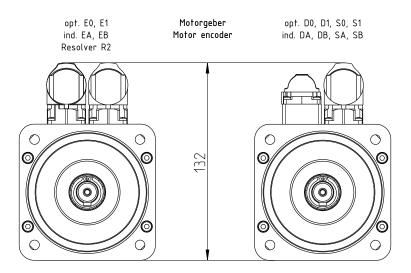
Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

2.14.3.4.1 8LSA3...-3 Standardlagerung

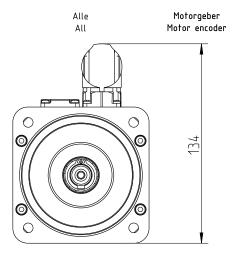
2.14.3.5 Abmessungen 8LSA3...-3


EnDat / Resolver Rückführung			Verlängerung von K₀ ι	Verlängerung von K₀ und M abhängig von der Motoroption [mm]		
Bestellnummer	K ₀	M	Haltebremse	verstärktes A-Lager		
8LSA33.eennnffgg-3	144	93	35			
8LSA34.eennnffgg-3	159	108	35			
8LSA35.eennnffgg-3	174	123	35			
8LSA36.eennnffgg-3	189	138	35			
8LSA37.eennnffgg-3	204	153	35			

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.


80

2.14.3.6 Abmessungen Steckeroptionen 8LSA3...-3



8LS...-3 Anwenderhandbuch V2.51

2.14.4 Technische Daten 8LSA4...-3

Bestellnummer	8LSA43.ee022ffgg-3	8LSA43.ee030ffgg-3	8LSA43.ee045ffgg-3	8LSA43.ee060ffgg-3		
Motor						
Nenndrehzahl n _N [min-1]	2200	3000	4500	6000		
Polpaarzahl	5					
Nennmoment M _n [Nm]	3,5	3,1	2,7	2		
Nennleistung P _N [W]	806	974	1272	1257		
Nennstrom I _N [A]	1,6	1,9	2	,5		
Stillstandsmoment M ₀ [Nm]			4			
Stillstandsstrom I ₀ [A]	1,8	2,5	3,7	4,9		
Maximalmoment M _{max} [Nm]		1!	5,2	,		
Maximalstrom I _{max} [A]	10,7	14,6	21,9	29,2		
Maximaldrehzahl n _{max} [min-1]		12	000			
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,08	0,81		
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22		
Statorwiderstand $R_{2ph} [\Omega]$	11,53	5,94	2,64	1,42		
Statorinduktivität L _{2ph} [mH]	81,1	36,5	16,5	9,2		
Elektrische Zeitkonstante t _{el} [ms]	7	6,1	6,3	6,5		
Thermische Zeitkonstante t _{therm} [min]			25	,		
Trägheitsmoment J [kgcm²]		1,	87			
Masse ohne Bremse m [kg]		4	,5			
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]		_	8			
Masse der Bremse [kg]			1			
Trägheitsmoment der Bremse J _{Br} [kgcm²]		0,	69	-		
Empfehlungen						
ACOPOS 8Vxxxx.xx	1022	10)45	1090		
ACOPOSmulti 8BVIxxxx	0028 0055)55		
ACOPOS P3 8EIxxxx	2X2X	4>	8X8X			
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75					
Steckergröße		1	,0			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

82

Bestellnummer	8LSA44.ee022ffgg-3	8LSA44.ee030ffgg-3	8LSA44.ee045ffgg-3	8LSA44.ee060ffgg-3			
Motor				,			
Nenndrehzahl n _N [min-1]	2200	3000	4500	6000			
Polpaarzahl		5					
Nennmoment M _n [Nm]	5,2	4,62	3,6	3			
Nennleistung P _N [W]	1198	1451	1696	1885			
Nennstrom I _N [A]	2,3	2,8	3,3	3,7			
Stillstandsmoment M ₀ [Nm]			6	,			
Stillstandsstrom I ₀ [A]	2,7	3,7	5,5	7,4			
Maximalmoment M _{max} [Nm]		2	2,8	,			
Maximalstrom I _{max} [A]	16,1	21,9	32,9	43,8			
Maximaldrehzahl n _{max} [min ⁻¹]		12	2000	J			
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,08	0,81			
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22			
Statorwiderstand $R_{2ph}[\Omega]$	6,24	3,6	1,6	0,862			
Statorinduktivität L _{2ph} [mH]	44,8	24	10,8	6,2			
Elektrische Zeitkonstante t _{el} [ms]	7,2	6,7	6,8	7,2			
Thermische Zeitkonstante t _{therm} [min]			30	,			
Trägheitsmoment J [kgcm²]		2	,73				
Masse ohne Bremse m [kg]			5,4				
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			8				
Masse der Bremse [kg]			1				
Trägheitsmoment der Bremse J _{Br} [kgcm²]		0	,69				
Empfehlungen							
ACOPOS 8Vxxxx.xx	1045			90			
ACOPOSmulti 8BVIxxxx	0028	0055		0110			
ACOPOS P3 8EIxxxx	4X5X 8X8X						
Kabelquerschnitt für B&R Motorkabel [mm²]		0	,75				
Steckergröße		1	1,0				

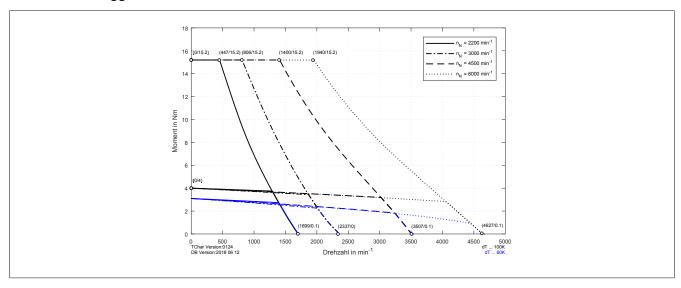
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

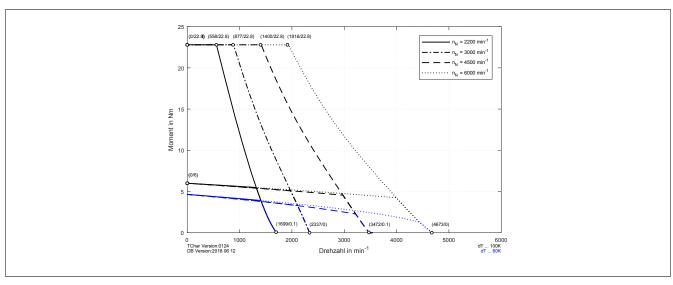
Technische Daten

Bestellnummer	8LSA45.ee022ffgg-3	8LSA45.ee030ffgg-3	8LSA45.ee045ffgg-3	8LSA45.ee060ffgg-3	
Motor					
Nenndrehzahl n _N [min ⁻¹]	2200	3000	4500	6000	
Polpaarzahl			5		
Nennmoment M _n [Nm]	7	6,16	4,8	4	
Nennleistung P _N [W]	1613	1935	2262	2513	
Nennstrom I _N [A]	3,2	3,8	4,4	4,9	
Stillstandsmoment M ₀ [Nm]			8	,	
Stillstandsstrom I ₀ [A]	3,6	4,9	7,4	9,8	
Maximalmoment M _{max} [Nm]		30	0,4		
Maximalstrom I _{max} [A]	21,4	29,2	43,9	58,3	
Maximaldrehzahl n _{max} [min ⁻¹]		120	000		
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,08	0,81	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22	
Statorwiderstand $R_{2ph} [\Omega]$	4,32	2,489	1,106	0,6	
Statorinduktivität L _{2ph} [mH]	41	21,8	9,69	5,4	
Elektrische Zeitkonstante t _{el} [ms]	9,5	8	,8	9	
Thermische Zeitkonstante t _{therm} [min]		3	35		
Trägheitsmoment J [kgcm²]		3,	58		
Masse ohne Bremse m [kg]		6	,5		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]			8		
Masse der Bremse [kg]		0	,9		
Trägheitsmoment der Bremse J _{Br} [kgcm²]		0,	69		
Empfehlungen					
ACOPOS 8Vxxxx.xx	1045	10	90	1180	
ACOPOSmulti 8BVIxxxx				10	
ACOPOS P3 8EIxxxx	4X5X	8X	013X		
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße		1	,0		

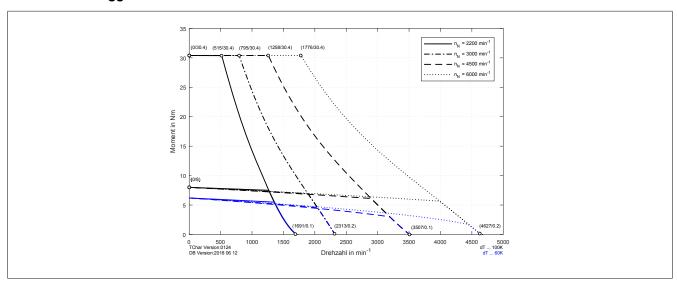
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

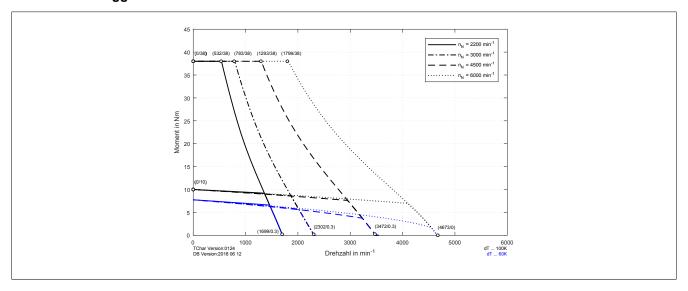

84

Bestellnummer	8LSA46.ee022ffgg-3	8LSA46.ee030ffgg-3	8LSA46.ee045ffgg-3	8LSA46.ee060ffgg-3	
Motor					
Nenndrehzahl n _N [min-1]	2200	3000	4500	6000	
Polpaarzahl		:	5	,	
Nennmoment M _n [Nm]	8,7	7,7	6	5	
Nennleistung P _N [W]	2004	2419	2827	3142	
Nennstrom I _N [A]	3,9	4,7	5,5	6,1	
Stillstandsmoment M ₀ [Nm]		1	10	,	
Stillstandsstrom I ₀ [A]	4,5	6,1	9,2	12,3	
Maximalmoment M _{max} [Nm]		3	38	-	
Maximalstrom I _{max} [A]	26,8	36,5	54,8	72,9	
Maximaldrehzahl n _{max} [min ⁻¹]		12	000	1	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,08	0,81	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22	
Statorwiderstand $R_{2ph}[\Omega]$	3,61	1,92	0,8	0,48	
Statorinduktivität L _{2ph} [mH]	32	17,44	7,75	4,36	
Elektrische Zeitkonstante t _{el} [ms]	8,9	9,1	9,7	9,1	
Thermische Zeitkonstante t _{therm} [min]			10	,	
Trägheitsmoment J [kgcm²]		4,	39		
Masse ohne Bremse m [kg]		7	7,3	-	
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		_	8		
Masse der Bremse [kg]			1		
Trägheitsmoment der Bremse J _{Br}		0,	69		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx		090		80	
ACOPOSmulti 8BVIxxxx	0055			110	
ACOPOS P3 8Elxxxx	8X8X 013X			017X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße	40				
Steckergrose	1,0				

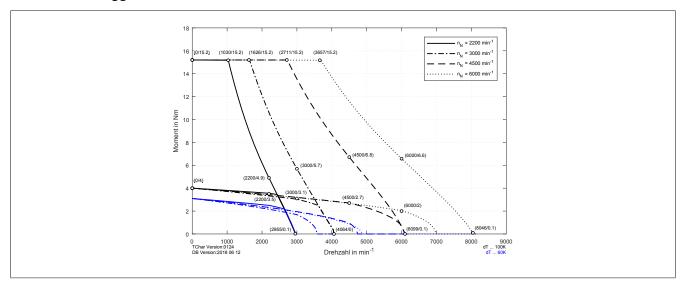

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

2.14.4.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

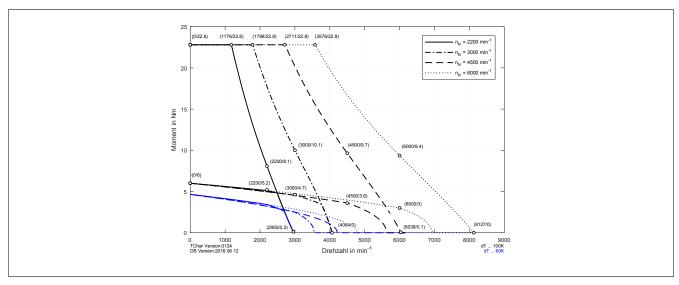

8LSA43.eennnffgg-3


8LSA44.eennnffgg-3

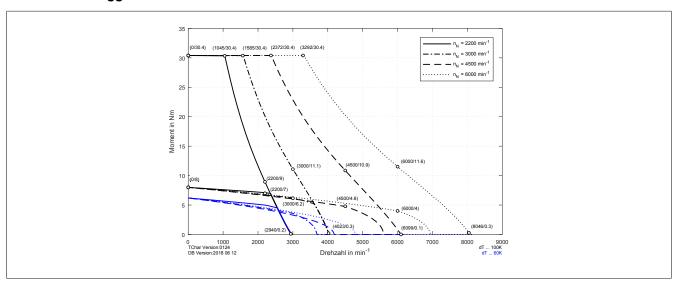
8LSA45.eennnffgg-3

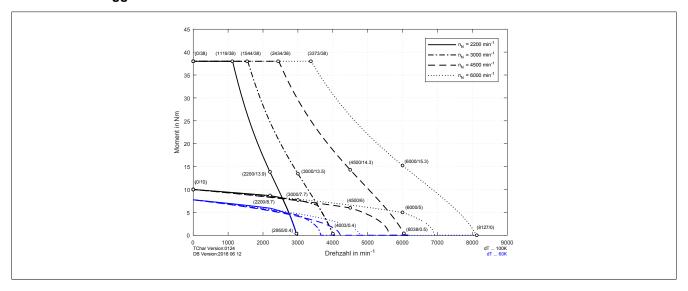


8LSA46.eennnffgg-3

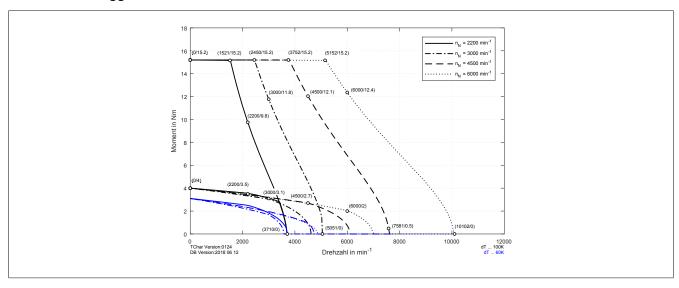


2.14.4.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

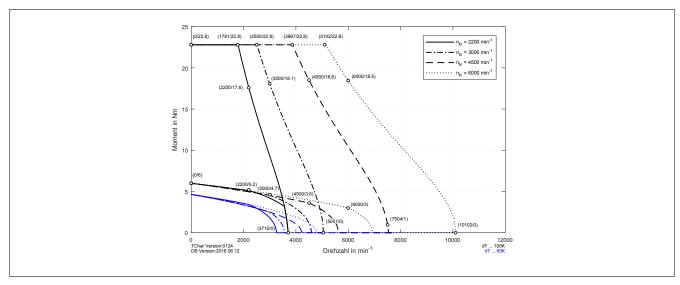

8LSA43.eennnffgg-3


8LSA44.eennnffgg-3

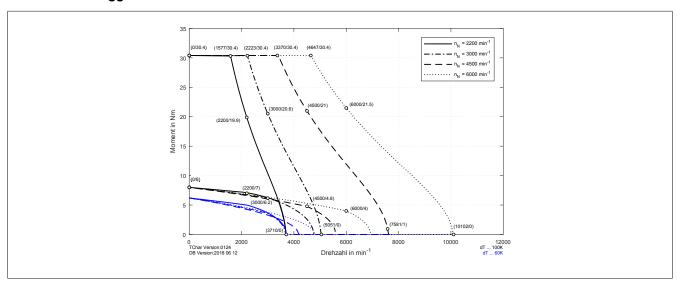
8LSA45.eennnffgg-3

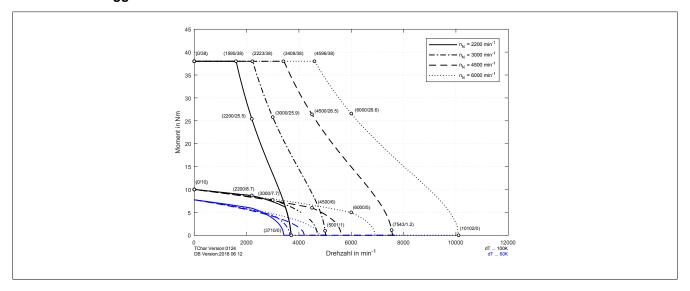


8LSA46.eennnffgg-3



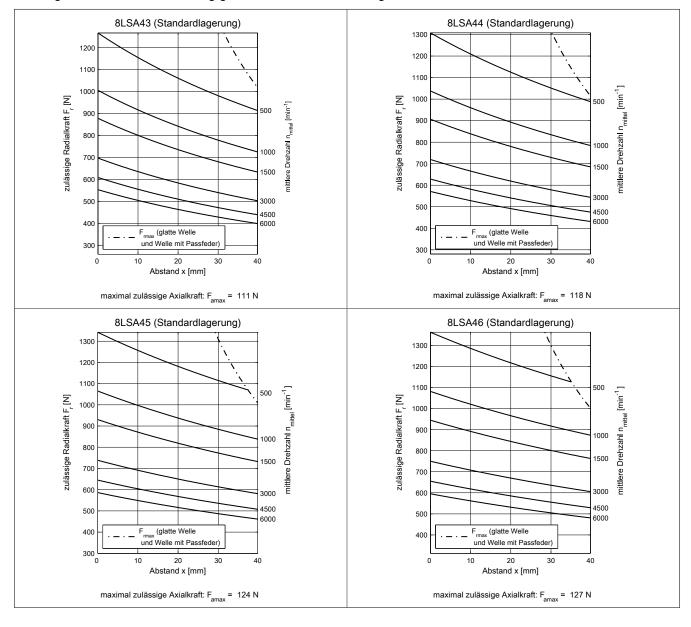
2.14.4.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA43.eennnffgg-3


8LSA44.eennnffgg-3

8LSA45.eennnffgg-3

8LSA46.eennnffgg-3

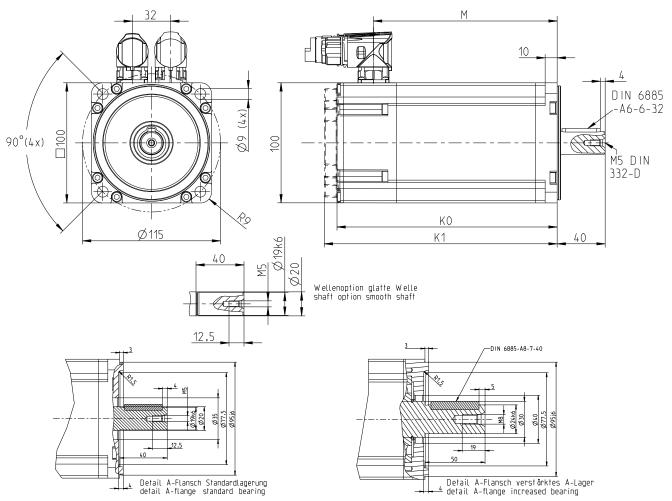


2.14.4.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.14.4.4.1 8LSA4...3 / 8LSC4...-3 Standardlagerung

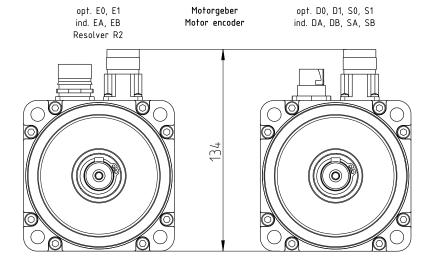
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



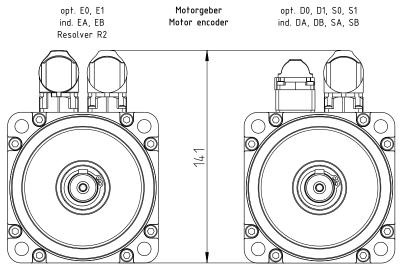
2.14.4.4.2 8LSA4...-3 / 8LSC4...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

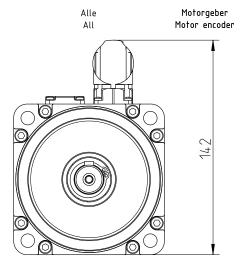
2.14.4.5 Abmessungen 8LSA4...-3


EnDat / Resolver Rückführung			Verlängerung von K_0 , K_1 und M abhängig von der Motoroption [mm]			
Geberzuordnung	DA,DB,EA,EB,SA,SB,R2	D0,D1,E0,E1,S0,S1				
Bestellnummer	K ₀	K ₁	M	Haltebremse	verstärkte Haltebremse	verstärktes
						A-Lager
8LSA43.eennnffgg-3	163	174	133	32	37	15
8LSA44.eennnffgg-3	183	194	153	32	37	15
8LSA45.eennnffgg-3	207	218	177	32	37	15
8LSA46.eennnffgg-3	227	238	197	32	37	15

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.


94

2.14.4.6 Abmessungen Anschluss 8LSA4...-3



8LS...-3 Anwenderhandbuch V2.51

2.14.5 Technische Daten 8LSA5...-3

Bestellnummer	8LSA53.ee022ffgg-3	8LSA53.ee030ffgg-3	8LSA53.ee045ffgg-3		
Motor					
Nenndrehzahl n _N [min-1]	2200	3000	4500		
Polpaarzahl		4			
Nennmoment M _n [Nm]	4,2	4	3,9		
Nennleistung P _N [W]	968	1257	1838		
Nennstrom I _N [A]	1,9	2,5	3,6		
Stillstandsmoment M ₀ [Nm]		4,5			
Stillstandsstrom I ₀ [A]	2	2,8	4,1		
Maximalmoment M _{max} [Nm]		13,8			
Maximalstrom I _{max} [A]	8	10,5	16,5		
Maximaldrehzahl n _{max} [min-1]		9000			
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,09		
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97		
Statorwiderstand R _{2ph} [Ω]	10,9	5,13	2,56		
Statorinduktivität L _{2ph} [mH]	95,92	40,33	19,33		
Elektrische Zeitkonstante t _{el} [ms]	8,8	7,9	8,7		
Thermische Zeitkonstante t _{therm} [min]		33			
Trägheitsmoment J [kgcm²]		3,62			
Masse ohne Bremse m [kg]		6,2	_		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		15			
Masse der Bremse [kg]		1,5			
Trägheitsmoment der Bremse J _{Br} [kgcm²]		1,66			
Empfehlungen					
ACOPOS 8Vxxxx.xx	1022	1045	1090		
ACOPOSmulti 8BVIxxxx		028	0055		
ACOPOS P3 8EIxxxx	2X2X	4X5X	8X8X		
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße		1,0			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmomenent Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

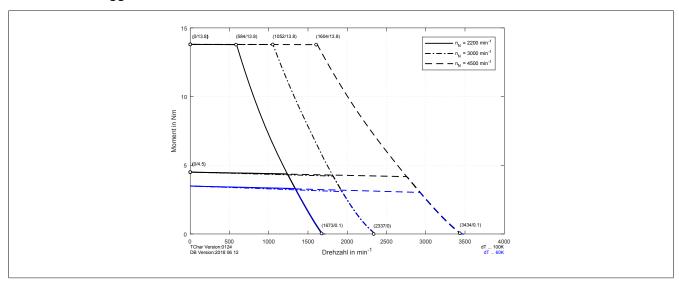
Bestellnummer	8LSA54.ee022ffgg-3	8LSA54.ee030ffgg-3	8LSA54.ee045ffgg-3	
Motor		,		
Nenndrehzahl n _N [min-1]	2200	3000	4500	
Polpaarzahl		4		
Nennmoment M _n [Nm]	7,8	7,7	7,3	
Nennleistung P _N [W]	1797	2419	3440	
Nennstrom I _N [A]	3,5	4,7	6,7	
Stillstandsmoment M ₀ [Nm]		9		
Stillstandsstrom I ₀ [A]	4,1	5,5	8,2	
Maximalmoment M _{max} [Nm]		27,6		
Maximalstrom I _{max} [A]	15,4	20,9	33	
Maximaldrehzahl n _{max} [min ⁻¹]		9000		
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,09	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	
Statorwiderstand R _{2ph} [Ω]	3,44	2,16	0,926	
Statorinduktivität L _{2ph} [mH]	34,5	21,52	8,67	
Elektrische Zeitkonstante t _{el} [ms]	10	10,6	10,9	
Thermische Zeitkonstante t _{therm} [min]		37		
Trägheitsmoment J [kgcm²]		6,04		
Masse ohne Bremse m [kg]		8,5		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		15		
Masse der Bremse [kg]		1,4		
Trägheitsmoment der Bremse J _{Br} [kgcm²]		1,66		
Empfehlungen				
ACOPOS 8Vxxxx.xx	10	1180		
ACOPOSmulti 8BVIxxxx	00	0110		
ACOPOS P3 8EIxxxx	8X8X 013X			
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75			
Steckergröße		1,0		

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

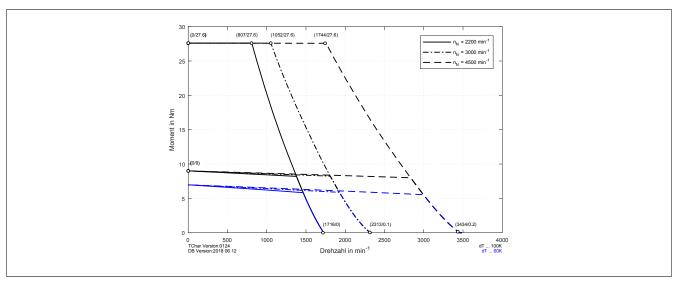
Technische Daten

Bestellnummer	8LSA55.ee022ffgg-3	8LSA55.ee030ffgg-3	8LSA55.ee045ffgg-3	8LSA56.ee022ffgg-3	
Motor					
Nenndrehzahl n _N [min ⁻¹]	2200	3000	4500	2200	
Polpaarzahl		•	4		
Nennmoment M _n [Nm]	11,8	11,6	9,5	14,4	
Nennleistung P _N [W]	2719	3644	4477	3318	
Nennstrom I _N [A]	5,3	7,1	8,7	6,5	
Stillstandsmoment M ₀ [Nm]		12,5		16	
Stillstandsstrom I ₀ [A]	5,6	7,7	11,5	7,2	
Maximalmoment M _{max} [Nm]		41,4	,	55,2	
Maximalstrom I _{max} [A]	23,6	33	47,3	30,8	
Maximaldrehzahl n _{max} [min ⁻¹]		90	000		
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	
Statorwiderstand $R_{2ph} [\Omega]$	2,265	1,127	0,51	1,51	
Statorinduktivität L _{2ph} [mH]	24,29	12,5	4,96	17,6	
Elektrische Zeitkonstante t _{el} [ms]	10,7	11,1	9,7	11,6	
Thermische Zeitkonstante t _{therm} [min]		40		43	
Trägheitsmoment J [kgcm²]		8,19		10,66	
Masse ohne Bremse m [kg]		10,4		13	
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		1	5		
Masse der Bremse [kg]		1,5		1,4	
Trägheitsmoment der Bremse J _{Br} [kgcm²]		1,	66		
Empfehlungen					
ACOPOS 8Vxxxx.xx	10	90	1180	1090	
ACOPOSmulti 8BVIxxxx	0055		0110		
ACOPOS P3 8EIxxxx	8X8X 013X			8X8X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße		1	,0		

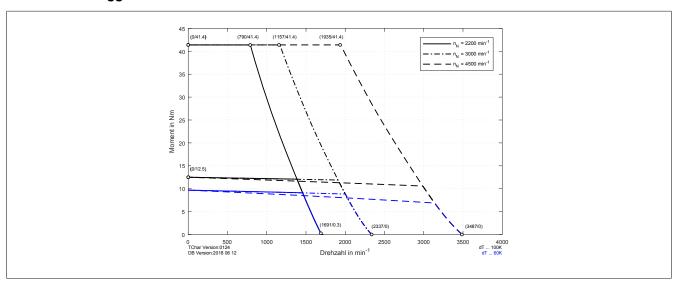
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

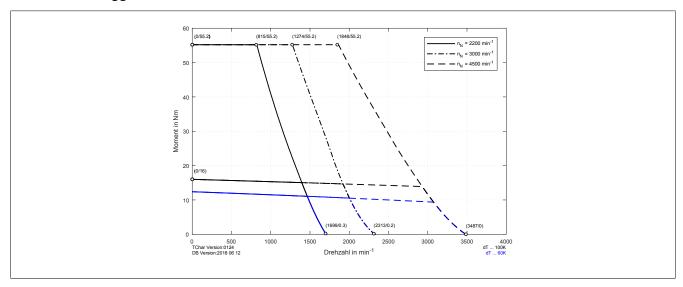

98 8LS...-3 Anwenderhandbuch V2.51

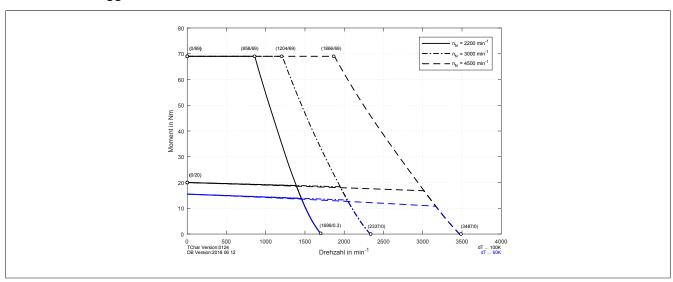
Bestellnummer	8LSA56.ee030ffgg-3	8LSA56.ee045ffgg-3	8LSA57.ee022ffgg-3	8LSA57.ee030ffgg-3	8LSA57.ee045ffgg-3
Motor					
Nenndrehzahl n _N [min-1]	3000	4500	2200	3000	4500
Polpaarzahl			4		
Nennmoment M _n [Nm]	13,9	12,7	18	17,5	15
Nennleistung P _N [W]	4367	5985	4147	5498	7069
Nennstrom I _N [A]	8,5	11,6	8,1	10,7	13,7
Stillstandsmoment M ₀ [Nm]	1	6		20	
Stillstandsstrom I ₀ [A]	9,8	14,7	9	12,3	18,3
Maximalmoment M _{max} [Nm]	55	5,2		69	
Maximalstrom I _{max} [A]	41,8	65,9	38,4	52,6	82,6
Maximaldrehzahl n _{max} [min ⁻¹]			9000		
Drehmomentkonstante K _⊤ [Nm/A]	1,63	1,09	2,22	1,63	1,09
Spannungskonstante K _E [V/1000 min⁻¹]	98,44	65,97	134,04	98,44	65,97
Statorwiderstand R _{2ph} [Ω]	0,75	0,341	1,13	0,62	0,29
Statorinduktivität L _{2ph} [mH]	8,16	4,08	13,17	7,21	3,2
Elektrische Zeitkonstante t _{el} [ms]	10,9	12	11,7	11,6	11
Thermische Zeitkonstante t _{therm} [min]	4	3		46	
Trägheitsmoment J [kgcm²]	10,	,66	13,13		
Masse ohne Bremse m [kg]	1	3	14,5		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]			15		
Masse der Bremse [kg]	1,	,4		1,3	
Trägheitsmoment der Bremse J _{Br}			1,66		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx	1180				1320
ACOPOSmulti 8BVIxxxx	0110	0220		10	0220
ACOPOS P3 8EIxxxx	013X	017X	013X	017X	024X
Kabelquerschnitt für B&R Motorkabel	0,75	1,5	0,75	1,5	4
[mm²]					
Steckergröße			1,0		


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

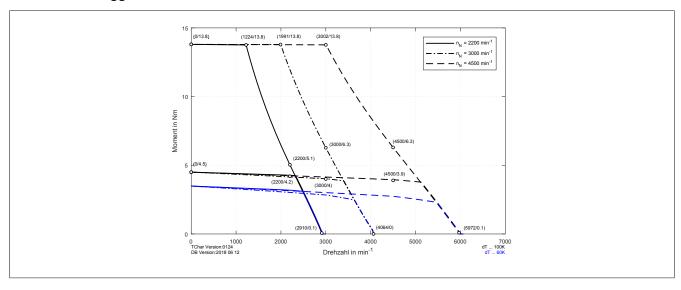
2.14.5.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSA53.eennnffgg-3

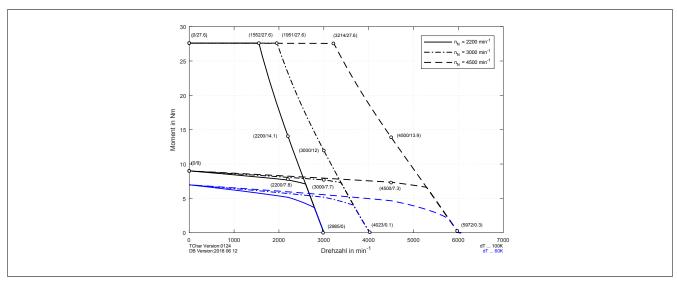

8LSA54.eennnffgg-3


8LSA55.eennnffgg-3

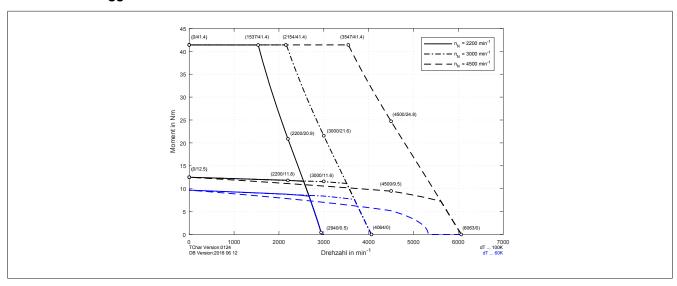
8LSA56.eennnffgg-3

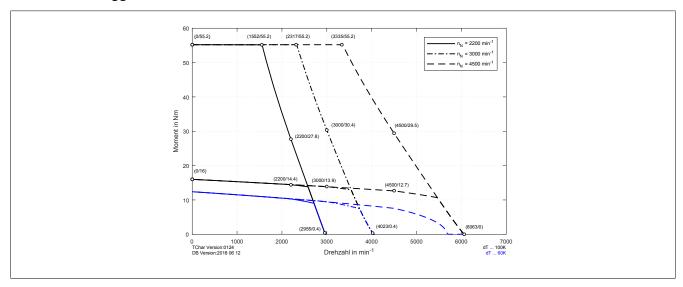


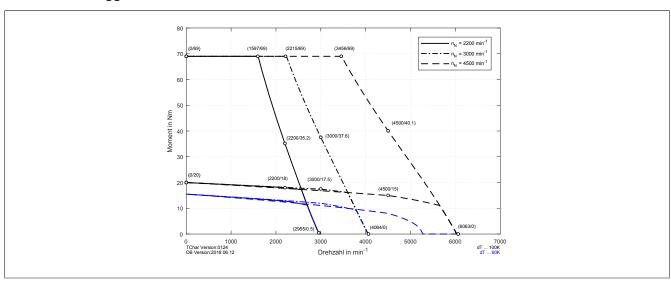
8LSA57.eennnffgg-3



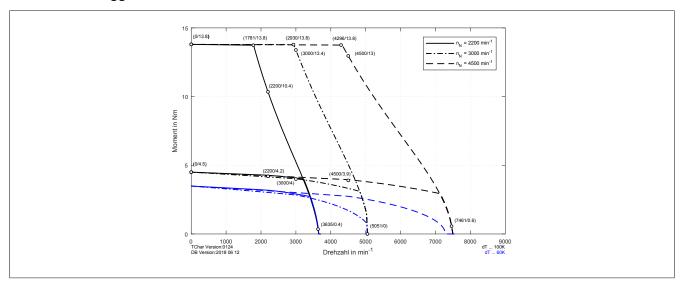
2.14.5.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSA53.eennnffgg-3

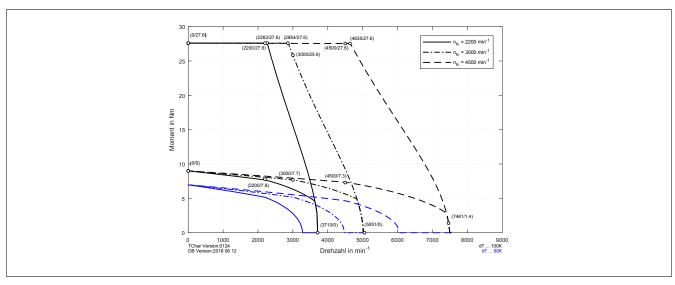

8LSA54.eennnffgg-3


8LSA55.eennnffgg-3

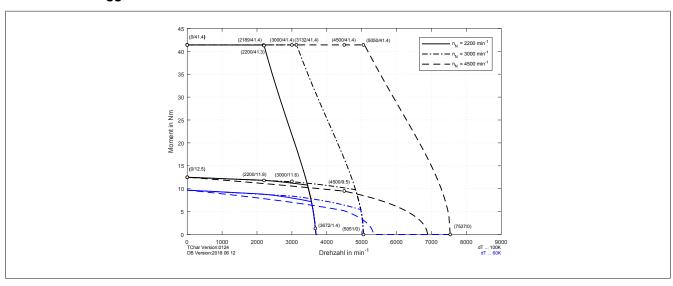
8LSA56.eennnffgg-3

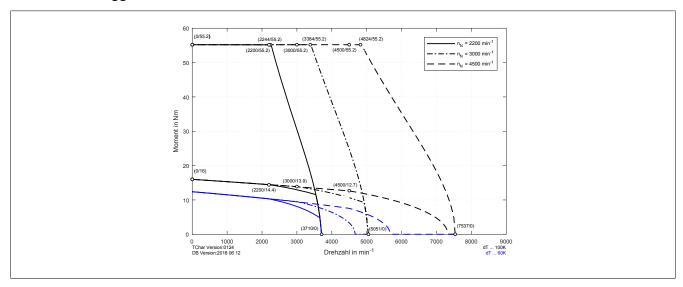


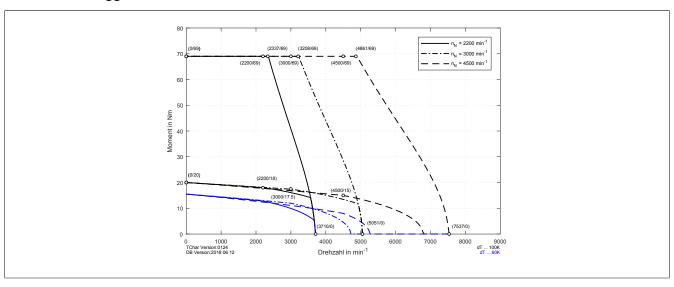
8LSA57.eennnffgg-3



2.14.5.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung

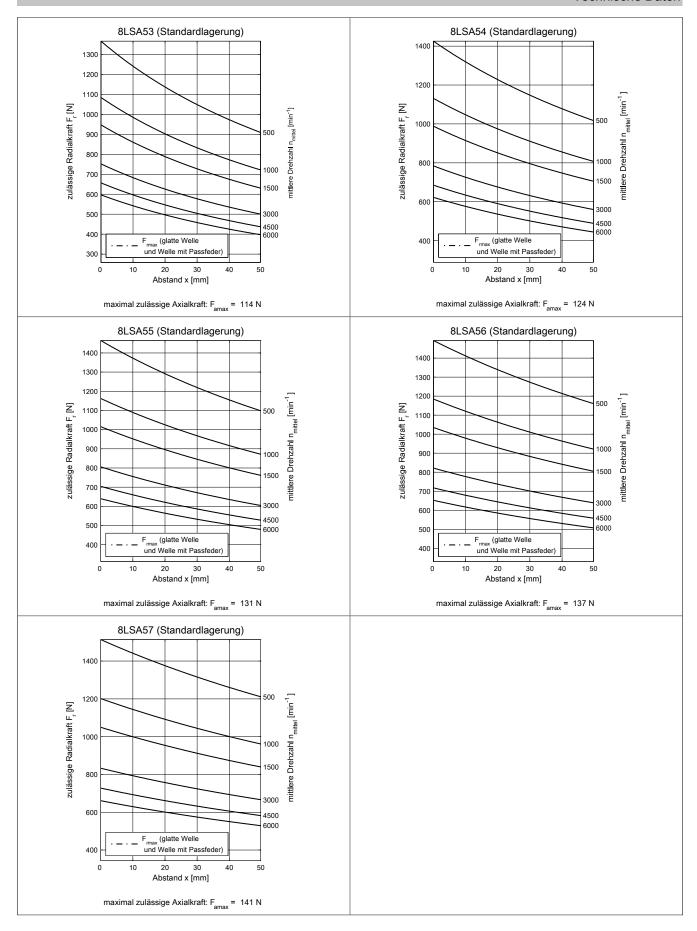

8LSA53.eennnffgg-3


8LSA54.eennnffgg-3


8LSA55.eennnffgg-3

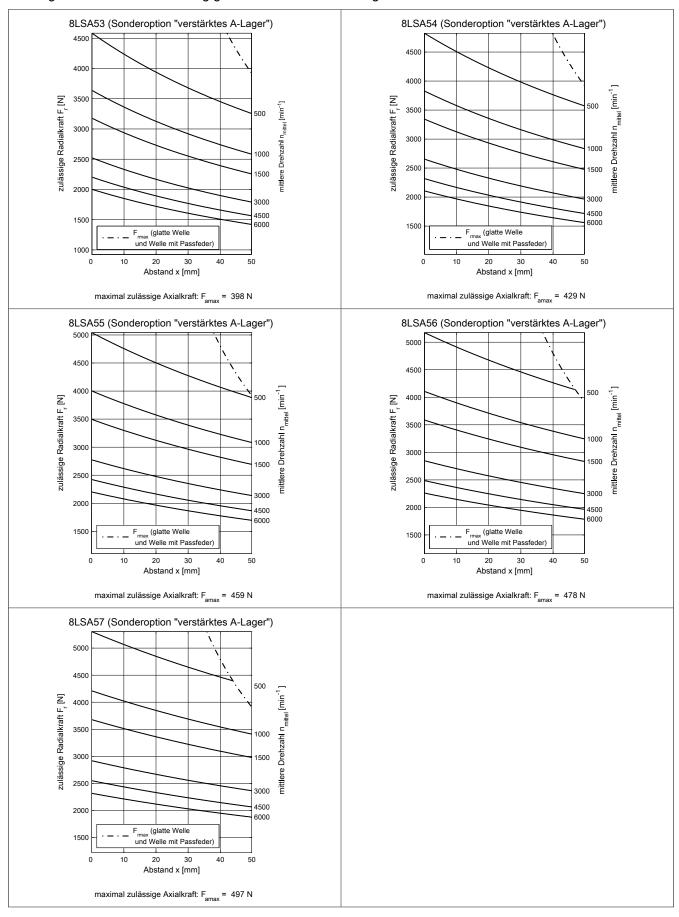
8LSA56.eennnffgg-3

8LSA57.eennnffgg-3

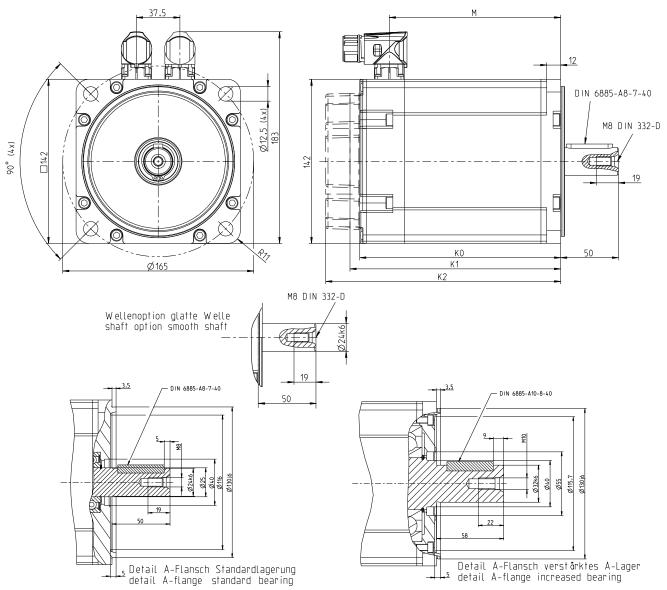

Technische Daten

2.14.5.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.14.5.4.1 8LSA5...-3 / 8LSC5...-3 Standardlagerung

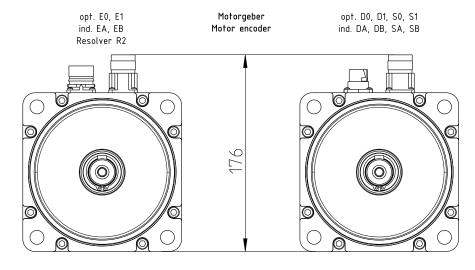
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



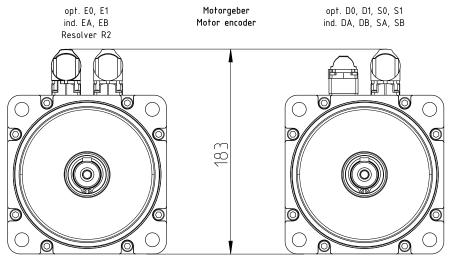
2.14.5.4.2 8LSA5...-3 / 8LSC5...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

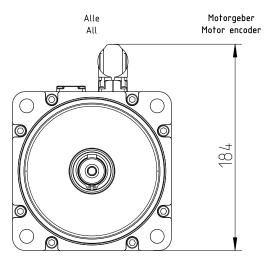
2.14.5.5 Abmessungen 8LSA5...-3



EnDat / Resolver Rückführung					Verlängerung Motoroption [d M abhängig von der
Geberzuordnung	DA,DB,SA,SB,R2	EA,EB	D0,D1,E0,E1,S0,S1				
Bestellnummer	K ₀	K ₁	K ₂	M	Haltebremse	Verstärkte Halte-	verstärktes A-Lager
						bremse	
8LSA53.eennnffgg-3	148	159	178	123	35	50	15
8LSA54.eennnffgg-3	173	184	203	148	35	50	10
8LSA55.eennnffgg-3	198	209	228	173	30	45	10
8LSA56.eennnffgg-3	223	234	253	198	30	45	5
8LSA57.eennnffgg-3	248	259	278	223	25	40	5


ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

2.14.5.6 Abmessungen Anschluss 8LSA5...-3



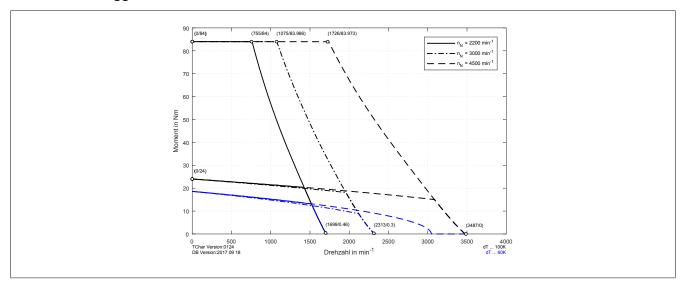
2.14.6 Technische Daten 8LSA5A/B/C...-3

Bestellnummer	8LSA5A. ee022ffgg-3	8LSA5A. ee030ffgg-3	8LSA5A. ee045ffgg-3	8LSA5B. ee022ffgg-3	8LSA5B. ee030ffgg-3	8LSA5B. ee040ffgg-3
Motor						
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	3000	4000
Polpaarzahl				5		
Nennmoment M _n [Nm]	18	14	8	26	21	14
Nennleistung P _N [W]	4147	4398	3770	5990	6597	5864
Nennstrom I _N [A]	8,1	8,6	7,4	11,7	12,9	11,4
Stillstandsmoment M ₀ [Nm]		24	,		36	,
Stillstandsstrom I ₀ [A]	10,8	14,7	22	16,2	22,1	29,3
Maximalmoment M _{max} [Nm]		84	,		131	,
Maximalstrom I _{max} [A]	50	69	103	78	107	141
Maximaldrehzahl n _{max} [min ⁻¹]		L	60	00	ı	,
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22	1,63	1,23
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	98,44	74,35
Statorwiderstand R _{2ph} [Ω]	0,83	0,45	0,19	0,5	0,27	0,15
Statorinduktivität L _{2ph} [mH]	11	5,9	2,47	7	3,8	2,2
Elektrische Zeitkonstante tel [ms]	13,25	13,11	13	14	14,07	14,67
Thermische Zeitkonstante t _{therm} [min]		45	'	51		
Trägheitsmoment J [kgcm²]		16		24,7		
Masse ohne Bremse m [kg]		18,5		25		
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]		17	_		60	
Masse der Bremse [kg])		-
Trägheitsmoment der Bremse J _{Br}		3,6			14,7	
[kgcm ²]			_			_
Empfehlungen						
ACOPOS 8Vxxxx.xx	1180		1320	1180	-	320
ACOPOSmulti 8BVIxxxx	0110 0220		0330	0220	0330	
ACOPOS P3 8Elxxxx	013X 017X		034X	_	024X 034X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75 1,5		4	1,5 4		
Steckergröße	1	,0	1,5	1,0	1	,5

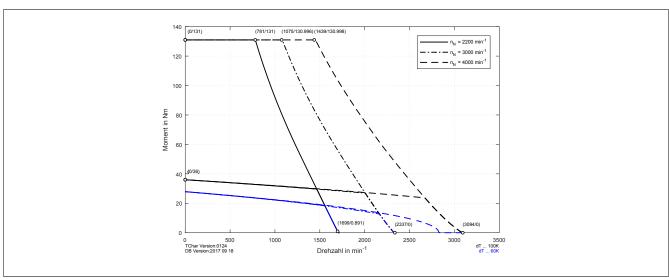
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

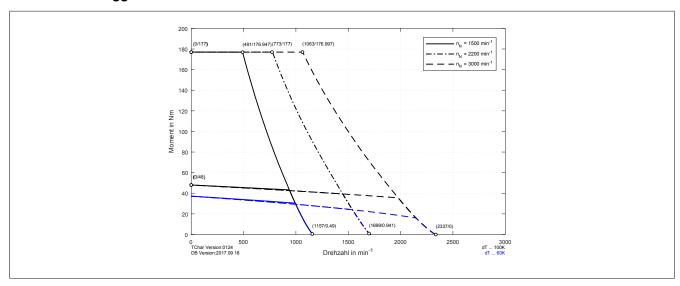
Technische Daten


Bestellnummer	8LSA5C.ee015ffgg-3	8LSA5C.ee022ffgg-3	8LSA5C.ee030ffgg-3	
Motor				
Nenndrehzahl n _N [min-1]	1500	1500 2200		
Polpaarzahl		5		
Nennmoment M _n [Nm]	40	34	27	
Nennleistung P _N [W]	6283	7833	8482	
Nennstrom I _N [A]	12,3	15,3	16,6	
Stillstandsmoment M ₀ [Nm]		48		
Stillstandsstrom I ₀ [A]	14,7	21,6	29,5	
Maximalmoment M _{max} [Nm]		177		
Maximalstrom I _{max} [A]	72	106	145	
Maximaldrehzahl n _{max} [min ⁻¹]		6000		
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,22	1,63	
Spannungskonstante K _E [V/1000 min⁻¹]	196,87	134,04	98,44	
Statorwiderstand R _{2ph} [Ω]	0,771	0,359	0,19	
Statorinduktivität L _{2ph} [mH]	11,35	5,15	2,9	
Elektrische Zeitkonstante t _{el} [ms]	14,3	14,35	15,26	
Thermische Zeitkonstante t _{therm} [min]		57		
Trägheitsmoment J [kgcm²]		33		
Masse ohne Bremse m [kg]		28		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		60	_	
Masse der Bremse [kg]		0		
Trägheitsmoment der Bremse J _{Br} [kgcm²]		14,7		
Empfehlungen				
ACOPOS 8Vxxxx.xx	1180	1320		
ACOPOSmulti 8BVIxxxx	0220	0330		
ACOPOS P3 8EIxxxx	017X	024X	034X	
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5		4	
Steckergröße	1,0	1,5		

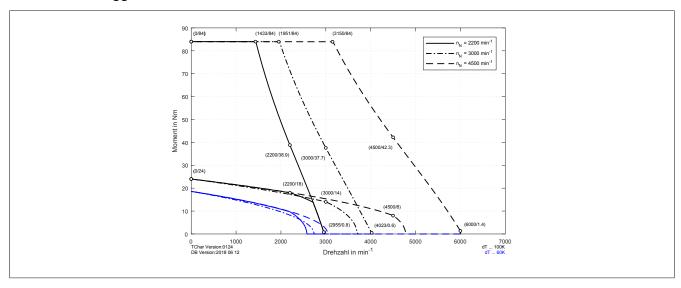
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.


112

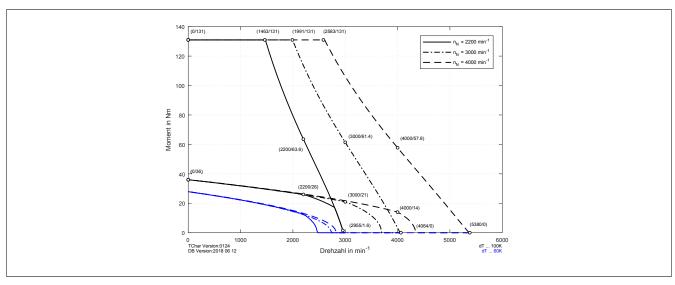
2.14.6.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSA5A.eennnffgg-3

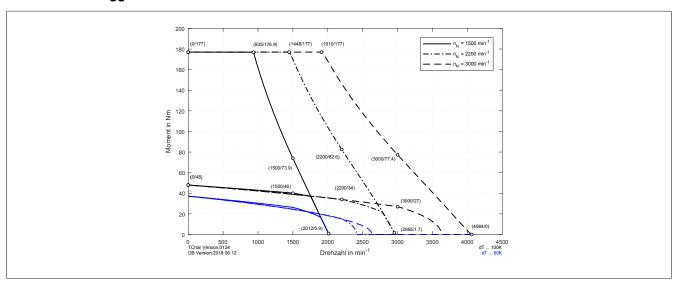
8LSA5B.eennnffgg-3



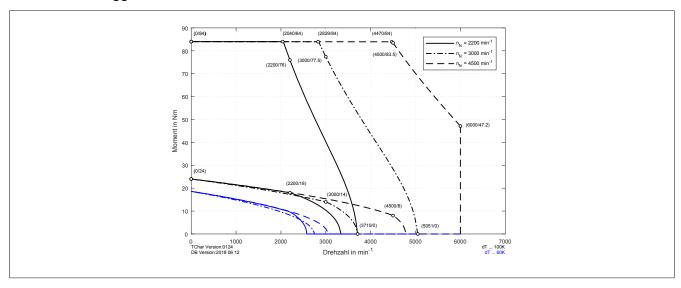
8LSA5C.eennnffgg-3



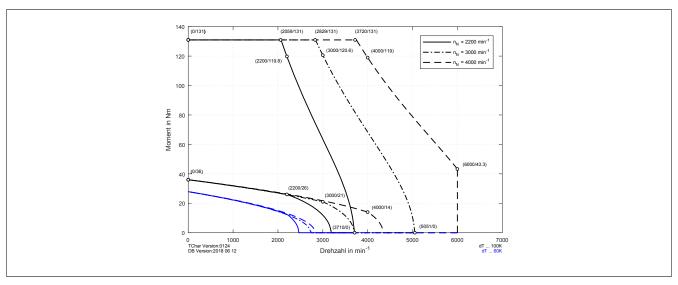
2.14.6.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSA5A.eennnffgg-3

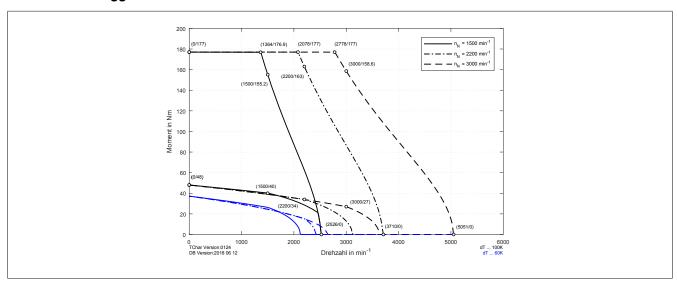
8LSA5B.eennnffgg-3



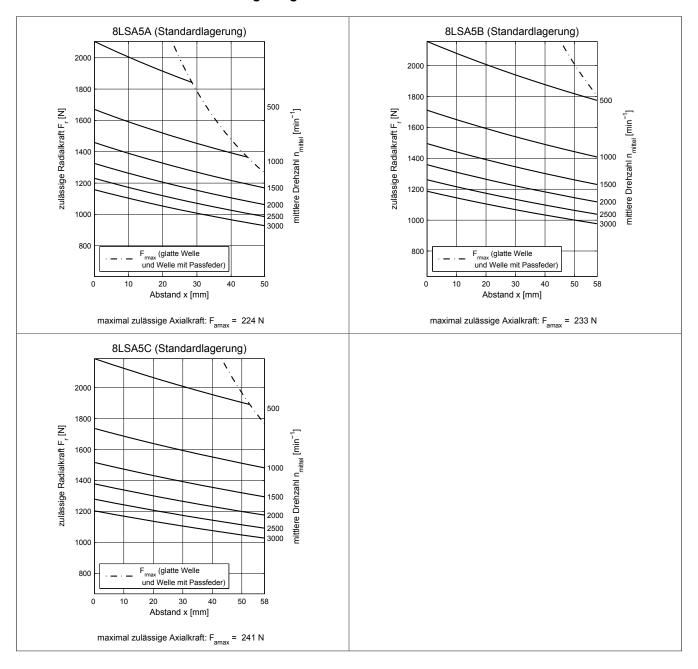
8LSA5C.eennnffgg-3

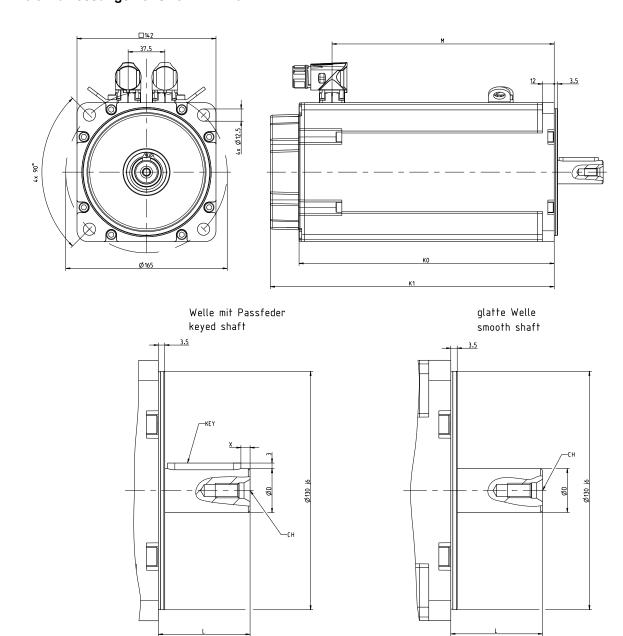


2.14.6.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA5A.eennnffgg-3

8LSA5B.eennnffgg-3


8LSA5C.eennnffgg-3


2.14.6.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

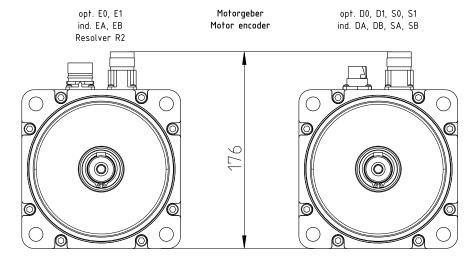
2.14.6.4.1 8LSA5A/B/C...-3 Standardlagerung

2.14.6.5 Abmessungen 8LSA5A/B/C...-3

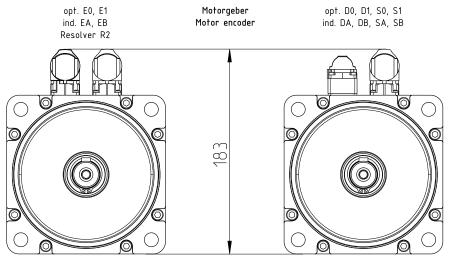
Motor

EnDat / Resolver Rückführung				Verlängerung von K₀, K₁ und M abhängig von der Motoroption [mm]			
	K ₀	K ₁	M		Haltebremse	Verstärkte Bremse	verstärktes Lager
Geberzuordnung	R2, DA, DB, SA, SB	E0, E1, D0, D1, S0, S1	Alle G	eber			
Steckergröße			1	1,5			
8LSA5A3	260	290	227	229,5	38	60	17
8LSA5B3	327,5	357,5	294,5	297		60	17
8LSA5C3	395	425	362	364,5		60	17

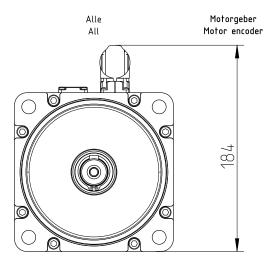
ACHTUNG: Die Maße \mathbf{K}_0 und \mathbf{K}_1 sind abhängig von der Länge des Geberdeckels

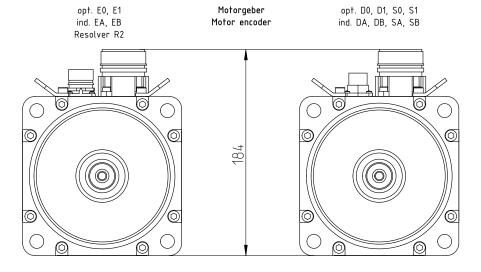

Wellenende

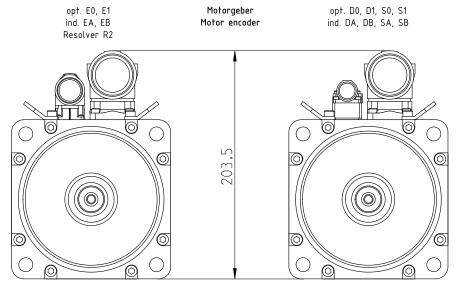
		D	L	KEY	СН	X
8LSA5A3	ohne Sondermotoroption	24 k6	50	DIN 6885 A8x7x40	M8 DIN 332-D	5
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5
8LSA5B3	ohne Sondermotoroption	28 k6	58	DIN 6885 A8x7x40	M10 DIN 332-D	9
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5
8LSA5C3	ohne Sondermotoroption	28 k6	58	DIN 6885 A8x7x40	M10 DIN 332-D	9
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5


8LS...-3 Anwenderhandbuch V2.51

2.14.6.6 Abmessungen Anschluss 8LSA5A/B/C...-3 (Steckergröße 1)







2.14.6.7 Abmessungen Anschluss 8LSA5A/B/C...-3 (Steckergröße 1,5)

8LS...-3 Anwenderhandbuch V2.51

2.14.7 Technische Daten 8LSA6...-3

Bestellnummer	8LSA63.ee022ffgg-3	8LSA63.ee030ffgg-3	8LSA63.ee045ffgg-3	8LSA64.ee022ffgg-3	
Motor				,	
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	
Polpaarzahl			4	,	
Nennmoment M _n [Nm]	11,8	11,6	9,5	18	
Nennleistung P _N [W]	2719	3644	4477	4147	
Nennstrom I _N [A]	5,3	7,1	8,7	8,1	
Stillstandsmoment M ₀ [Nm]		12,5		20	
Stillstandsstrom I ₀ [A]	5,6	7,7	11,5	9	
Maximalmoment M _{max} [Nm]		46,92	,	78,2	
Maximalstrom I _{max} [A]	30,5	42,5	61	49,5	
Maximaldrehzahl n _{max} [min-1]		90	000		
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	
Statorwiderstand $R_{2ph}[\Omega]$	2,265	1,127	0,51	1,13	
Statorinduktivität L _{2ph} [mH]	24,29	12,5	5	13,17	
Elektrische Zeitkonstante t _{el} [ms]	10,7	11,1	9,7	11,7	
Thermische Zeitkonstante t _{therm} [min]		42		45	
Trägheitsmoment J [kgcm²]		8,19	-	13,13	
Masse ohne Bremse m [kg]		12,8		16,7	
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		3	32	-	
Masse der Bremse [kg]		1	,5		
Trägheitsmoment der Bremse J _{Br}		5,	85		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx				80	
ACOPOSmulti 8BVIxxxx	0055 0110				
ACOPOS P3 8Elxxxx	8X8X 013X				
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75				
Steckergröße	1,0				

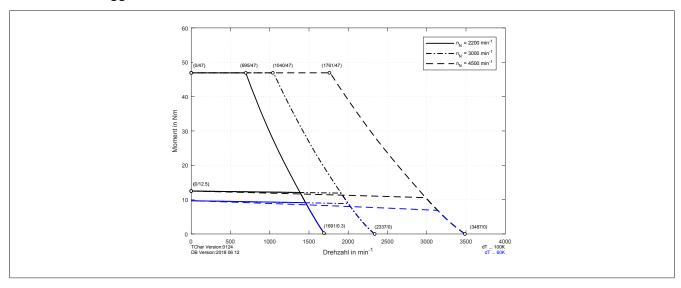
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

Bestellnummer	8LSA64.ee030ffgg-3	8LSA64.ee045ffgg-3	8LSA65.ee022ffgg-3	8LSA65.ee030ffgg-3	8LSA65.ee045ffgg-3
Motor				,	
Nenndrehzahl n _N [min-1]	3000	4500	2200	3000	4500
Polpaarzahl			4	,	,
Nennmoment M _n [Nm]	17,5	15,1	22	21	12,2
Nennleistung P _N [W]	5498	7116	5068	6597	5749
Nennstrom I _N [A]	10,7	13,8	9,9	12,9	11,2
Stillstandsmoment M ₀ [Nm]	2	0		24	,
Stillstandsstrom I ₀ [A]	12,3	18,3	10,8	14,7	22
Maximalmoment M _{max} [Nm]	78	3,2		97,92	
Maximalstrom I _{max} [A]	67,8	106,5	64,3	90,9	130,5
Maximaldrehzahl n _{max} [min-1]			9000	ı	
Drehmomentkonstante K _⊤ [Nm/A]	1,63	1,09	2,22	1,63	1,09
Spannungskonstante K _E [V/1000 min ⁻¹]	98,44	65,97	134,04	98,44	65,97
Statorwiderstand R _{2ph} [Ω]	0,62	0,285	0,94	0,484	0,2
Statorinduktivität L _{2ph} [mH]	7,21	3,21	10,9	6	2,48
Elektrische Zeitkonstante t _{el} [ms]	11,6	11,03	11,6	12	2,4
Thermische Zeitkonstante t _{therm} [min]	4	5	48		
Trägheitsmoment J [kgcm²]	13,	,13	15,6		
Masse ohne Bremse m [kg]	16	5,7	18,1		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]			32		
Masse der Bremse [kg]			1,5		
Trägheitsmoment der Bremse J _{Br}			5,85		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx	1180	1320		80	1320
ACOPOSmulti 8BVIxxxx	0110	0220	0110	0220	0330
ACOPOS P3 8EIxxxx	017X	024X	013X	017X	034X
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5	4	0,75	1,5	4
Steckergröße			1,0		

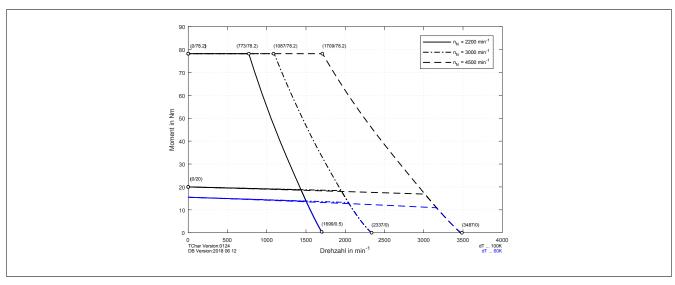
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

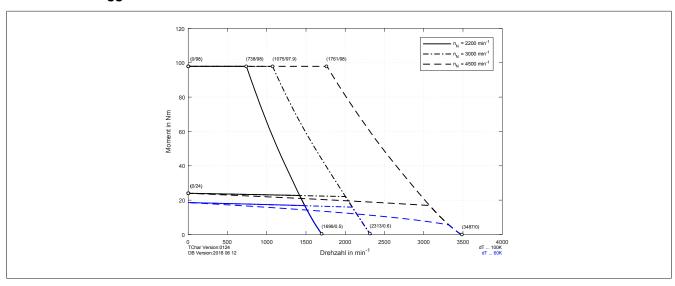
Technische Daten

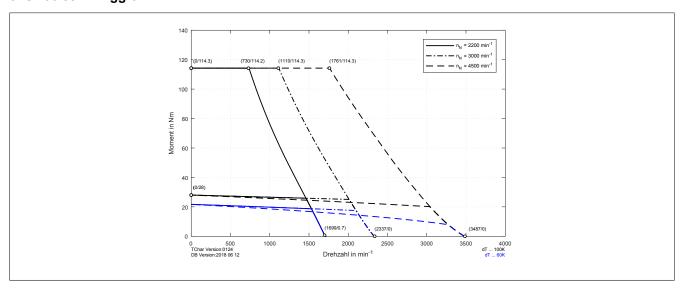

Bestellnummer	8LSA66.ee022ffgg-3	8LSA66.ee030ffgg-3	8LSA66.ee045ffgg-3
Motor			
Nenndrehzahl n _N [min-1]	2200	3000	4500
Polpaarzahl		4	
Nennmoment M _n [Nm]	24,5	23,5	15
Nennleistung P _N [W]	5644	7383	7069
Nennstrom I _N [A]	11,1	14,4	13,7
Stillstandsmoment M ₀ [Nm]		28	
Stillstandsstrom I ₀ [A]	12,6	17,2	25,7
Maximalmoment M _{max} [Nm]		114,24	
Maximalstrom I _{max} [A]	74,4	103,5	152,6
Maximaldrehzahl n _{max} [min ⁻¹]		9000	
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,09
Spannungskonstante K _E [V/1000 min⁻¹]	134,04	98,44	65,97
Statorwiderstand R _{2ph} [Ω]	0,72	0,382	0,19
Statorinduktivität L _{2ph} [mH]	10,4	4,87	2,1
Elektrische Zeitkonstante t _{el} [ms]	14,4	12,7	11,1
Thermische Zeitkonstante t _{therm} [min]		52	,
Trägheitsmoment J [kgcm²]		18,06	
Masse ohne Bremse m [kg]		20,6	
Haltebremse			
Haltemoment der Bremse M _{Br} [Nm]		32	
Masse der Bremse [kg]		1,5	
Trägheitsmoment der Bremse J _{Br} [kgcm²]		5,85	
Empfehlungen			
ACOPOS 8Vxxxx.xx	11	80	1320
ACOPOSmulti 8BVIxxxx	0110	0220	0330
ACOPOS P3 8EIxxxx	017X	024X	034X
Kabelquerschnitt für B&R Motorkabel [mm²]		,5	4
Steckergröße	1	,0	1,5

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

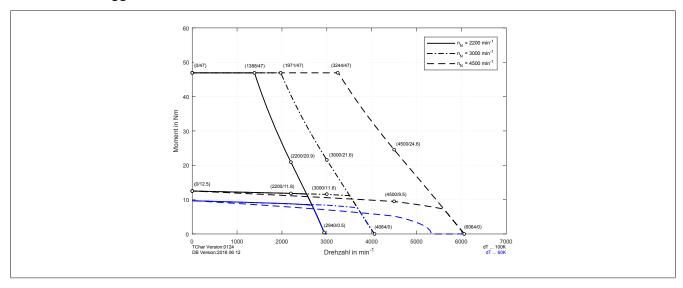

122

2.14.7.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

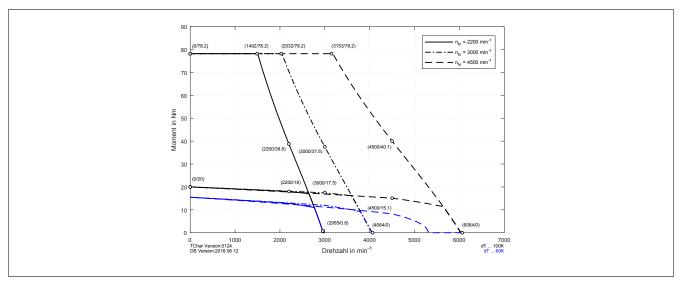

8LSA63.eennnffgg-3


8LSA64.eennnffgg-3

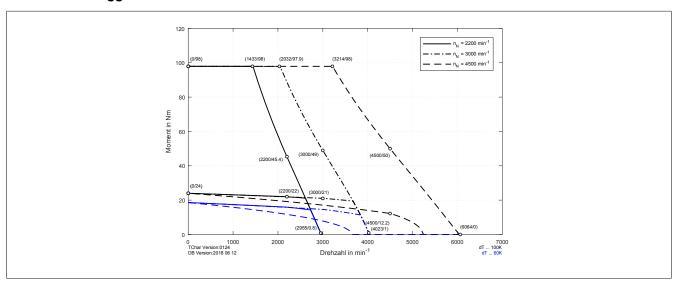
8LSA65.eennnffgg-3

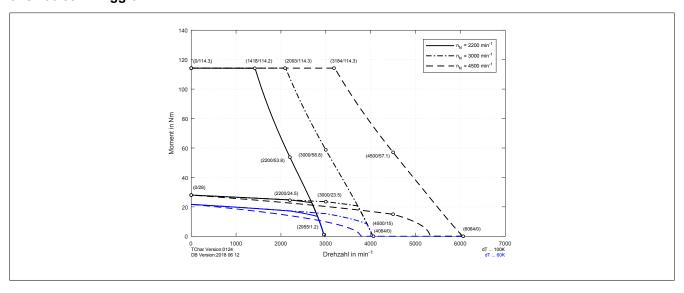


8LSA66.eennnffgg-3

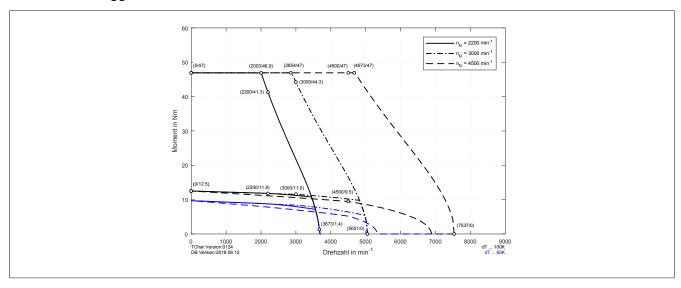


2.14.7.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

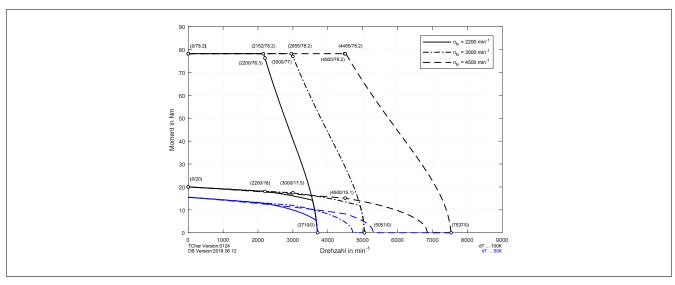

8LSA63.eennnffgg-3


8LSA64.eennnffgg-3

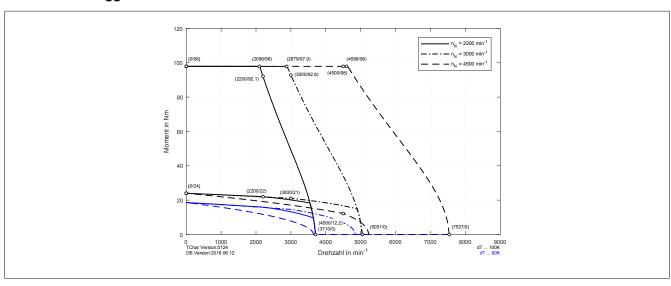
8LSA65.eennnffgg-3



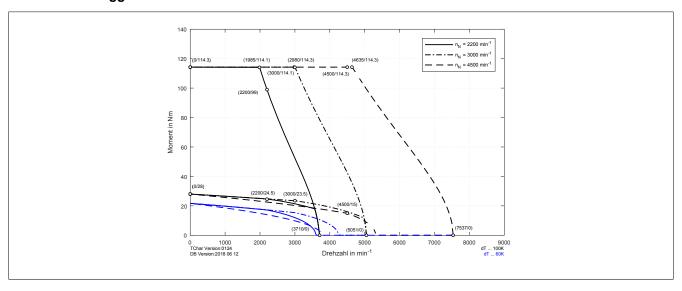
8LSA66.eennnffgg-3



2.14.7.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA63.eennnffgg-3

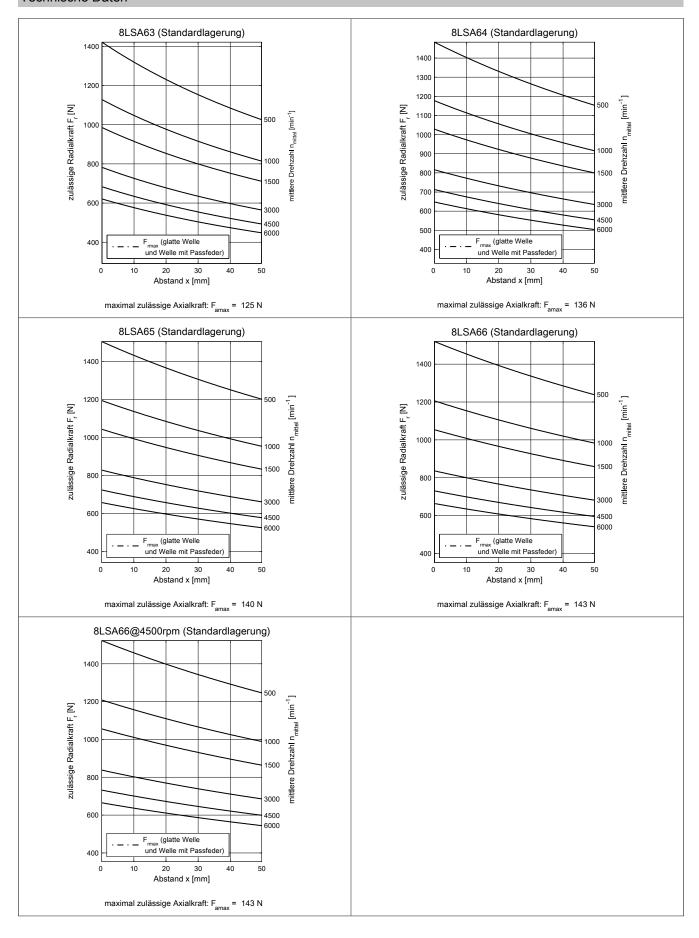
8LSA64.eennnffgg-3



8LSA65.eennnffgg-3

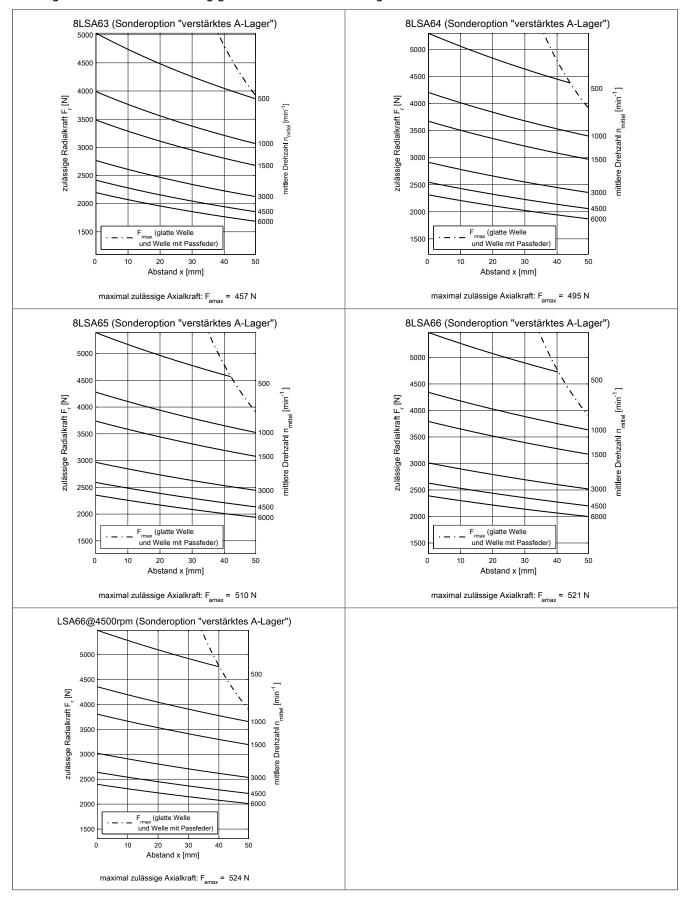
8LS...-3 Anwenderhandbuch V2.51

8LSA66.eennnffgg-3

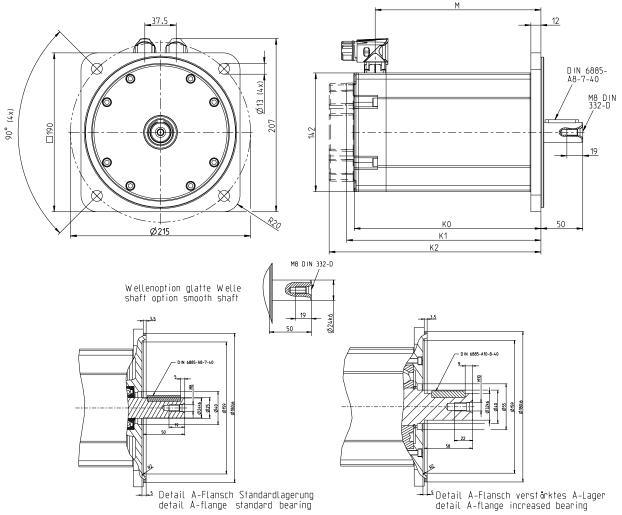


2.14.7.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.14.7.4.1 8LSA6...-3 / 8LSC6...-3 Standardlagerung

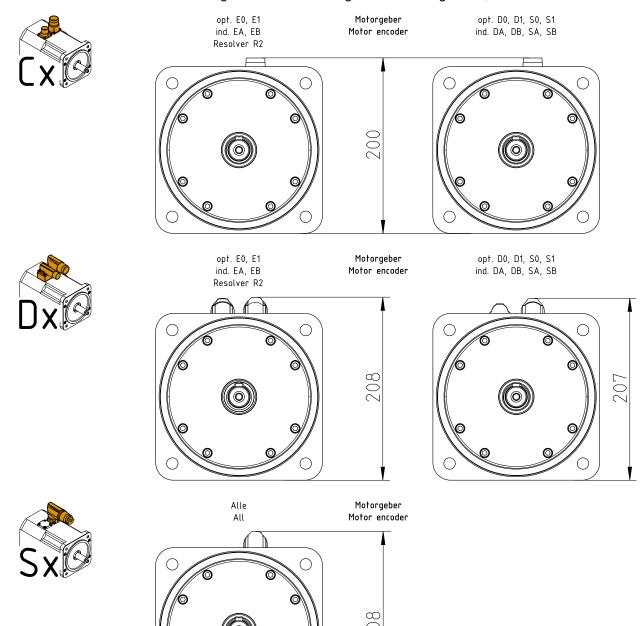
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!


2.14.7.4.2 8LSA6...-3 / 8LSC6...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

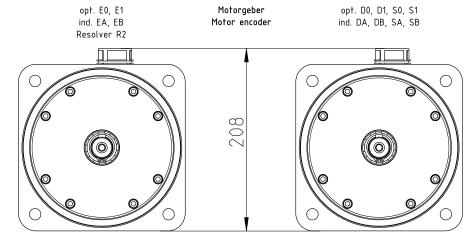
8LS...-3 Anwenderhandbuch V2.51

2.14.7.5 Abmessungen 8LSA6...-3

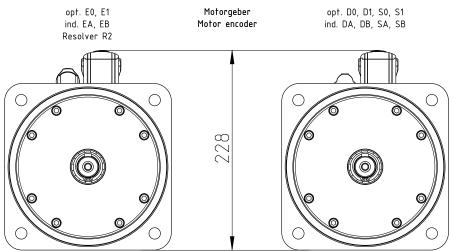


EnDat / Resolver Rückführung					Verlängerung von K ₀ , K ₁ , K ₂ und M abhängig von der Motoroption [mm]		
Geberzuordnung	DA,D- B,SA,SB,R2	EA,EB	D0,D1,E0,E1,S0,S1				
Bestellnummer	K ₀	K ₁	K ₂	M	Halte-	verstärkte Halte-	verstärktes A-Lager
					bremse	bremse	
8LSA63.eennnffgg-3	178	189	208	153	60	70	28
8LSA64.eennnffgg-3	223	234	253	198	60	70	28
8LSA65.eennnffgg-3	246	257	276	221	60	70	28
8LSA66.eennnffgg-3	268	279	298	243	60	70	28
8LSA66.ee045ffgg-3, Leistungsste- cker Gr. 1,5!	283	294	313	250	60	70	28

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.


2.14.7.6 Abmessungen Anschluss 8LSA6...-3 (Steckergröße 1)

Diese Abmessungen sind gültig **bis 8LSA65...-3** bzw. **bis 8LSA66...-3 Nenndrehzahl 3000**. **Ab 8LSA66...-3 Nenndrehzahl 4500** gelten die Abmessungen der Steckergröße 1,5 auf Seite 134.



2.14.7.7 Abmessungen Anschluss 8LSA6...-3 (Steckergröße 1,5)

2.14.8 Technische Daten 8LSA7...-3

Bestellnummer	8LSA73.ee022ffgg-3	8LSA73.ee030ffgg-3	8LSA73.ee045ffgg-3
Motor			
Nenndrehzahl n _N [min-1]	2200	3000	4500
Polpaarzahl		5	
Nennmoment M _n [Nm]	21,9	20,5	16
Nennleistung P _N [W]	5045	6440	7540
Nennstrom I _N [A]	9,86	12,58	14,68
Stillstandsmoment M ₀ [Nm]		26	
Stillstandsstrom I ₀ [A]	11,71	15,95	23,85
Maximalmoment M _{max} [Nm]		107	
Maximalstrom I _{max} [A]	71	96,54	144
Maximaldrehzahl n _{max} [min-1]		6000	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97
Statorwiderstand R _{2ph} [Ω]	0,72	0,395	0,19
Statorinduktivität L _{2ph} [mH]	12,3	6,5	2,9
Elektrische Zeitkonstante t _{el} [ms]	17,08	15,48	15,26
Thermische Zeitkonstante t _{therm} [min]		37	
Trägheitsmoment J [kgcm²]		46	
Masse ohne Bremse m [kg]		20	
Haltebremse			_
Haltemoment der Bremse M _{Br} [Nm]		47	_
Masse der Bremse [kg]		0	
Trägheitsmoment der Bremse J _{Br} [kgcm²]			
Empfehlungen			
ACOPOS 8Vxxxx.xx	1	80	1320
ACOPOSmulti 8BVIxxxx	0110	0220	0330
ACOPOS P3 8EIxxxx	013X	024X	034X
Kabelquerschnitt für B&R Motorkabel [mm²]		,5	4
Steckergröße	1	1,5	

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmomenent Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

Technische Daten

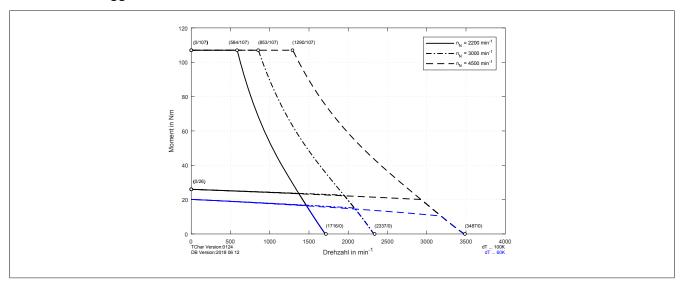
Bestellnummer	8LSA74.ee022ffgg-3	8LSA74.ee030ffgg-3	8LSA74.ee045ffgg-3
Motor			
Nenndrehzahl n _N [min-1]	2200	3000	4500
Polpaarzahl		5	
Nennmoment M _n [Nm]	27,5	25	18
Nennleistung P _N [W]	6336	7854	8482
Nennstrom I _N [A]	12,39	15,34	16,51
Stillstandsmoment M ₀ [Nm]		33	
Stillstandsstrom I ₀ [A]	14,86	20,25	30
Maximalmoment M _{max} [Nm]		150	
Maximalstrom I _{max} [A]	99	135,33	202
Maximaldrehzahl n _{max} [min-1]		6000	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09
Spannungskonstante K _E [V/1000 min⁻¹]	134,04	98,44	65,97
Statorwiderstand R _{2ph} [Ω]	0,51	0,28	0,13
Statorinduktivität L _{2ph} [mH]	9	4,9	2,2
Elektrische Zeitkonstante t _{el} [ms]	16,67	17,5	16,92
Thermische Zeitkonstante t _{therm} [min]		41	,
Trägheitsmoment J [kgcm²]		60	
Masse ohne Bremse m [kg]		24	
Haltebremse			
Haltemoment der Bremse M _{Br} [Nm]		47	
Masse der Bremse [kg]		0	
Trägheitsmoment der Bremse J _{Br} [kgcm²]		32	
Empfehlungen			
ACOPOS 8Vxxxx.xx	1180	320	
ACOPOSmulti 8BVIxxxx	0220		330
ACOPOS P3 8EIxxxx	017X	024X	034X
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5		4
Steckergröße	1	,0	1,5

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

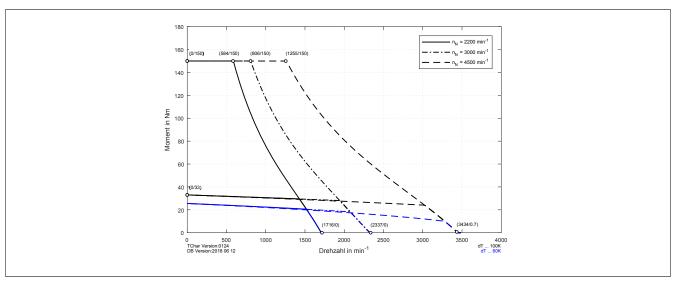
Bestellnummer	8LSA75.ee022ffgg-3	8LSA75.ee030ffgg-3		
Motor				
Nenndrehzahl n _N [min-1]	2200	3000		
Polpaarzahl		5		
Nennmoment M _n [Nm]	34	30		
Nennleistung P _N [W]	7833	9425		
Nennstrom I _N [A]	15,32	18,4		
Stillstandsmoment M ₀ [Nm]		43		
Stillstandsstrom I ₀ [A]	19,37	26,38		
Maximalmoment M _{max} [Nm]		187		
Maximalstrom I _{max} [A]	124	169		
Maximaldrehzahl n _{max} [min ⁻¹]	4	1500		
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63		
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44		
Statorwiderstand $R_{2ph}[\Omega]$	0,39	0,21		
Statorinduktivität L _{2ph} [mH]	7,1	3,9		
Elektrische Zeitkonstante t _{el} [ms]	17,5	18,57		
Thermische Zeitkonstante t _{therm} [min]		46		
Trägheitsmoment J [kgcm²]		74		
Masse ohne Bremse m [kg]		28		
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		47		
Masse der Bremse [kg]		0		
Trägheitsmoment der Bremse J _{Br} [kgcm²]	32			
Empfehlungen				
ACOPOS 8Vxxxx.xx	1320			
ACOPOSmulti 8BVIxxxx	0220	0330		
ACOPOS P3 8EIxxxx	024X 034X			
Kabelquerschnitt für B&R Motorkabel [mm²]	4			
Steckergröße	1,0			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

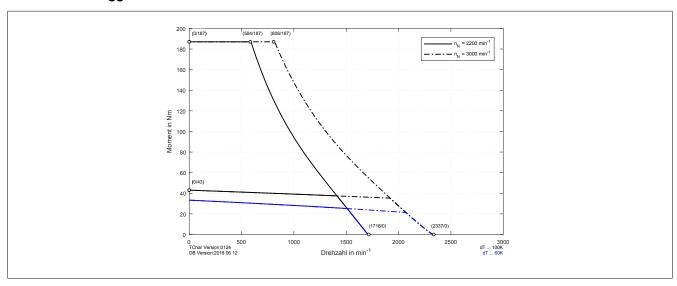
Technische Daten

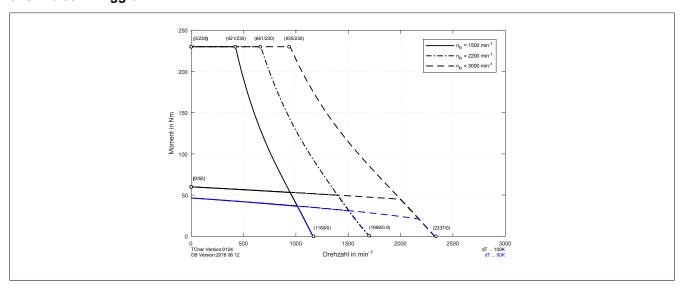

Bestellnummer	8LSA76.ee015ffgg-3	8LSA76.ee022ffgg-3	8LSA76.ee030ffgg-3	8LSA77.ee030ffgg-3	8LSA78.ee030ffgg-3	
Motor				,		
Nenndrehzahl n _N [min-1]	1500	2200		3000		
Polpaarzahl	5					
Nennmoment M _n [Nm]	48,5	42,5	35	40	44	
Nennleistung P _N [W]	7618	9791	10996	12566	13823	
Nennstrom I _N [A]	14,88	19,2	21,47	24,5	27	
Stillstandsmoment M ₀ [Nm]	60		73	85		
Stillstandsstrom I ₀ [A]	18,4	27	36,81	44,8	52,1	
Maximalmoment M _{max} [Nm]	230		270	330		
Maximalstrom I _{max} [A]	92,5	136	185	212	260	
Maximaldrehzahl n _{max} [min-1]			4500			
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,22		1,63		
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87	134,04		98,44		
Statorwiderstand R_{2ph} [Ω]	0,57	0,26	0,15	0,109	0,08	
Statorinduktivität L _{2ph} [mH]	11,5	5,1	2,7	2,2	1,8	
Elektrische Zeitkonstante t _{el} [ms]	17,85	19,6	18	18,2	22,5	
Thermische Zeitkonstante t _{therm} [min]	56			65	74	
Trägheitsmoment J [kgcm²]	102			130	158	
Masse ohne Bremse m [kg]	36			44	52	
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]	47					
Masse der Bremse [kg]	0					
Trägheitsmoment der Bremse J _{Br}	32					
[kgcm ²]						
Empfehlungen						
ACOPOS 8Vxxxx.xx	1320		1640			
ACOPOSmulti 8BVIxxxx	0220	0330	0440	0660		
ACOPOS P3 8EIxxxx	024X	034X	044X		-	
Kabelquerschnitt für B&R Motorkabel [mm²]	4			10		
Steckergröße	1,5				1,5/16	

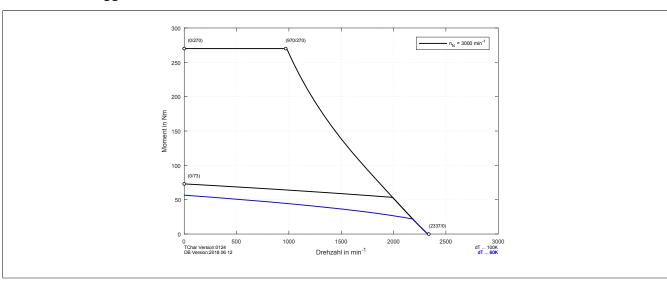
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

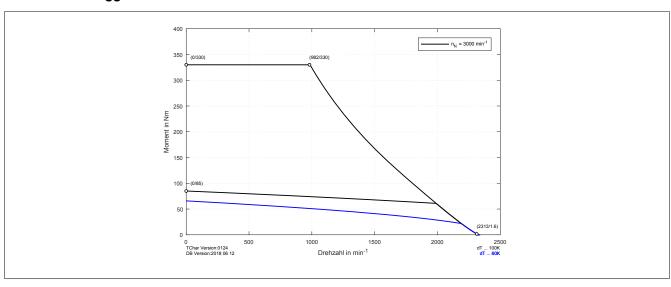

138

2.14.8.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

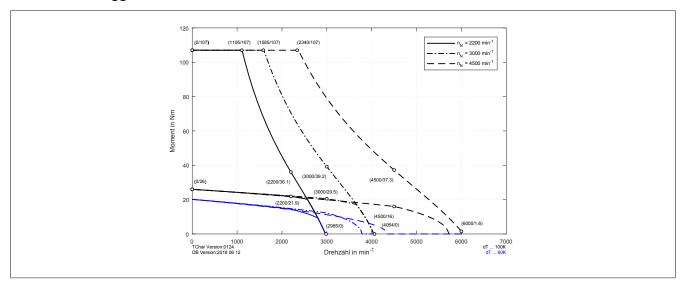

8LSA73.eennnffgg-3


8LSA74.eennnffgg-3

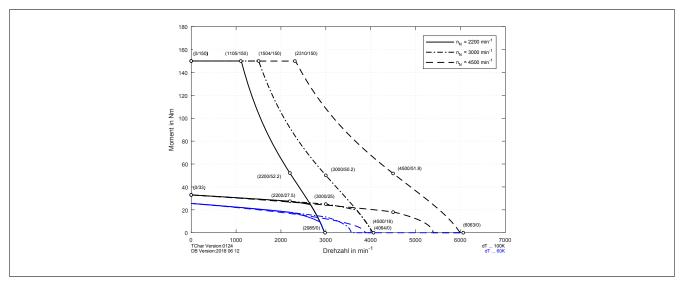

8LSA75.eennnffgg-3


8LSA76.eennnffgg-3

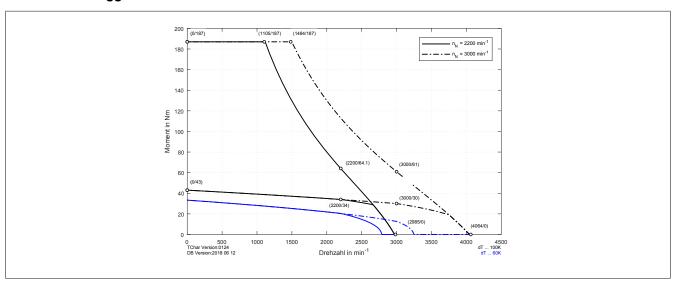
8LSA77.eennnffgg-3

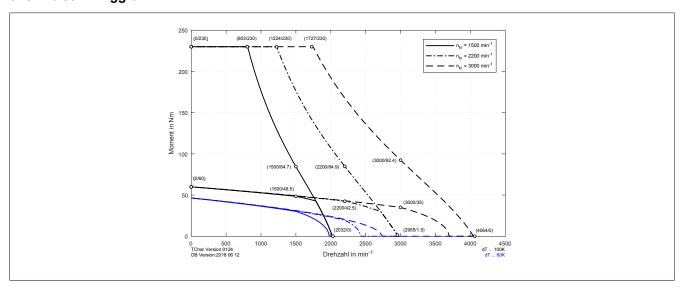


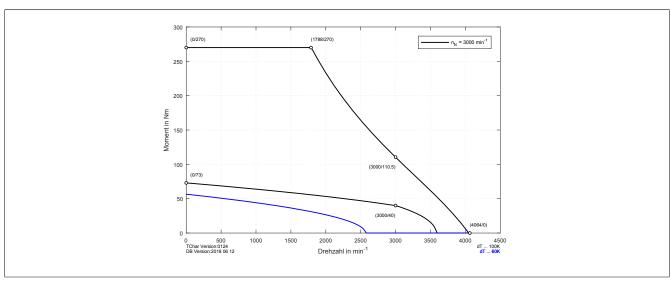
8LSA78.eennnffgg-3

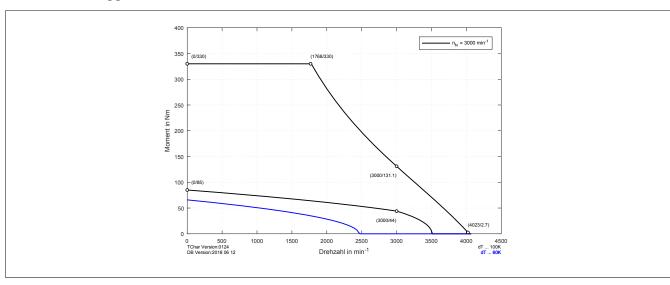


2.14.8.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

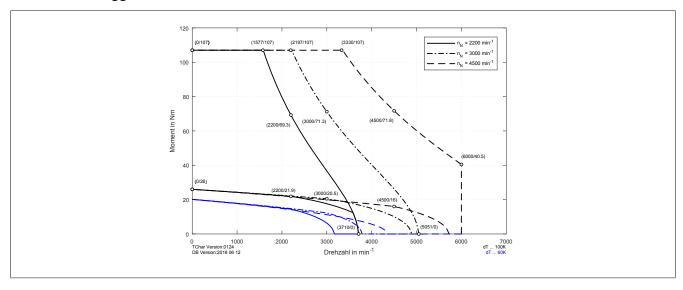

8LSA73.eennnffgg-3


8LSA74.eennnffgg-3

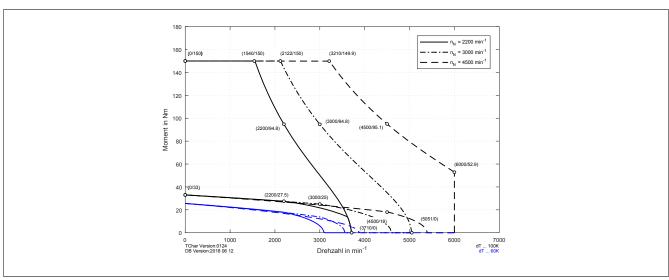

8LSA75.eennnffgg-3


8LSA76.eennnffgg-3

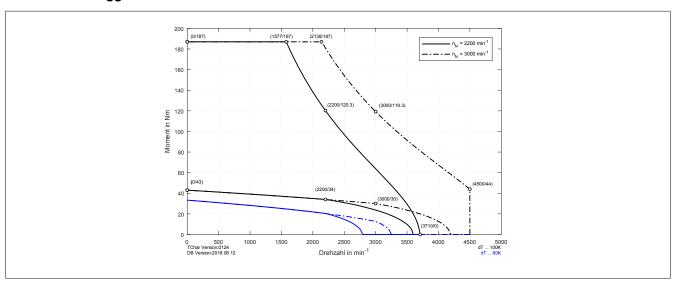
8LSA77.eennnffgg-3

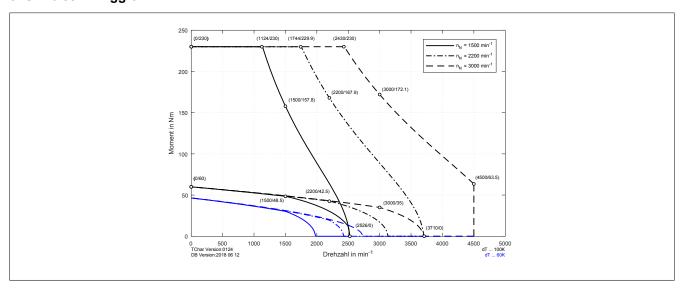


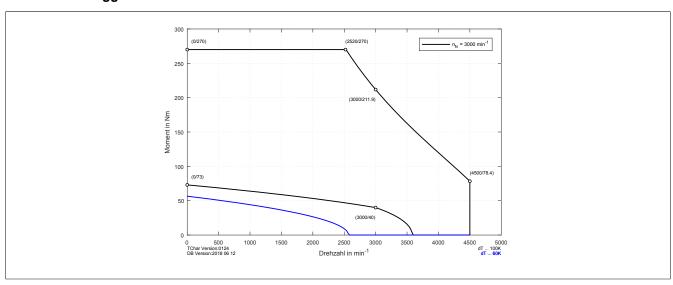
8LSA78.eennnffgg-3

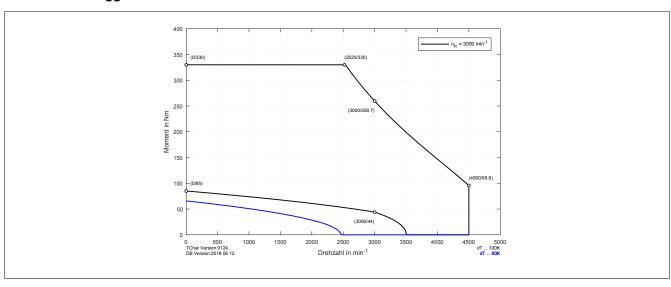


2.14.8.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA73.eennnffgg-3

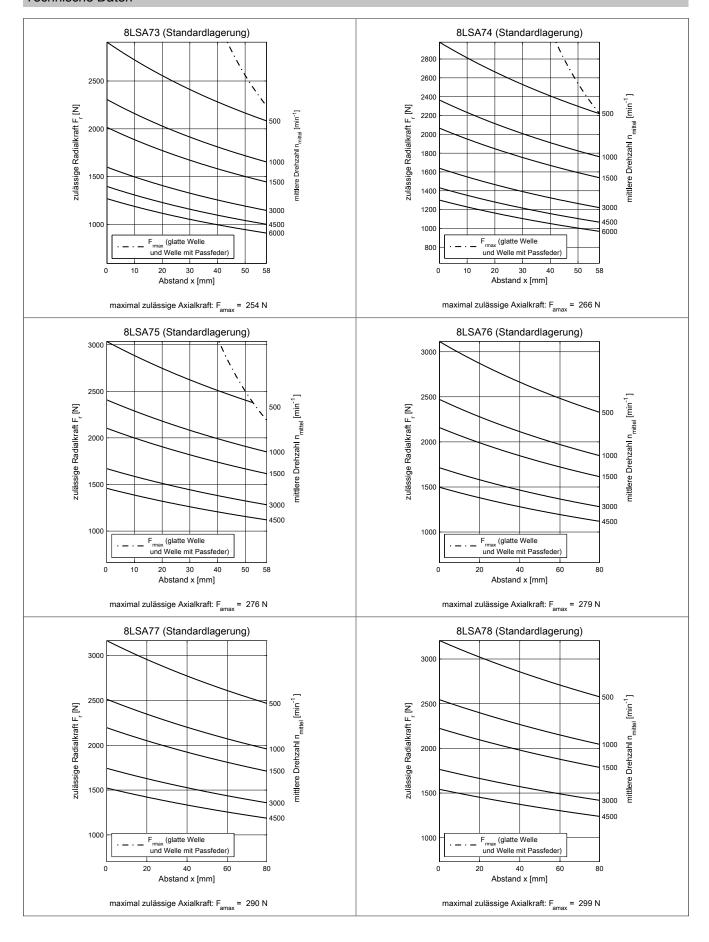

8LSA74.eennnffgg-3


8LSA75.eennnffgg-3


8LSA76.eennnffgg-3

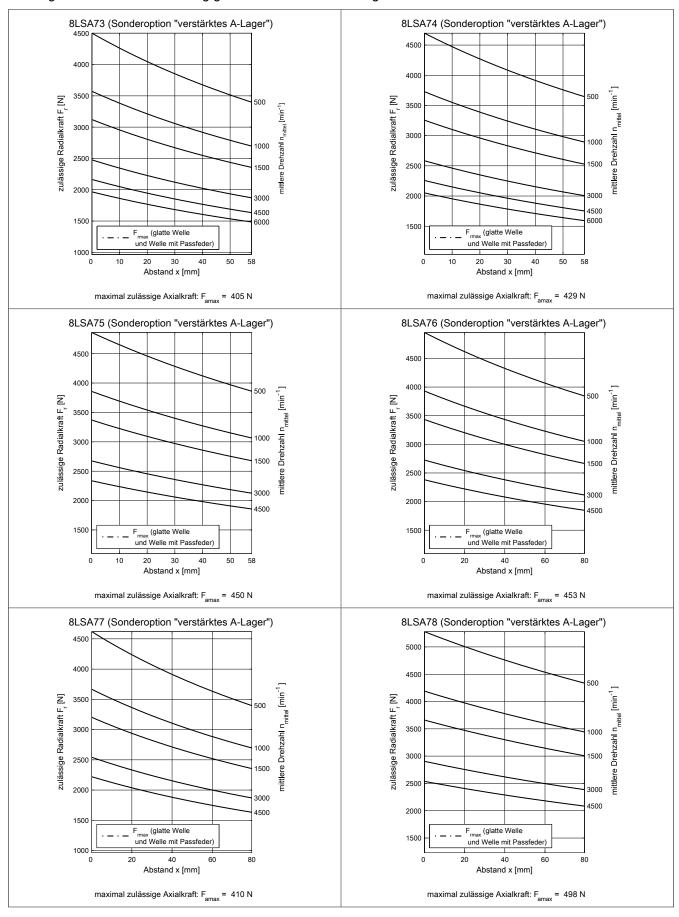
8LSA77eennnffgg-3

8LSA78.eennnffgg-3

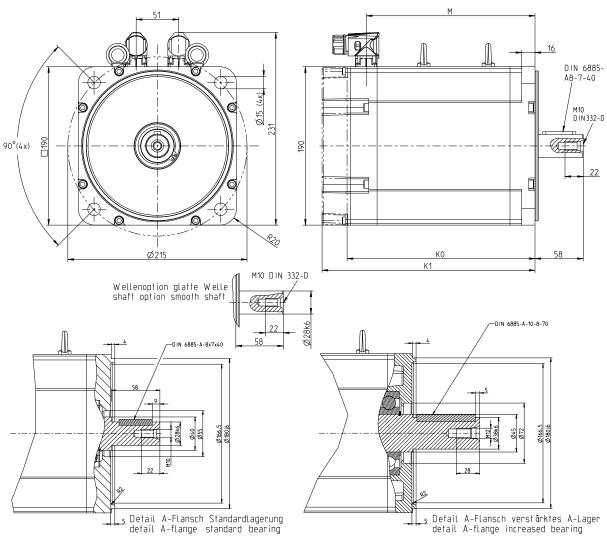


2.14.8.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.14.8.4.1 8LSA7...-3 / 8LSC7...-3 Standardlagerung

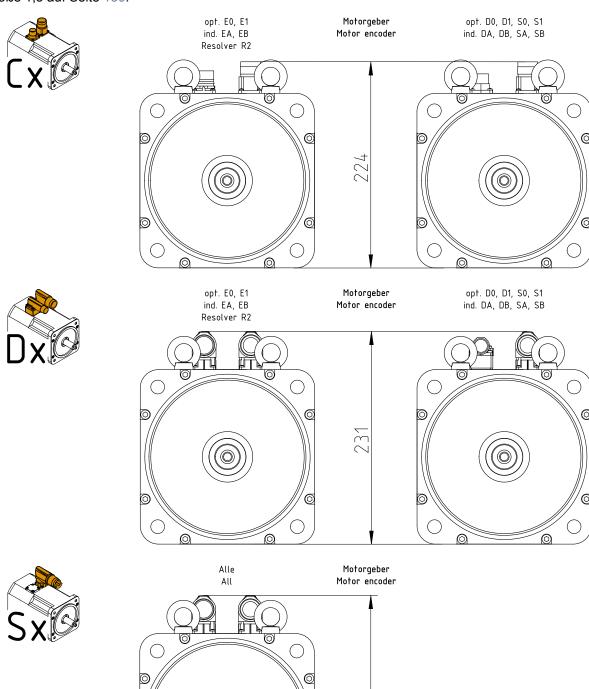
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



2.14.8.4.2 8LSA7...-3 / 8LSC7...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

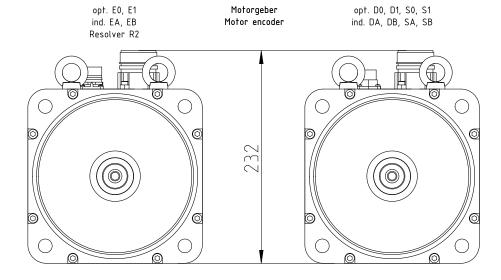
2.14.8.5 Abmessungen 8LSA73/74/75...-3

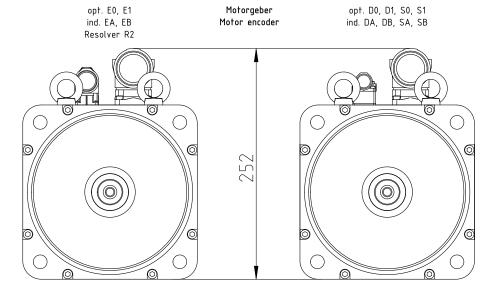


EnDat / Resolver Rückführung				Verlängerung Motoroption [r	von K₀ und K₁ab nm]	hängig von der
Geberzuordnung	DA,DB,EA,EB,R2, SA,SB	D0,D1,E0,E1,S0,S1				
Bestellnummer	K ₀	K ₁	М	Haltebremse	verstärkte Haltebremse	verstärktes A-Lager
8LSA73.eennnffgg-3	205	233	180	37	54	10
8LSA73.ee045ffgg-3, Leistungsstecker Gr. 1,5			auf Anfr	age		-
8LSA74.eennnffgg-3	228	256	203	37	54	10
8LSA74.ee045ffgg-3, Leistungsstecker Gr. 1,5	243,5	243,5	212	37	54	10
8LSA75.eennnffgg-3	250	278	225	37	54	10

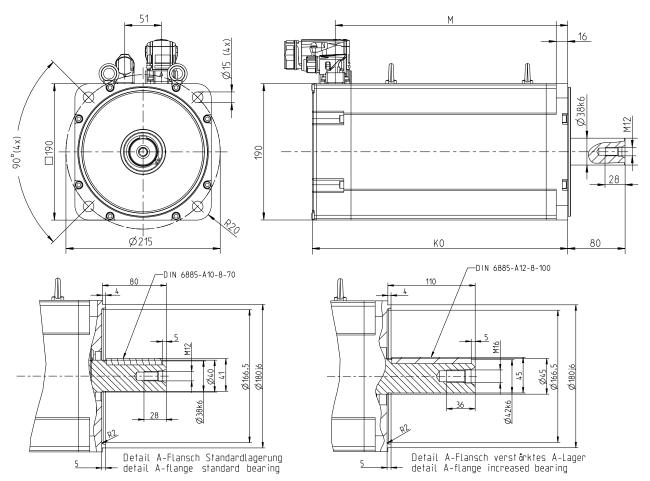
ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

2.14.8.6 Abmessungen Anschluss 8LSA73/74/75...-3 (Steckergröße 1)

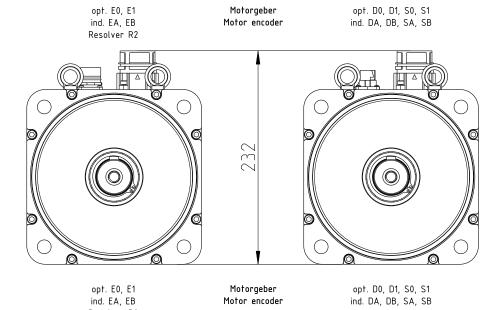

Für **8LSA73...-3 Nenndrehzahl 4500** und **8LSA74...-3 Nenndrehzahl 4500** gelten die Abmessungen der Steckergröße 1,5 auf Seite 150.


0

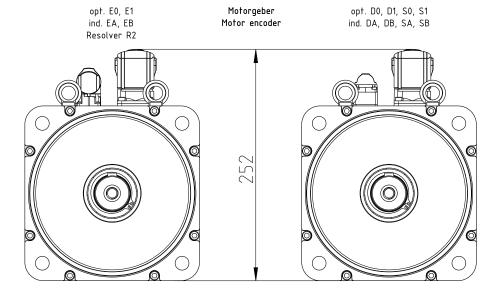
2.14.8.7 Abmessungen Anschluss 8LSA73/74/75...-3 (Steckergröße 1,5)



2.14.8.8 Abmessungen 8LSA76/77/78...-3



EnDat / Resolver Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]			
Bestellnummer	K ₀ M Ha		Haltebremse	verstärkte Hal-	Spezialbrem-	verstärktes
				tebremse	se	A-Lager
8LSA76.eennnffgg-3	311	279	37	54	50	10
8LSA77.eennnffgg-3	356	324	37	54	50	10
8LSA78.eennnffgg-3	401	369	37	54	50	10


ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

2.14.8.9 Abmessungen Anschluss 8LSA76/77/78...-3

2.14.9 Technische Daten 8LSA8...-3

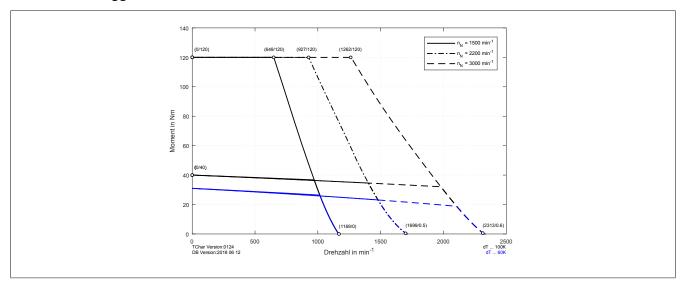
Bestellnummer	8LSA83.ee015ffgg-3	8LSA83.ee022ffgg-3	8LSA83.ee030ffgg-3	8LSA84.ee015ffgg-3
Motor				
Nenndrehzahl n _N [min-1]	1500	2200	3000	1500
Polpaarzahl			3	,
Nennmoment M _n [Nm]	35	31	27	58
Nennleistung P _N [W]	5498	7142	8482	9111
Nennstrom I _N [A]	10,7	14	16,6	17,8
Stillstandsmoment M ₀ [Nm]		40		69
Stillstandsstrom I ₀ [A]	12,3	18	24,5	21,2
Maximalmoment M _{max} [Nm]		120		204
Maximalstrom I _{max} [A]	50	73	102	79
Maximaldrehzahl n _{max} [min-1]		36	500	
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,22	1,63	3,26
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87	134,04	98,44	196,87
Statorwiderstand R _{2ph} [Ω]	0,896	0,41	0,23	0,34
Statorinduktivität L _{2ph} [mH]	16,86	9,6	5,4	10,3
Elektrische Zeitkonstante t _{ei} [ms]	18,8	23,4	23,5	30,3
Thermische Zeitkonstante t _{therm} [min]		50		65
Trägheitsmoment J [kgcm²]		65		114
Masse ohne Bremse m [kg]		43		61
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		1	30	
Masse der Bremse [kg]			9	
Trägheitsmoment der Bremse J _{Br}		5	53	
[kgcm ²]				
Empfehlungen				
ACOPOS 8Vxxxx.xx	1180		1320	
ACOPOSmulti 8BVIxxxx	0110			330
ACOPOS P3 8Elxxxx	017X	024X	034X	024X
Kabelquerschnitt für B&R Motorkabel [mm²]			4	
Steckergröße		1	,5	

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

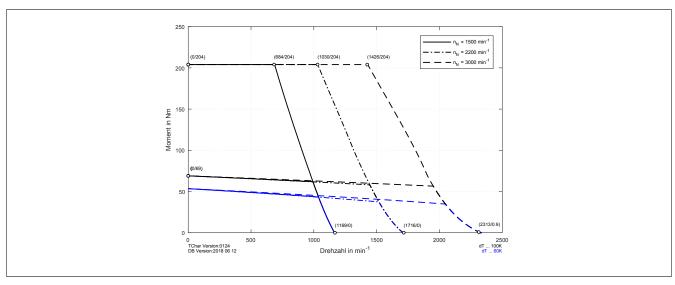
Technische Daten

Bestellnummer	8LSA84.ee022ffgg-3	8LSA84.ee030ffgg-3	8LSA85.ee015ffgg-3	8LSA85.ee020ffgg-3	
Motor					
Nenndrehzahl n _N [min-1]	2200	3000	1500	2000	
Polpaarzahl		:	3	,	
Nennmoment M _n [Nm]	51,5	48,4	77	72	
Nennleistung P _N [W]	11865	15205	12095	15080	
Nennstrom I _N [A]	23,2	29,7	23,6	29,4	
Stillstandsmoment M ₀ [Nm]	(69	g)4	
Stillstandsstrom I ₀ [A]	31,1	42,3	28,9	38,4	
Maximalmoment M _{max} [Nm]	2	04	2	80	
Maximalstrom I _{max} [A]	115	171	113	151	
Maximaldrehzahl n _{max} [min ⁻¹]		36	800	J	
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	3,26	2,45	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	196,87	147,65	
Statorwiderstand $R_{2nh}[\Omega]$	0,16	0,09	0,29	0,17	
Statorinduktivität L _{2ph} [mH]	4,9	2,6	8,9	5,3	
Elektrische Zeitkonstante t _{el} [ms]	30,6	28,9	30,7	31,2	
Thermische Zeitkonstante t _{therm} [min]	(85	80		
Trägheitsmoment J [kgcm²]	1	14	150		
Masse ohne Bremse m [kg]	(61	75,5		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		1.	30		
Masse der Bremse [kg]		!	9		
Trägheitsmoment der Bremse J _{Br}		5	53		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx	1640		1320	1640	
ACOPOSmulti 8BVIxxxx	0440	0660	0330	0440	
ACOPOS P3 8EIxxxx	044X	-	034X	044X	
Kabelquerschnitt für B&R Motorkabel [mm²]	4	10	4	10	
Steckergröße	1,5	1,5/16	1,5	1,5/16	

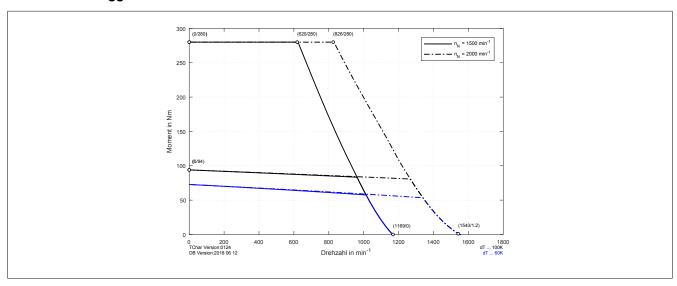
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

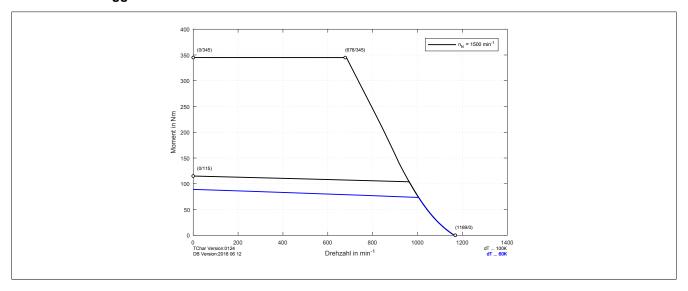

154

Bestellnummer	8LSA86.ee015ffgg-3	8LSA86.ee020ffgg-3	
Motor			
Nenndrehzahl n _N [min-1]	1500	2000	
Polpaarzahl		3	
Nennmoment M _n [Nm]	97	85	
Nennleistung P _N [W]	15237	17802	
Nennstrom I _N [A]	29,8	32,9	
Stillstandsmoment M ₀ [Nm]	1	115	
Stillstandsstrom I ₀ [A]	35,3	44,6	
Maximalmoment M _{max} [Nm]	3	345	
Maximalstrom I _{max} [A]	137	182	
Maximaldrehzahl n _{max} [min ⁻¹]	36	600	
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,58	
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87	156,03	
Statorwiderstand R _{2ph} [Ω]	0,208	0,15	
Statorinduktivität L _{2ph} [mH]	6,1	4,9	
Elektrische Zeitkonstante t _{el} [ms]	30,5	32,6	
Thermische Zeitkonstante t _{therm} [min]	(90	
Trägheitsmoment J [kgcm²]	1	92	
Masse ohne Bremse m [kg]	8	89	
Haltebremse			
Haltemoment der Bremse M _{Br} [Nm]	1	30	
Masse der Bremse [kg]		9	
Trägheitsmoment der Bremse J _{Br} [kgcm²]	Į.	53	
Empfehlungen			
ACOPOS 8Vxxxx.xx	1640		
ACOPOSmulti 8BVIxxxx	0440 0660		
ACOPOS P3 8EIxxxx	044X -		
Kabelquerschnitt für B&R Motorkabel [mm²]		10	
Steckergröße	1,5	1,5/16	

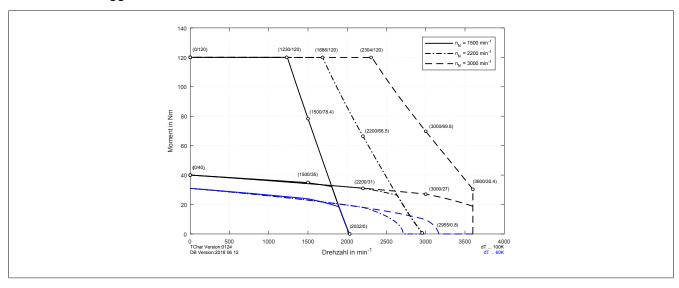

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

2.14.9.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

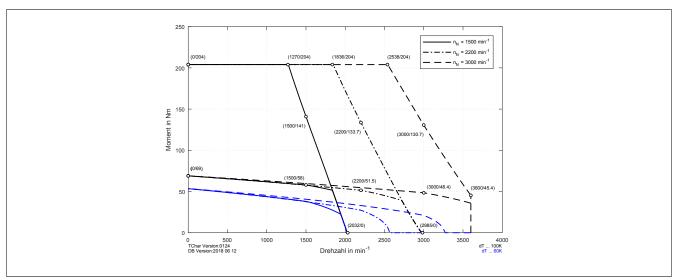

8LSA83.eennnffgg-3


8LSA84.eennnffgg-3

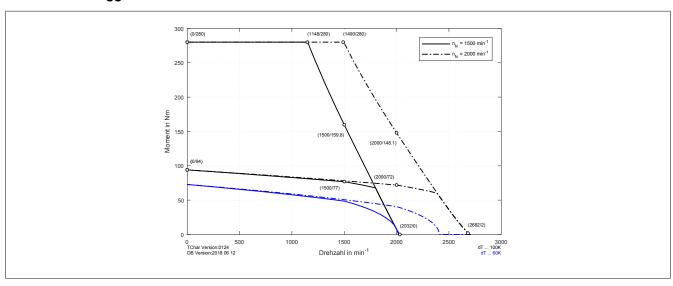
8LSA85.eennnffgg-3

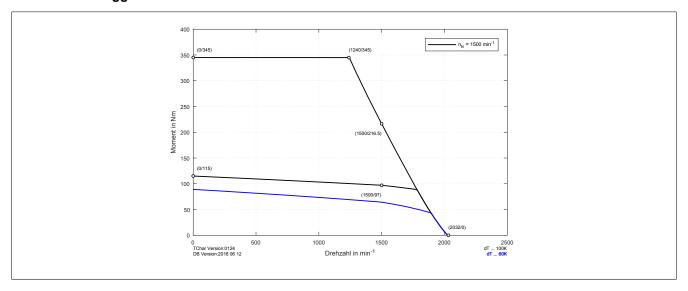


8LSA86.eennnffgg-3

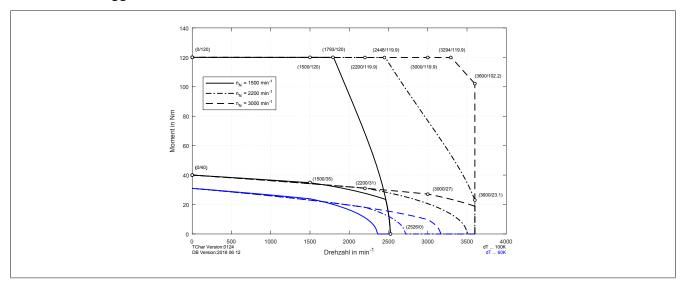


2.14.9.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

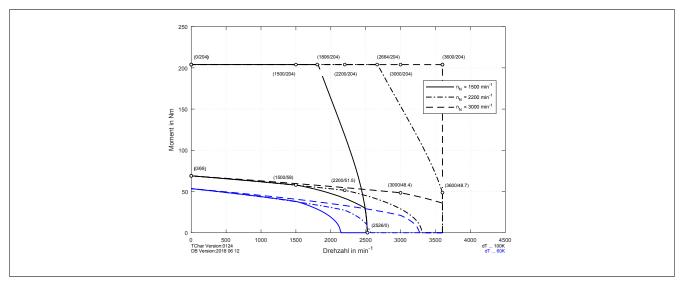

8LSA83.eennnffgg-3


8LSA84.eennnffgg-3

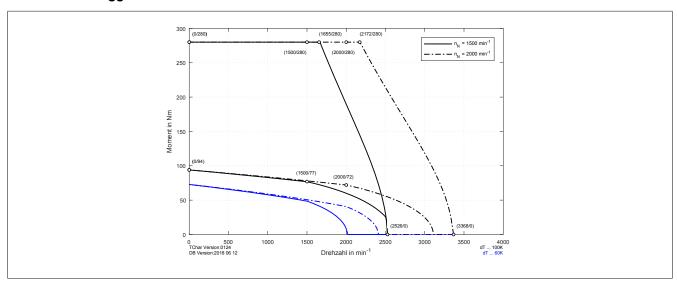
8LSA85.eennnffgg-3

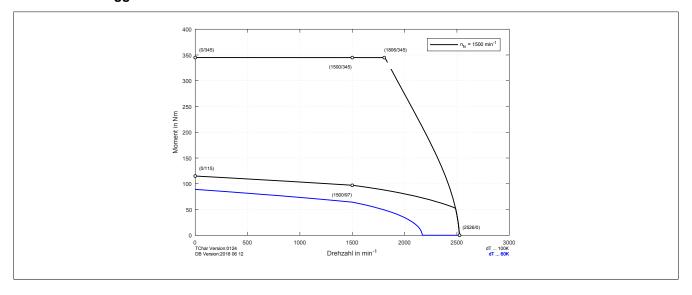


8LSA86.eennnffgg-3



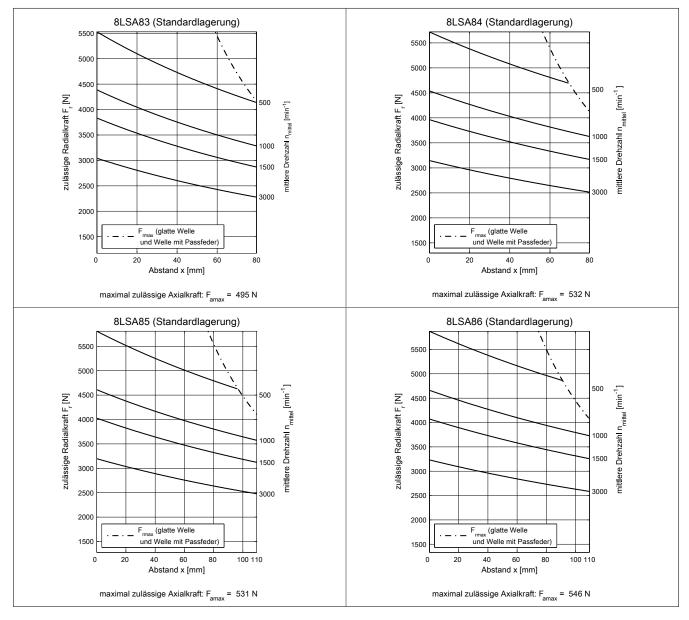
2.14.9.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSA83.eennnffgg-3


8LSA84.eennnffgg-3

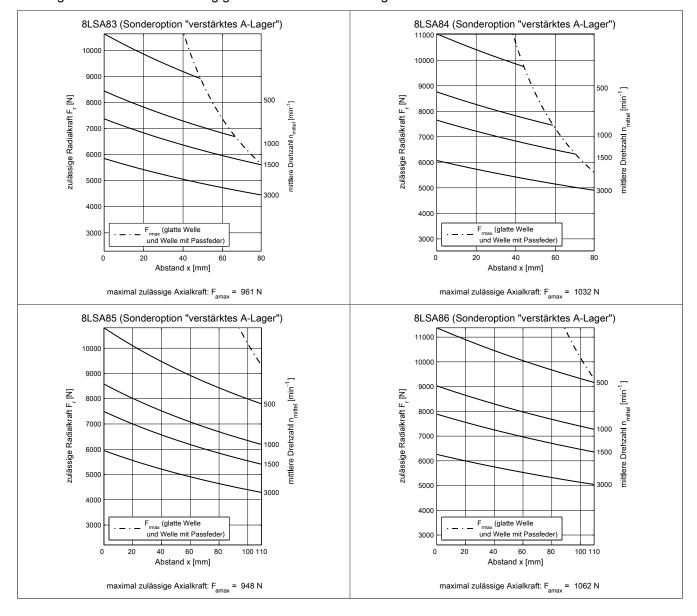
8LSA85.eennnffgg-3

8LSA86.eennnffgg-3

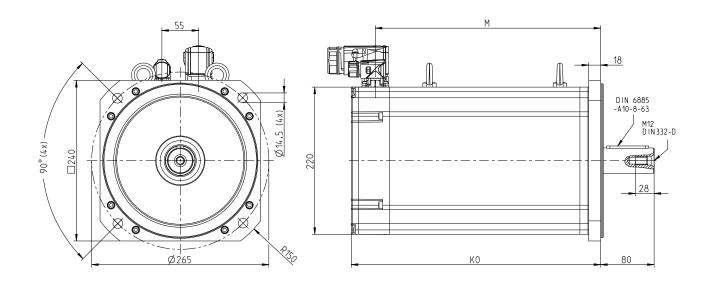


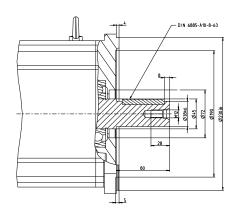
2.14.9.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

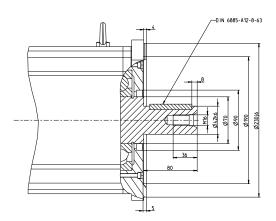

2.14.9.4.1 8LSA8...-3 / 8LSC8...-3 Standardlagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



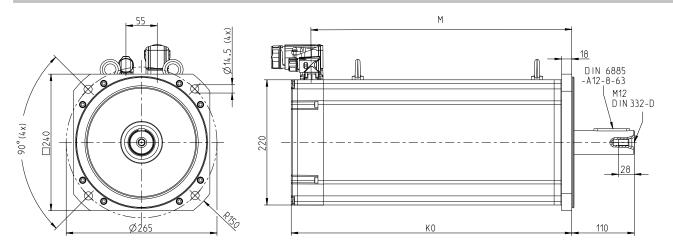

2.14.9.4.2 8LSA8...-3 / 8LSC8...-3 verstärkte Lagerung

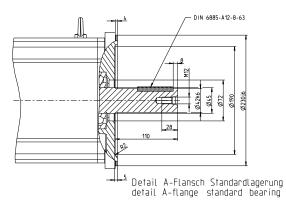
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

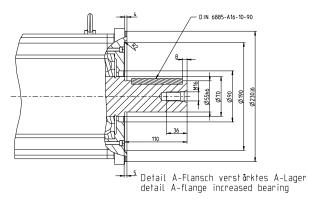


2.14.9.5 Abmessungen 8LSA8...-3

Detail A-Flansch Standardlagerung detail A-flange standard bearing

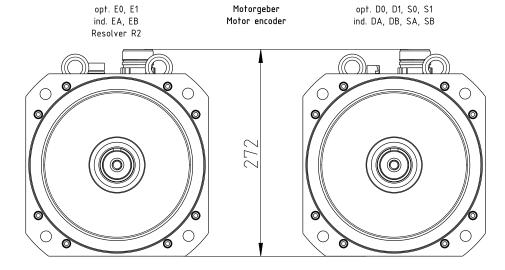



Detail A-Flansch verstörktes A-Lager detail A-flange increased bearing

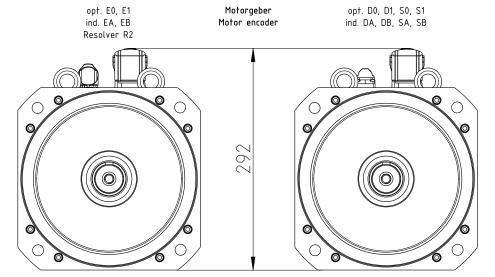

Optische EnDat-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]		
Bestellnummer	K ₀	M	Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager
8LSA83.eennnffgg-3	321	259	50		16.5
8LSA84.eennnffgg-3	401	339	50		16.5

Induktive EnDat- / Resolver-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]		
Bestellnummer	K ₀	M	Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager
8LSA83.eennnffgg-3	293	259	50		16.5
8LSA84.eennnffgg-3	373	339	50		16.5

Die Motoroption "Haltebremse" ist nicht in Kombination mit der Sondermotoroption "verstärktes A-Lager" bestellbar.


Optische EnDat-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]		
Bestellnummer	K ₀	M	Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager
8LSA85.eennnffgg-3	461	399	50		16.5
8LSA86.eennnffgg-3	521	459	50		16.5

Induktive EnDat- / Resolver-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]		
Bestellnummer	K ₀	M	Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager
8LSA85.eennnffgg-3	433	399	50		16.5
8LSA86.eennnffgg-3	493	459	50		16.5


Die Motoroption "Haltebremse" ist nicht in Kombination mit der Sondermotoroption "verstärktes A-Lager" bestellbar.

2.14.9.6 Abmessungen Anschluss 8LSA8...-3

2.15 Technische Daten 8LSC

2.15.1 Technische Daten 8LSC4...-3

Bestellnummer	8LSC43. ee022ffgg-3	8LSC43. ee030ffgg-3	8LSC43. ee045ffgg-3	8LSC43. ee060ffgg-3	8LSC44. ee022ffgg-3	8LSC44. ee030ffgg-3	
Motor							
Nenndrehzahl n _N [min-1]	2200	3000	4500	6000	2200	3000	
Polpaarzahl				5		,	
Nennmoment M _n [Nm]	4,55	4,03	3,51	2,6	6,76	6,01	
Nennleistung P _N [W]	1048	1266	1654	1634	1557	1888	
Nennstrom I _N [A]	2,1	2,5	3	,2	3	3,7	
Stillstandsmoment M ₀ [Nm]		5	,2		7	,8	
Stillstandsstrom I ₀ [A]	2,3	3,2	4,8	6,4	3,5	4,8	
Maximalmoment M _{max} [Nm]		15	5,2		22	2,8	
Maximalstrom I _{max} [A]	10,7	14,6	21,9	29,2	16,1	21,9	
Maximaldrehzahl n _{max} [min-1]		Į.	12	000	1	,	
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,08	0,81	2,22	1,63	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22	134,04	98,44	
Statorwiderstand R _{2ph} [Ω]	11,53	5,94	2,64	1,42	6,24	3,6	
Statorinduktivität L _{2ph} [mH]	81,1	36,5	16,5	9,2	44,8	24	
Elektrische Zeitkonstante t _{el} [ms]	7	6,1	6,3	6,5	7,2	6,7	
Thermische Zeitkonstante t _{therm} [min]		2	25		30		
Trägheitsmoment J [kgcm²]		1,	87		2,73		
Masse ohne Bremse m [kg]		6	,1			7	
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			;	3			
Masse der Bremse [kg]				1			
Trägheitsmoment der Bremse J _{Br} [kgcm²]			0,	69			
Empfehlungen							
ACOPOS 8Vxxxx.xx	1045 1090				1045	1090	
ACOPOSmulti 8BVIxxxx	0028 00)55		
ACOPOS P3 8EIxxxx	4X5X 8X8X 4X5X					8X8X	
Kabelquerschnitt für B&R Motorkabel [mm²]			0,	75			
Steckergröße			1	,0			

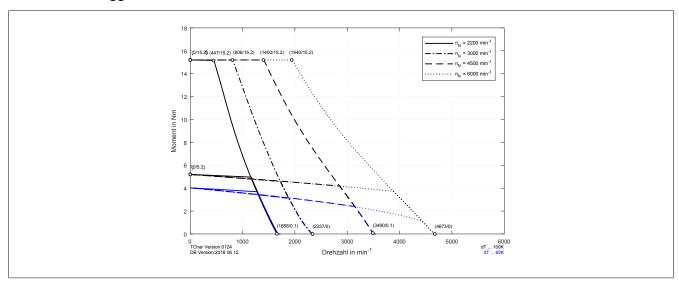
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

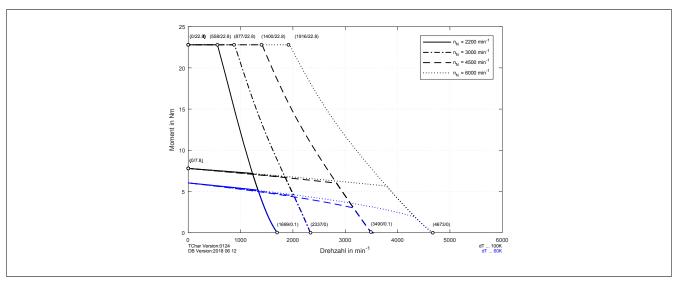
Technische Daten

Bestellnummer	8LSC44. ee045ffgg-3	8LSC44. ee060ffgg-3	8LSC45. ee022ffgg-3	8LSC45. ee030ffgg-3	8LSC45. ee045ffgg-3	8LSC45. ee060ffgg-3
Motor						
Nenndrehzahl n _N [min ⁻¹]	4500	6000	2200	3000	4500	6000
Polpaarzahl				5		,
Nennmoment M _n [Nm]	4,68	3,9	9,1	8,01	6,24	5,2
Nennleistung P _N [W]	2205	2450	2096	2516	2941	3267
Nennstrom I _N [A]	4,3	4,8	4,1	4,9	5,8	6,4
Stillstandsmoment M ₀ [Nm]	7	,8		10	0,4	,
Stillstandsstrom I ₀ [A]	7,2	9,6	4,7	6,4	9,6	12,8
Maximalmoment M _{max} [Nm]	22	2,8		30	0,4	,
Maximalstrom I _{max} [A]	32,9	43,8	21,4	29,2	43,9	58,3
Maximaldrehzahl n _{max} [min-1]		,	120	000		,
Drehmomentkonstante K _⊤ [Nm/A]	1,08	0,81	2,22	1,63	1,08	0,81
Spannungskonstante K _E [V/1000 min ⁻¹]	64,93	49,22	134,04	98,44	64,93	49,22
Statorwiderstand $R_{2ph} [\Omega]$	1,6	0,862	4,32	2,489	1,106	0,6
Statorinduktivität L _{2ph} [mH]	10,8	6,2	41	21,8	9,69	5,4
Elektrische Zeitkonstante t _{el} [ms]	6,8	7,2	9,5	8	,8	9
Thermische Zeitkonstante t _{therm} [min]	3	0		3	35	,
Trägheitsmoment J [kgcm²]	2,	73		3,	58	
Masse ohne Bremse m [kg]		7		8	,1	
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]			8	3		
Masse der Bremse [kg]		1		0	,9	
Trägheitsmoment der Bremse J _{Br} [kgcm²]			0,	69		_
Empfehlungen						
ACOPOS 8Vxxxx.xx	1090 1180 1090				11	80
ACOPOSmulti 8BVIxxxx		0110		0055		10
ACOPOS P3 8Elxxxx	8X8X	013X		8X	013X	017X
Kabelquerschnitt für B&R Motorkabel [mm²]			0,75			1,5
Steckergröße			1	,0		

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

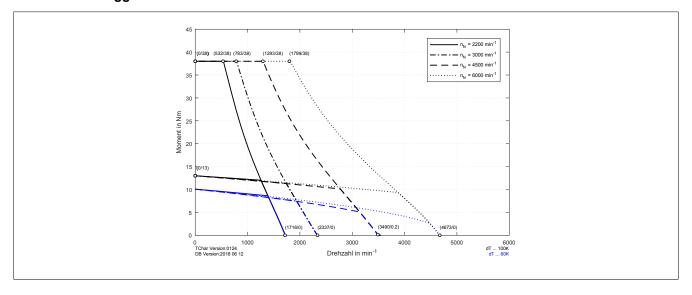

168

Bestellnummer	8LSC46.ee022ffgg-3	8LSC46.ee030ffgg-3	8LSC46.ee045ffgg-3	8LSC46.ee060ffgg-3	
Motor				,	
Nenndrehzahl n _N [min-1]	2200	3000	4500	6000	
Polpaarzahl			5	,	
Nennmoment M _n [Nm]	11,31	10,01	7,8	6,5	
Nennleistung P _N [W]	2606	3145	3676	4084	
Nennstrom I _N [A]	5,1	6,1	7,2	8	
Stillstandsmoment M ₀ [Nm]			13	,	
Stillstandsstrom I ₀ [A]	5,9	8	12	16	
Maximalmoment M _{max} [Nm]			38	,	
Maximalstrom I _{max} [A]	26,8	36,5	54,8	72,9	
Maximaldrehzahl n _{max} [min ⁻¹]		12	000	J	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,08	0,81	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	64,93	49,22	
Statorwiderstand $R_{2ph}[\Omega]$	3,61	1,92	0,8	0,48	
Statorinduktivität L _{2ph} [mH]	32	17,44	7,75	4,36	
Elektrische Zeitkonstante t _{ei} [ms]	8,9	9,1	9,7	9,1	
Thermische Zeitkonstante t _{therm} [min]			10		
Trägheitsmoment J [kgcm²]		4,	39		
Masse ohne Bremse m [kg]		8	3,9	-	
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]			8		
Masse der Bremse [kg]			1		
Trägheitsmoment der Bremse J _{Br}		0,	69		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx		90	ļ	80	
ACOPOSmulti 8BVIxxxx	0055 01			0220	
ACOPOS P3 8Elxxxx	8X8X		017X	024X	
Kabelquerschnitt für B&R Motorkabel	0,75 1,5			,5	
[mm²]					
Steckergröße		1	,0		

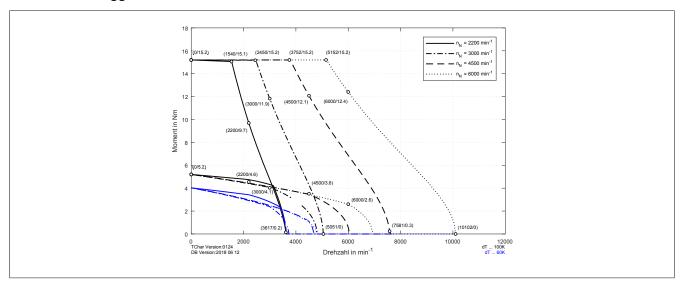

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

2.15.1.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

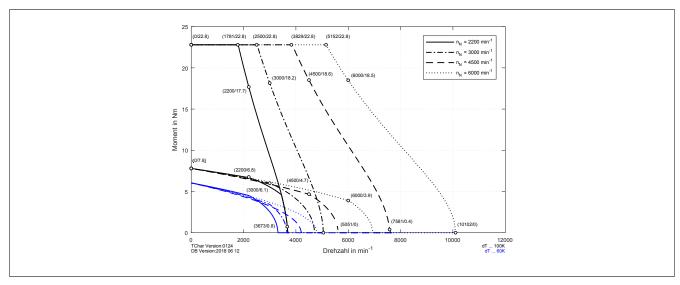

8LSC43.eennnffgg-3


8LSC44.eennnffgg-3

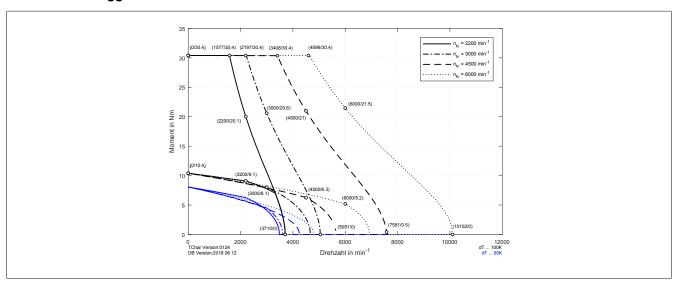
8LSC45.eennnffgg-3

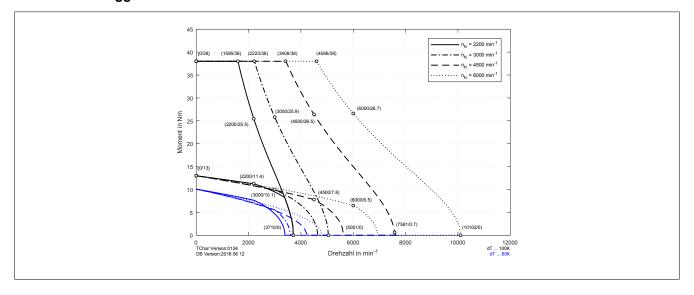


8LSC46.eennnffgg-3

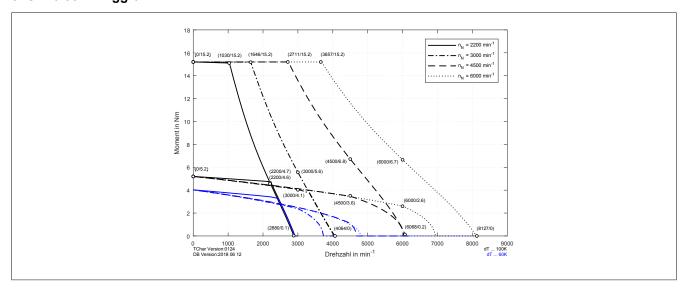


2.15.1.2 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung

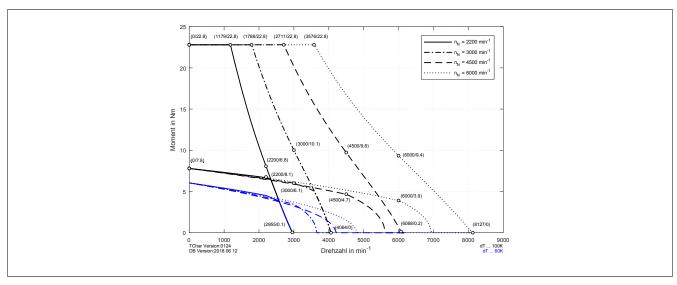

8LSC43.eennnffgg-3


8LSC44.eennnffgg-3

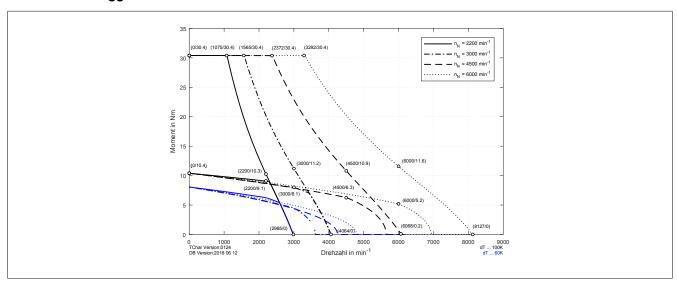
8LSC45.eennnffgg-3

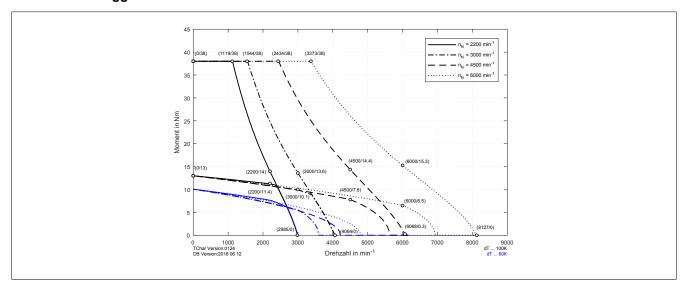


8LSC46.eennnffgg-3



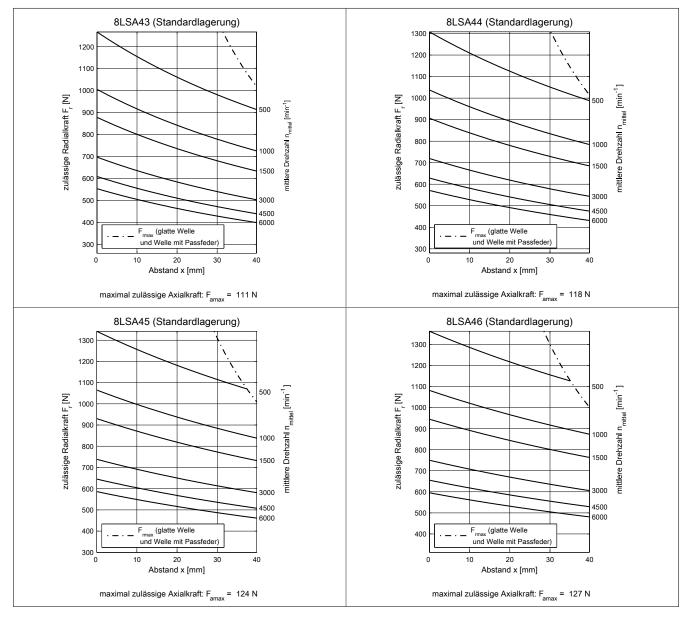
2.15.1.3 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSC43.eennnffgg-3


8LSC44.eennnffgg-3

8LSC45.eennnffgg-3

8LSC46.eennnffgg-3

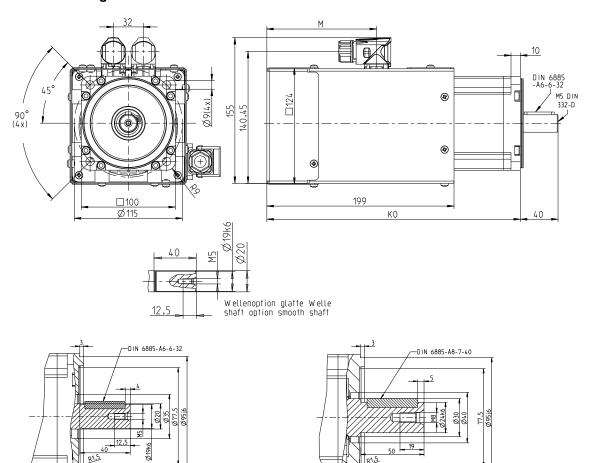


2.15.1.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.15.1.4.1 8LSA4...3 / 8LSC4...-3 Standardlagerung

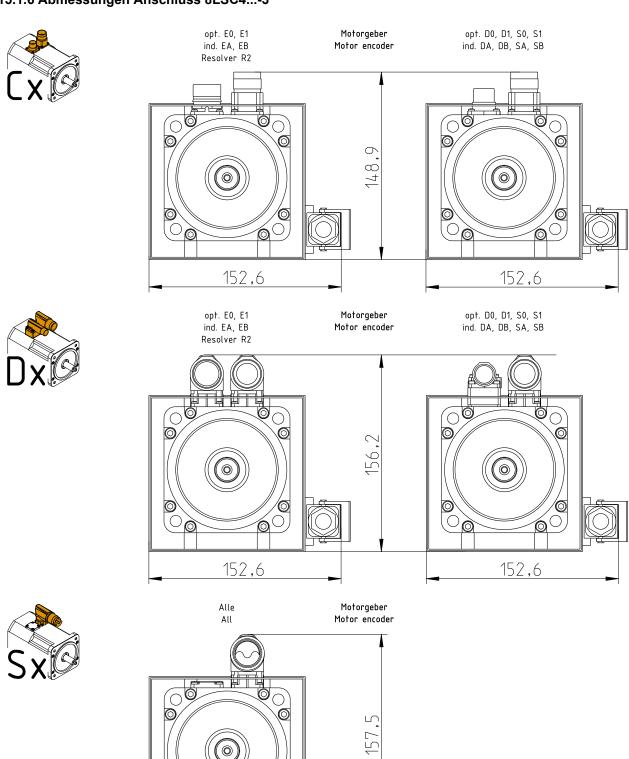
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



2.15.1.4.2 8LSA4...-3 / 8LSC4...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

2.15.1.5 Abmessungen 8LSC4...-3


EnDat / Resolver Rückführung	Verlängerung von K₀, K₁ und M abhängig von der Motoroption [mm]				
Bestellnummer	K	М	Haltebremse	verstärkte Haltebrem-	verstärktes A-Lager
				se	
8LSC43.eennnffgg-3	250	117	32	37	15
8LSC44.eennnffgg-3	270	117	32	37	15
8LSC45.eennnffgg-3	294	117	32	37	15
8LSC46.eennnffgg-3	314	117	32	37	15

Detail A-Flansch verstörktes A-Lager detail A-flange increased bearing

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

Detail A-Flansch Standardlagerung detail A-flange standard bearing

2.15.1.6 Abmessungen Anschluss 8LSC4...-3

0

152,6

8LS...-3 Anwenderhandbuch V2.51

2.15.2 Technische Daten 8LSC5...-3

Bestellnummer	8LSC53. ee022ffgg-3	8LSC53. ee030ffgg-3	8LSC53. ee045ffgg-3	8LSC54. ee022ffgg-3	8LSC54. ee030ffgg-3	8LSC54. ee045ffgg-3		
Motor								
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	3000	4500		
Polpaarzahl	4							
Nennmoment M _n [Nm]	5,46	5,2	5,07	10,14	10,01	9,49		
Nennleistung P _N [W]	1258	1634	2389	2336	3145	4472		
Nennstrom I _N [A]	2,5 3,2 4		1,6 6,1		8,7			
Stillstandsmoment M ₀ [Nm]	5,85			11,7				
Stillstandsstrom I ₀ [A]	2,6	3,6	5,4	5,3	7,2	10,7		
Maximalmoment M _{max} [Nm]	13,8			27,6				
Maximalstrom I _{max} [A]	8	10,5	16,5	15,4	20,9	33		
Maximaldrehzahl n _{max} [min-1]	9000							
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22	1,63	1,09		
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	98,44	65,97		
Statorwiderstand R _{2ph} [Ω]	10,9	5,13	2,222	3,44	2,16	0,926		
Statorinduktivität L _{2ph} [mH]	95,92	40,33	19,33	34,5	21,52	8,67		
Elektrische Zeitkonstante t _{el} [ms]	8,8	7,9	8,7	10	10,6	10,9		
Thermische Zeitkonstante t _{therm} [min]	33			37				
Trägheitsmoment J [kgcm²]	3,62			6,04				
Masse ohne Bremse m [kg]		8,5		10,8				
Haltebremse								
Haltemoment der Bremse M _{Br} [Nm]			1	15				
Masse der Bremse [kg]	1,49		1,5		1,4			
Trägheitsmoment der Bremse J _{Br}	1,66							
[kgcm ²]								
Empfehlungen						1		
ACOPOS 8Vxxxx.xx	1045		1090		1180			
ACOPOSmulti 8BVIxxxx	0028		0055		0110			
ACOPOS P3 8EIxxxx	4X5X			8X8X 013X				
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75							
Steckergröße	1,0							

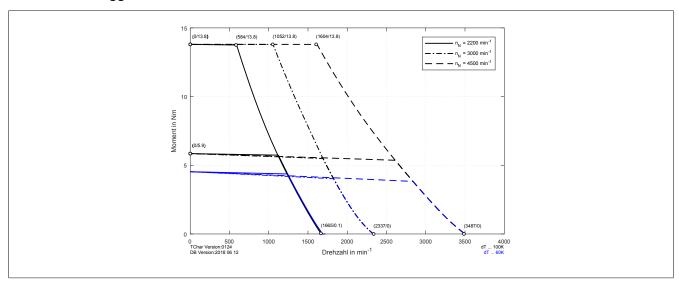
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

Bestellnummer	8LSC55. ee022ffgg-3	8LSC55. ee030ffgg-3	8LSC55. ee045ffgg-3	8LSC56. ee022ffgg-3	8LSC56. ee030ffgg-3	8LSC56. ee045ffgg-3	
Motor							
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	3000	4500	
Polpaarzahl				1		,	
Nennmoment M _n [Nm]	15,34	15,08	12,35	18,72	18,07	16,51	
Nennleistung P _N [W]	3534	4738	5820	4313	5677	7780	
Nennstrom I _N [A]	6,9	9,3	11,3	8,4	11,1	15,1	
Stillstandsmoment M ₀ [Nm]		16,25	,		20,8	•	
Stillstandsstrom I ₀ [A]	7,3	10	14,9	9,4	12,8	19,1	
Maximalmoment M _{max} [Nm]		41,4	,		55,2		
Maximalstrom I _{max} [A]	23,6	33	47,3	30,8	41,8	65,9	
Maximaldrehzahl n _{max} [min-1]		9000					
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22	1,63	1,09	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	98,44	65,97	
Statorwiderstand R _{2ph} [Ω]	2,265	1,127	0,51	1,51	0,75	0,341	
Statorinduktivität L _{2ph} [mH]	24,29	12,5	4,96	17,6	8,16	4,08	
Elektrische Zeitkonstante t _{el} [ms]	10,7	11,1	9,7	11,6	10,9	12	
Thermische Zeitkonstante t _{therm} [min]		40		43			
Trägheitsmoment J [kgcm²]		8,19	-	10,66			
Masse ohne Bremse m [kg]		12,7		15,3			
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			1	5			
Masse der Bremse [kg]		1,5			1,4		
Trägheitsmoment der Bremse J _{Br} [kgcm²]			1,	66			
Empfehlungen							
ACOPOS 8Vxxxx.xx	1090		11	80		1320	
ACOPOSmulti 8BVIxxxx	0110		0220		10	0220	
ACOPOS P3 8EIxxxx	8X8X	013X	017X	013X	017X	024X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,	75 	1,5	0,75	1,5	4	
Steckergröße			1	,0			

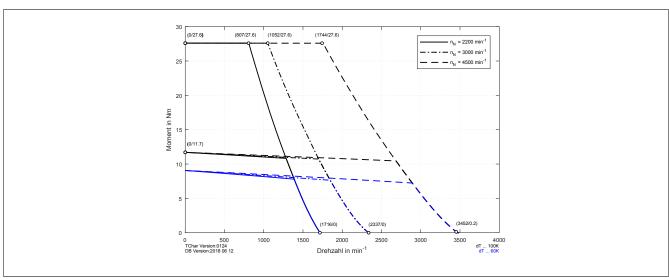
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

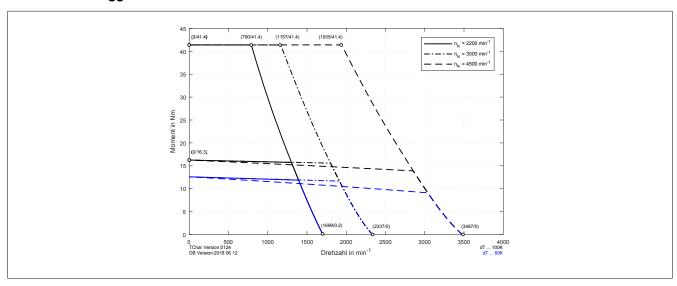
Technische Daten

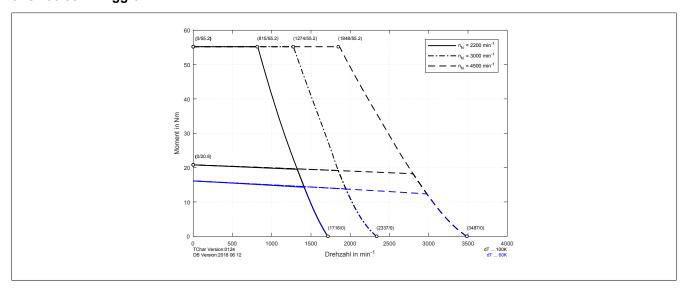

Bestellnummer	8LSC57.ee022ffgg-3	8LSC57.ee030ffgg-3	8LSC57.ee045ffgg-3		
Motor		,			
Nenndrehzahl n _N [min-1]	2200	3000	4500		
Polpaarzahl					
Nennmoment M _n [Nm]	23,4	22,75	19,5		
Nennleistung P _N [W]	5391	7147	9189		
Nennstrom I _N [A]	10,6	14	17,9		
Stillstandsmoment M ₀ [Nm]		26			
Stillstandsstrom I ₀ [A]	11,7	16	23,8		
Maximalmoment M _{max} [Nm]		69			
Maximalstrom I _{max} [A]	38,4	52,6	82,6		
Maximaldrehzahl n _{max} [min ⁻¹]		9000	-		
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09		
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97		
Statorwiderstand R_{2ph} [Ω]	1,13	0,62	0,29		
Statorinduktivität L _{2ph} [mH]	13,17	7,21	3,2		
Elektrische Zeitkonstante t _{el} [ms]	11,7	11,6	11		
Thermische Zeitkonstante t _{therm} [min]		46			
Trägheitsmoment J [kgcm²]		13,13			
Masse ohne Bremse m [kg]		16,8			
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		15			
Masse der Bremse [kg]		1,3			
Trägheitsmoment der Bremse J _{Br} [kgcm²]	1,66				
Empfehlungen					
ACOPOS 8Vxxxx.xx	1180		1320		
ACOPOSmulti 8BVIxxxx	0110	0220	0330		
ACOPOS P3 8EIxxxx	013X	024X	034X		
Kabelquerschnitt für B&R Motorkabel [mm²]	1	,5	4		
Steckergröße		1,0			

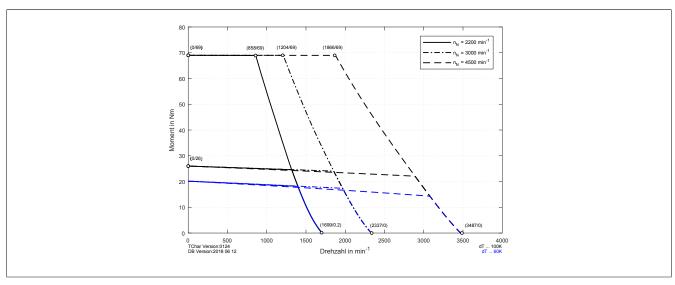
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.


182

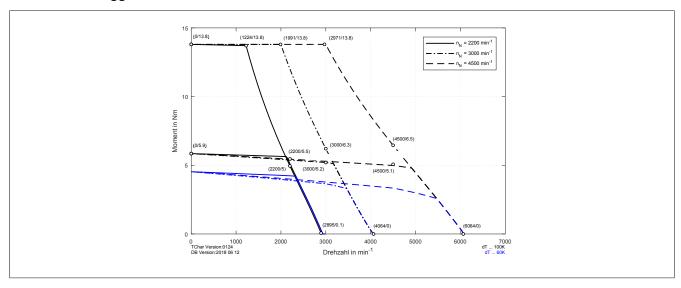
2.15.2.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSC53.eennnffgg-3

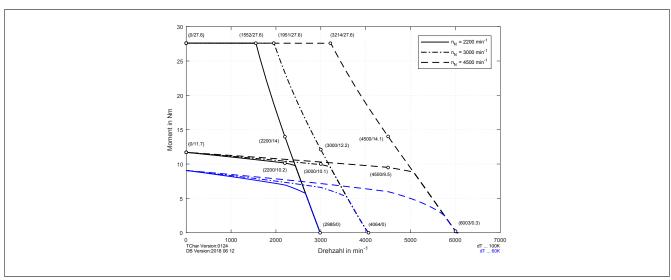

8LSC54.eennnffgg-3


8LSC55.eennnffgg-3

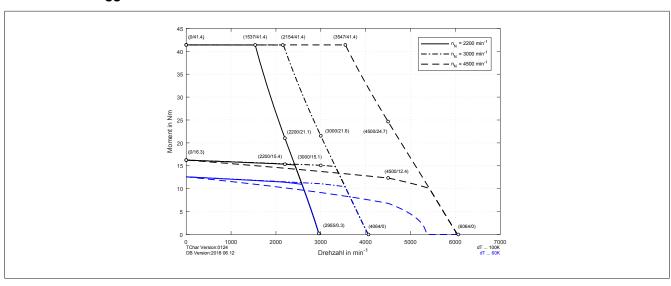
8LSC56.eennnffgg-3

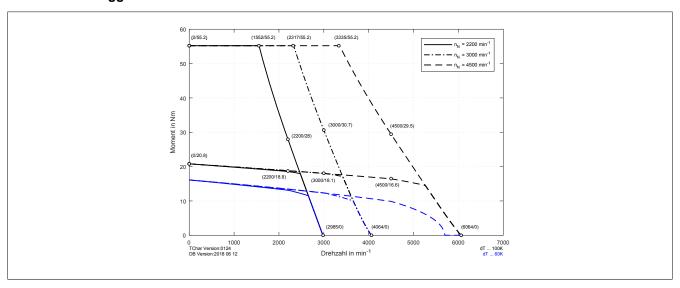


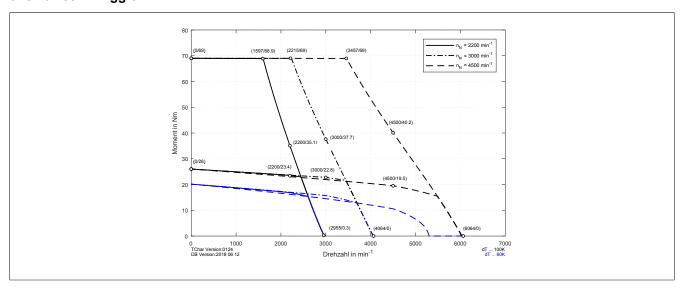
8LSC57.eennnffgg-3



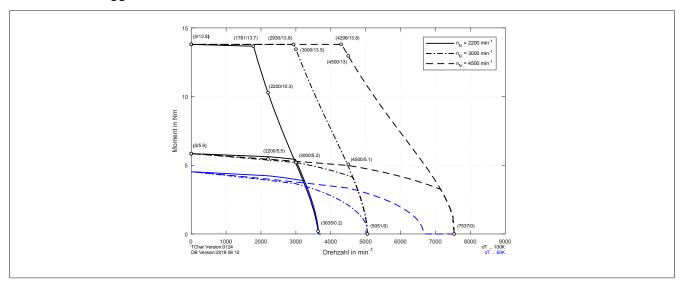
2.15.2.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSC53.eennnffgg-3

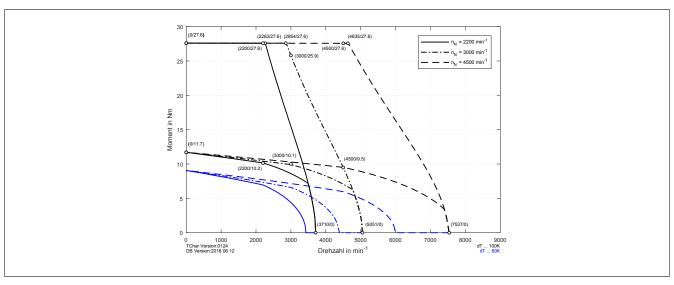

8LSC54.eennnffgg-3


8LSC55.eennnffgg-3

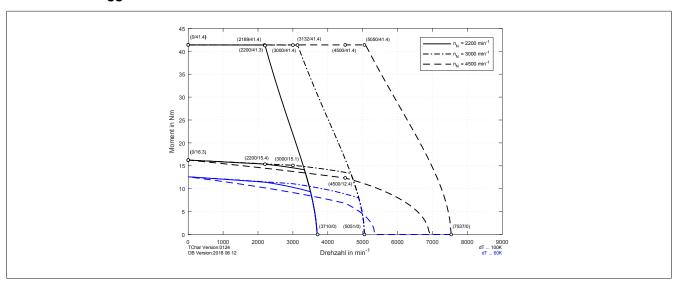
8LSC56.eennnffgg-3

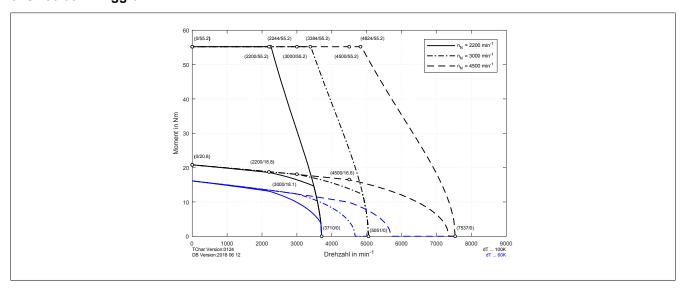


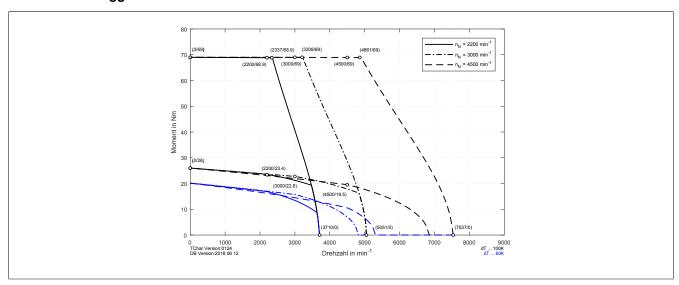
8LSC57.eennnffgg-3



2.15.2.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung

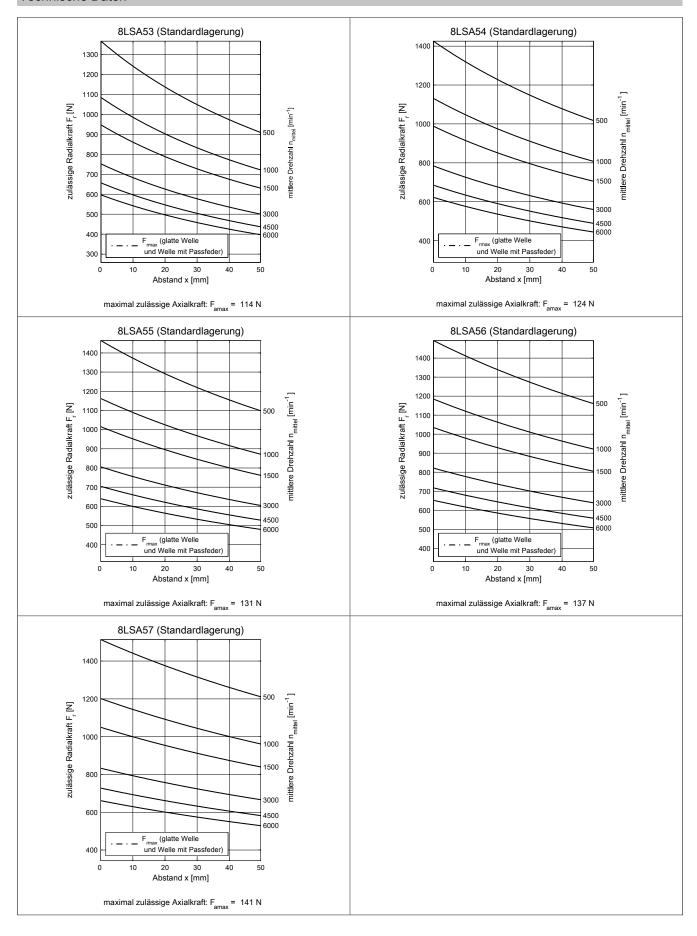

8LSC53.eennnffgg-3


8LSC54.eennnffgg-3


8LSC55.eennnffgg-3

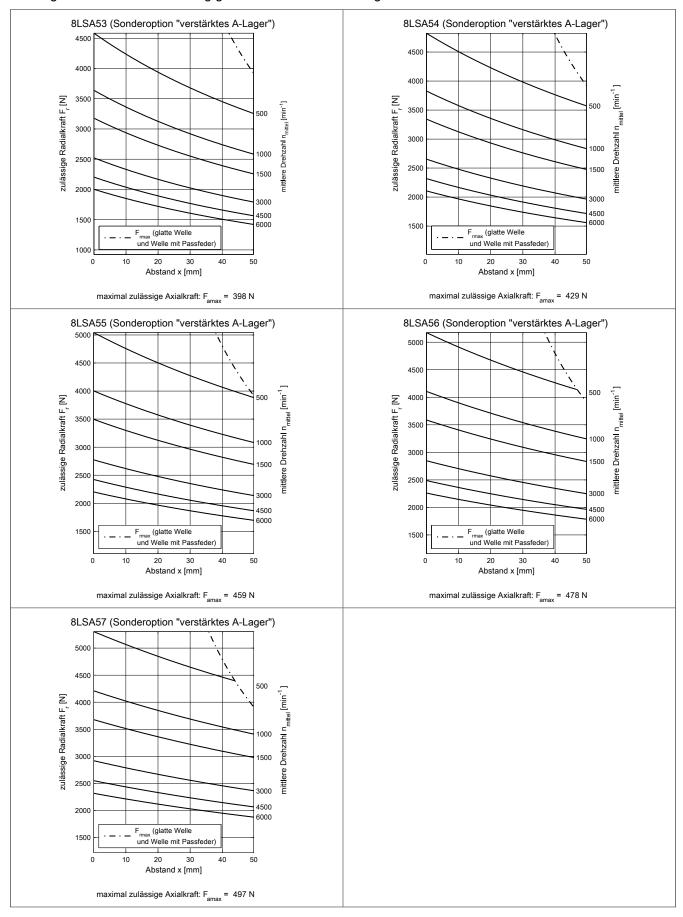
8LSC56.eennnffgg-3

8LSC57.eennnffgg-3

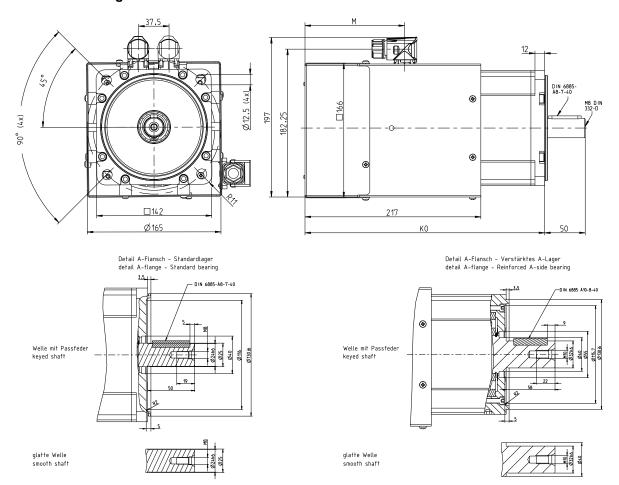


2.15.2.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.15.2.4.1 8LSA5...-3 / 8LSC5...-3 Standardlagerung

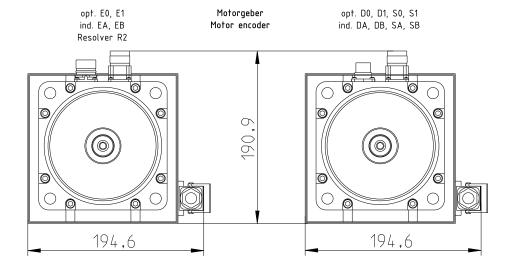
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



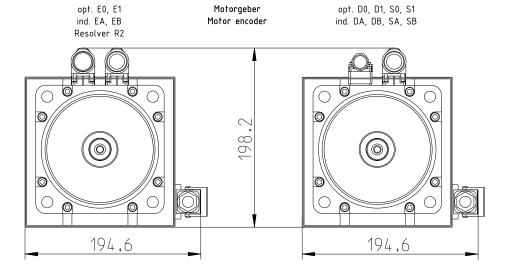
2.15.2.4.2 8LSA5...-3 / 8LSC5...-3 verstärkte Lagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

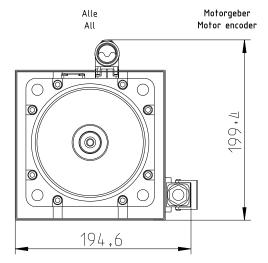
2.15.2.5 Abmessungen 8LSC5...-3


EnDat / Resolver Rückführung			Verlängerung von [mm]	Verlängerung von \mathbf{K}_0 und \mathbf{M} abhängig von der Motoroption [mm]			
Bestellnummer	K ₀	М	Haltebremse	verstärkte Haltebremse	verstärktes A-Lager		
8LSC53.eennnffgg-3	246	123	35	50	15		
8LSC54.eennnffgg-3	271	123	35	50	10		
8LSC55.eennnffgg-3	296	123	30	45	10		
8LSC56.eennnffgg-3	321	123	30	45	5		
8LSC57.eennnffgg-3	346	123	25	40	5		

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.


192

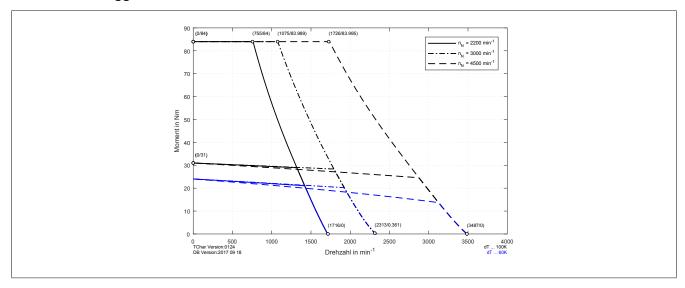
2.15.2.6 Abmessungen Anschluss 8LSC5...-3



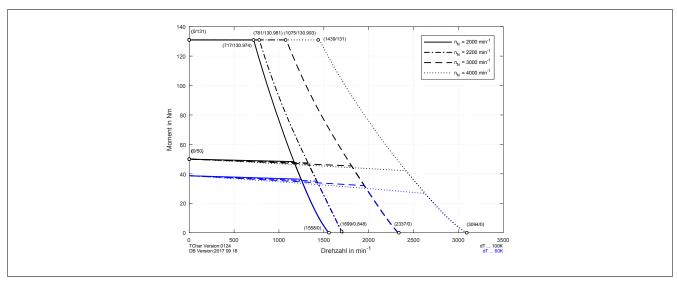
8LS...-3 Anwenderhandbuch V2.51

2.15.3 Technische Daten 8LSC5A/B/C...-3

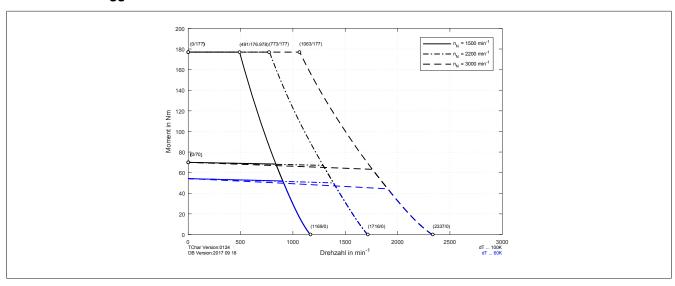
Bestellnummer	8LSC5A.ee022ffgg-3	8LSC5A.ee030ffgg-3	8LSC5A.ee045ffgg-3	8LSC5B.ee020ffgg-3	8LSC5B.ee022ffgg-3	
Motor				,	,	
Nenndrehzahl n _N [min-1]	2200	3000	4500	2000	2200	
Polpaarzahl			,	,		
Nennmoment M _n [Nm]	27,5	26,4	20	47	45,5	
Nennleistung P _N [W]	6336	8294	9425	9844	10482	
Nennstrom I _N [A]	12,4	16,2	18,4	19,3	20,5	
Stillstandsmoment M ₀ [Nm]		31	,	5	i0	
Stillstandsstrom I ₀ [A]	14	19	28,5	20,5	22,5	
Maximalmoment M _{max} [Nm]		84		1:	31	
Maximalstrom I _{max} [A]	50	69	103	71	78	
Maximaldrehzahl n _{max} [min-1]		,	6000	•	,	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,44	2,22	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	147,65	134,04	
Statorwiderstand $R_{2ph} [\Omega]$	0,83	0,45	0,19	0,595	0,5	
Statorinduktivität L _{2ph} [mH]	11	5,9	2,47	7,97	7	
Elektrische Zeitkonstante t _{el} [ms]	13,25	13,11	13	13,4	14	
Thermische Zeitkonstante t _{therm} [min]		45		51		
Trägheitsmoment J [kgcm²]		16		24,7		
Masse ohne Bremse m [kg]		20,5		27		
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]		17		6	0	
Masse der Bremse [kg]			0			
Trägheitsmoment der Bremse J_{Br} [kgcm²]		3,6			1,7	
Empfehlungen						
ACOPOS 8Vxxxx.xx	1180		13	20		
ACOPOSmulti 8BVIxxxx	-	20		0330		
ACOPOS P3 8EIxxxx	017X	024X	034X	024X	034X	
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5			4		
Steckergröße	1	,0	1,5	1	,0	


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

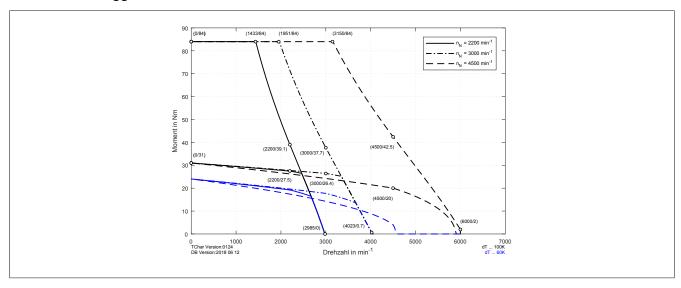
Bestellnummer	8LSC5B.ee030ffgg-3 8LSC5B.ee040ffgg-3 8		8LSC5C.ee015ffgg-3	8LSC5C.ee022ffgg-3	8LSC5C.ee030ffgg-3	
Motor				,		
Nenndrehzahl n _N [min-1]	3000	4000	1500	2200	3000	
Polpaarzahl			5	,		
Nennmoment M _n [Nm]	42	36	67	65	58	
Nennleistung P _N [W]	13195	15080	10524	14975	18221	
Nennstrom I _N [A]	25,8	29,3	20,6	29,3	35,6	
Stillstandsmoment M ₀ [Nm]	5	0		70		
Stillstandsstrom I ₀ [A]	30,7	40,7	21,5	31,6	43	
Maximalmoment M _{max} [Nm]	13	31		177		
Maximalstrom I _{max} [A]	107	141	72	106	145	
Maximaldrehzahl n _{max} [min-1]			6000	1		
Drehmomentkonstante K _⊤ [Nm/A]	1,63	1,23	3,26	2,22	1,63	
Spannungskonstante K _E [V/1000 min ⁻¹]	98,44	74,35	196,87	134,04	98,44	
Statorwiderstand R _{2ph} [Ω]	0,27	0,15	0,771	0,359	0,19	
Statorinduktivität L _{2ph} [mH]	3,8	2,2	11,35	5,15	2,9	
Elektrische Zeitkonstante t _{el} [ms]	14,07	14,67	14	15,26		
Thermische Zeitkonstante t _{therm} [min]	5	1	57			
Trägheitsmoment J [kgcm²]	24	.,7	33			
Masse ohne Bremse m [kg]	2	7		33		
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]			60			
Masse der Bremse [kg]			0			
Trägheitsmoment der Bremse J _{Br}			14,7			
[kgcm ²]						
Empfehlungen						
ACOPOS 8Vxxxx.xx	1320	1640	1320	_	40	
ACOPOSmulti 8BVIxxxx	0440	0660	0330	0440	0660	
ACOPOS P3 8EIxxxx	034X	-	024X	044X	-	
Kabelquerschnitt für B&R Motorkabel [mm²]	4	10	2	4 1		
Steckergröße	1,	,5	1,0	1	,5	


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

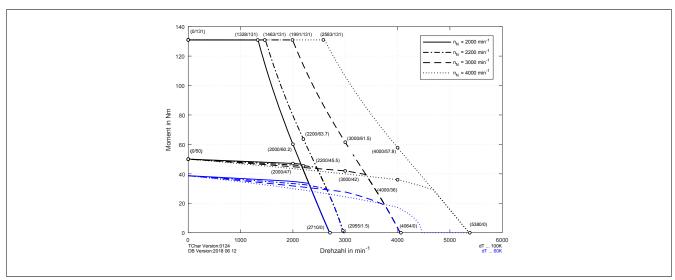
2.15.3.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSC5A.eennnffgg-3

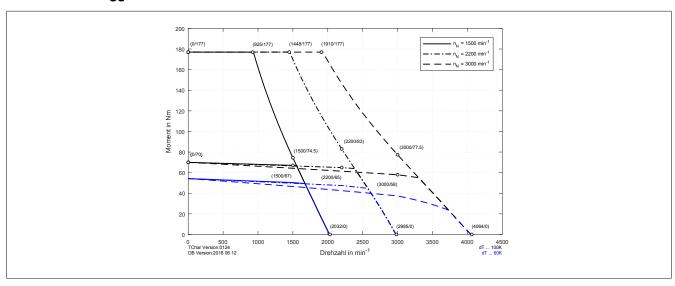
8LSC5B.eennnffgg-3



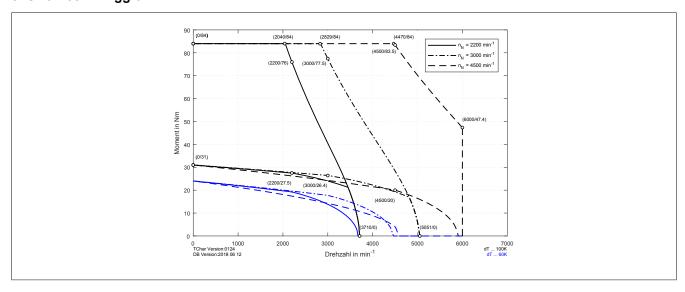
8LSC5C.eennnffgg-3



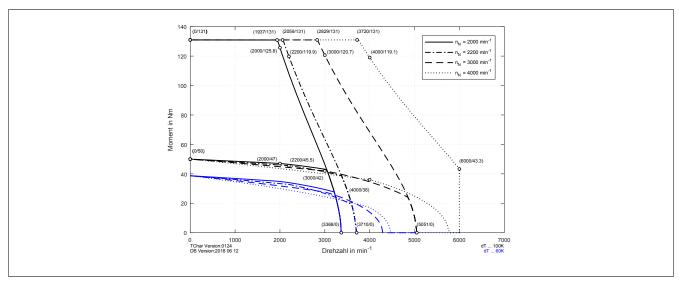
2.15.3.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung


8LSC5A.eennnffgg-3

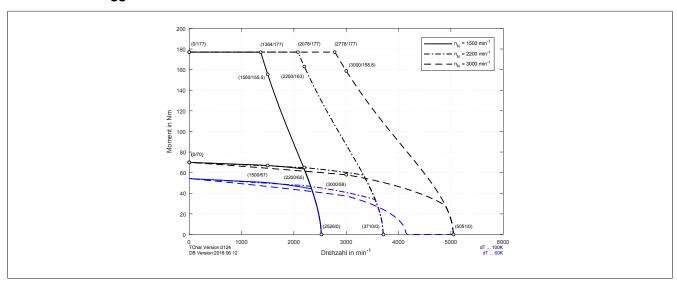
8LSC5B.eennnffgg-3



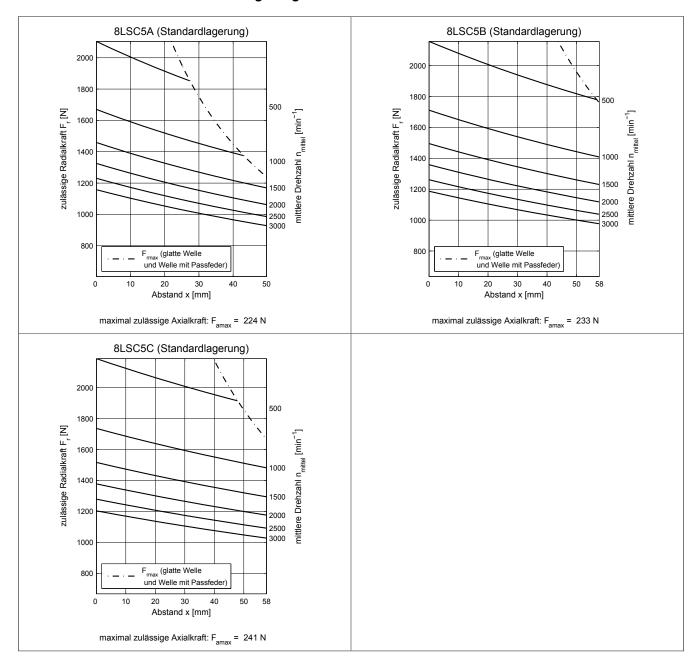
8LSC5C.eennnffgg-3

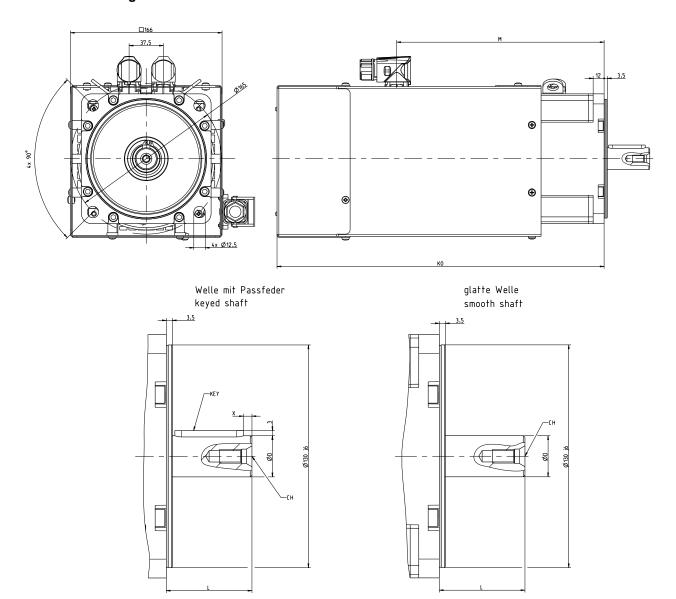


2.15.3.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSC5A.eennnffgg-3

8LSC5B.eennnffgg-3


8LSC5C.eennnffgg-3


2.15.3.4 Zulässige Wellenbelastung

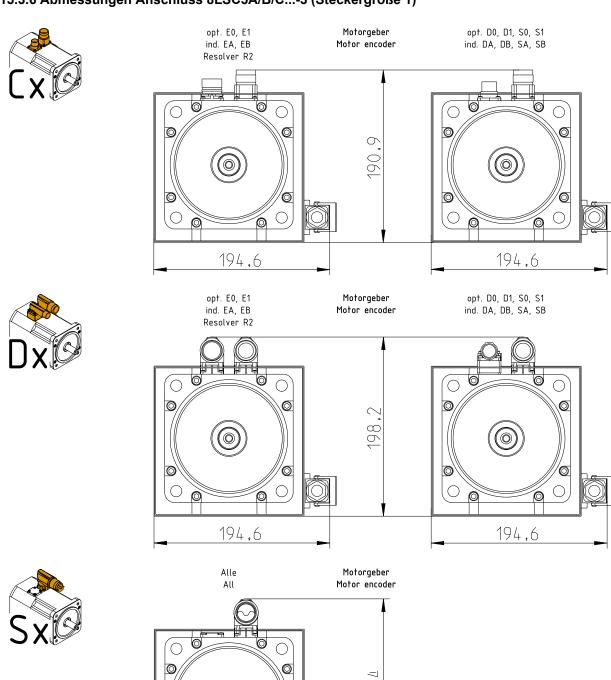
Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

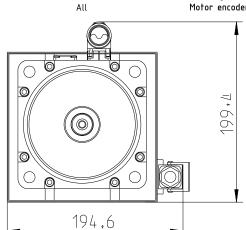
2.15.3.4.1 8LSC5A/B/C...-3 Standardlagerung

2.15.3.5 Abmessungen 8LSC5A/B/C...-3

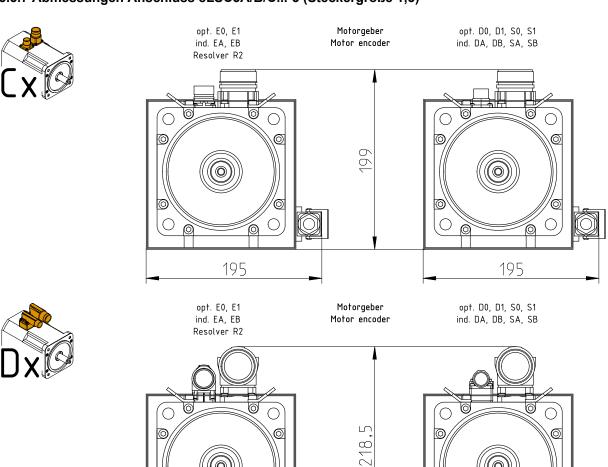
Motor

EnDat / Resolver Rü	ckführung			Verlängerung von K₀ und M abhängig von der Motoroption [mm]			
	K ₀	М	M		verstärkte Bremse	verstärktes Lager	
Geberzuordnung	Alle Geber	Alle Geber	Alle Geber				
Steckergröße		1	1,5				
8LSC5A3	358	227	229,5	38	60	17	
8LSC5B3	425,5	294,5	297		60	17	
8LSC5C3	493	362	364,5		60	17	


ACHTUNG: Maß \mathbf{K}_0 ist abhängig von der Länge des Geberdeckels


Wellenende

		D	L	Key	СН	X
8LSC5A3	ohne Sondermotoroption	24 k6	50	DIN 6885 A8x7x40	M8 DIN 332-D	5
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5
8LSC5B3	ohne Sondermotoroption	28 k6	58	DIN 6885 A8x7x40	M10 DIN 332-D	9
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5
8LSC5C3	ohne Sondermotoroption	28 k6	58	DIN 6885 A8x7x40	M10 DIN 332-D	9
	verstärktes Lager	38 k6	80	DIN 6885 A10x8x70	M12 DIN 332-D	5


200

2.15.3.6 Abmessungen Anschluss 8LSC5A/B/C...-3 (Steckergröße 1)

2.15.3.7 Abmessungen Anschluss 8LSC5A/B/C...-3 (Steckergröße 1,5)

 \bigcirc

195

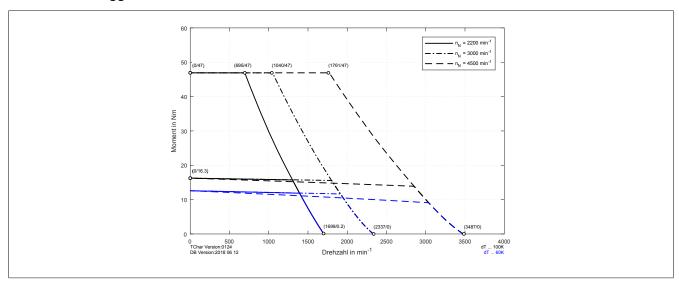
195

2.15.4 Technische Daten 8LSC6...-3

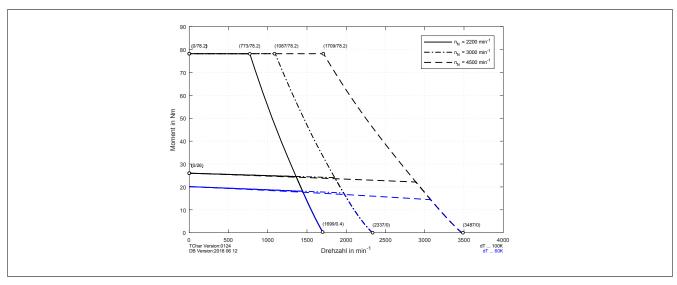
Bestellnummer	8LSC63. ee022ffgg-3	8LSC63. ee030ffgg-3	8LSC63. ee045ffgg-3	8LSC64. ee022ffgg-3	8LSC64. ee030ffgg-3	8LSC64. ee045ffgg-3	
Motor							
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	3000	4500	
Polpaarzahl			4	4			
Nennmoment M _n [Nm]	15,34	15,08	12,35	23,4	22,75	19,63	
Nennleistung P _N [W]	3534	4738	5820	5391	7147	9250	
Nennstrom I _N [A]	6,9	9,3	11,3	10,6	14	18	
Stillstandsmoment M ₀ [Nm]		16,25			26		
Stillstandsstrom I ₀ [A]	7,3	10	14,9	11,7	16	23,8	
Maximalmoment M _{max} [Nm]		46,92			78,2		
Maximalstrom I _{max} [A]	30,5	42,5	61	49,5	67,8	106,5	
Maximaldrehzahl n _{max} [min ⁻¹]		,	90	00		,	
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,09	2,22	1,63	1,09	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	98,44	65,97	
Statorwiderstand R _{2ph} [Ω]	2,265	1,127	0,51	1,13	0,62	0,285	
Statorinduktivität L _{2ph} [mH]	24,29	12,5	5	13,17	7,21	3,21	
Elektrische Zeitkonstante t _{el} [ms]	10,7	11,1	9,7	11,7	11,6	11,03	
Thermische Zeitkonstante t _{therm} [min]		42		45			
Trägheitsmoment J [kgcm²]		8,19		13,13			
Masse ohne Bremse m [kg]		15,1		19			
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			3	2			
Masse der Bremse [kg]			1	,5			
Trägheitsmoment der Bremse J _{Br}			5,	85			
[kgcm ²]							
Empfehlungen		T				1	
ACOPOS 8Vxxxx.xx	1090			80		1320	
ACOPOSmulti 8BVIxxxx	0110		0220	0110	0220	0330	
ACOPOS P3 8EIxxxx	8X8X	013X	017X	013X	024X	034X	
Kabelquerschnitt für B&R Motorkabel [mm²]	0,75			1,5			
Steckergröße			1	,0			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

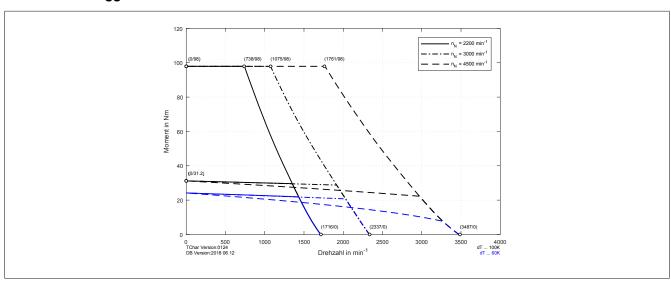
Technische Daten


Bestellnummer	8LSC65. ee022ffgg-3	8LSC65. ee030ffgg-3	8LSC65. ee045ffgg-3	8LSC66. ee022ffgg-3	8LSC66. ee030ffgg-3	8LSC66. ee045ffgg-3	
Motor		,			,	,	
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200	3000	4500	
Polpaarzahl		4					
Nennmoment M _n [Nm]	28,6	27,3	15,86	31,85	30,55	19,5	
Nennleistung P _N [W]	6589	8577	7474	7338	9598	9189	
Nennstrom I _N [A]	12,9	16,8	14,5	14,4	18,8	17,9	
Stillstandsmoment M ₀ [Nm]		31,2	,		36,4	,	
Stillstandsstrom I ₀ [A]	14,1	19,2	28,6	16,4	22,4	33,4	
Maximalmoment M _{max} [Nm]		97,92	,		114,24		
Maximalstrom I _{max} [A]	64,3	90,9	130,5	74,4	103,5	152,6	
Maximaldrehzahl n _{max} [min-1]			90	00		,	
Drehmomentkonstante K _T [Nm/A]	2,22	1,63	1,09	2,22	1,63	1,09	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04	98,44	65,97	
Statorwiderstand R _{2ph} [Ω]	0,94	0,484	0,2	0,72	0,382	0,19	
Statorinduktivität L _{2ph} [mH]	10,9	6	2,48	10,4	4,87	2,1	
Elektrische Zeitkonstante t _{el} [ms]	11,6	12	2,4	14,4	12,7	11,1	
Thermische Zeitkonstante t _{therm} [min]		48		52			
Trägheitsmoment J [kgcm²]		15,6		18,06			
Masse ohne Bremse m [kg]		20,4	-	23			
Haltebremse							
Haltemoment der Bremse M _{Br} [Nm]			3	2			
Masse der Bremse [kg]		1,5			1,4		
Trägheitsmoment der Bremse J _{Br} [kgcm²]			5,	85			
Empfehlungen							
ACOPOS 8Vxxxx.xx	1180	13	320	1180	1320	1640	
ACOPOSmulti 8BVIxxxx	02	220	0330	0220	0330	0440	
ACOPOS P3 8Elxxxx	017X	024X	034X	024X	034X	044X	
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5			1,5	4	10	
Steckergröße			1,0			1,5	

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

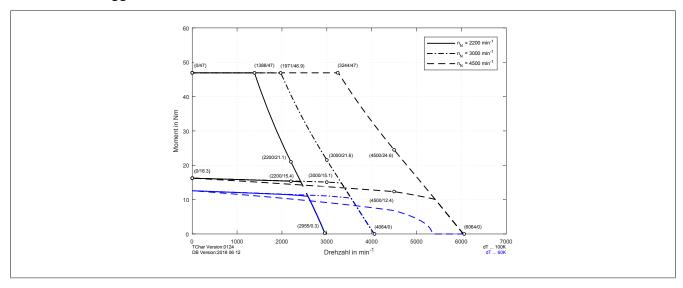

204

2.15.4.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

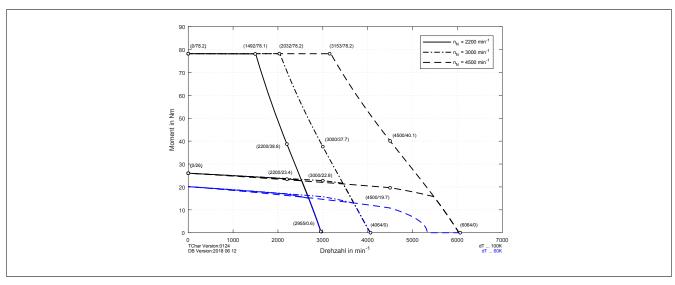

8LSC63.eennnffgg-3

8LSC64.eennnffgg-3

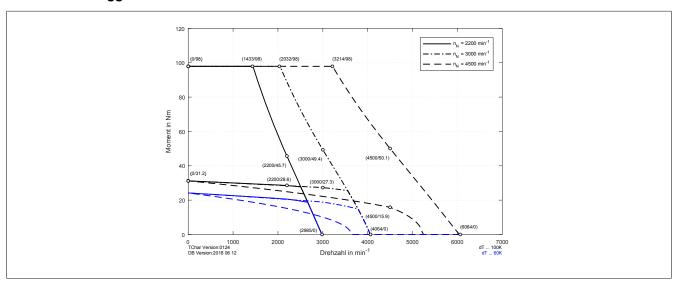
8LSC65.eennnffgg-3

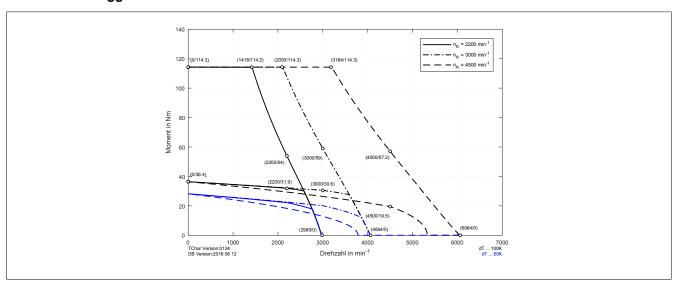


8LSC66.eennnffgg-3

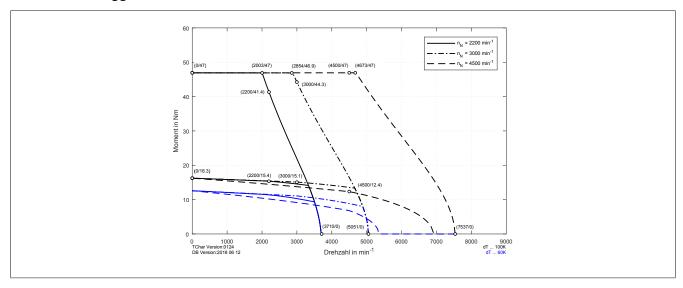


2.15.4.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

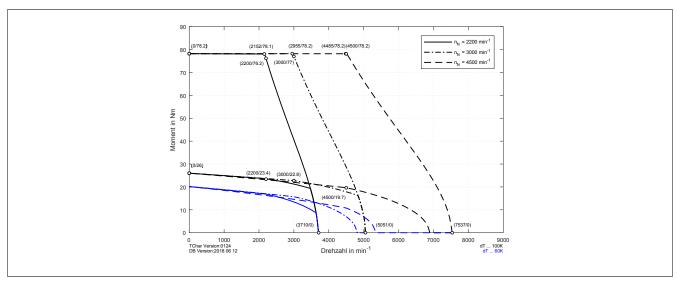

8LSC63.eennnffgg-3


8LSC64.eennnffgg-3

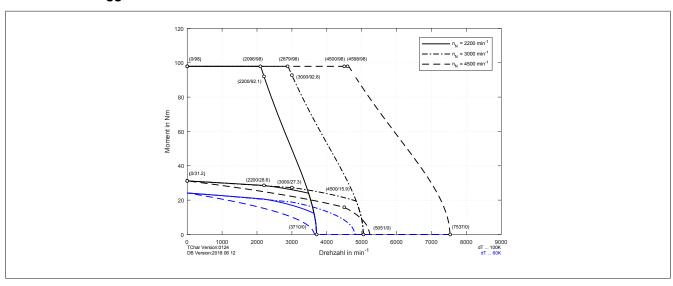
8LSC65.eennnffgg-3

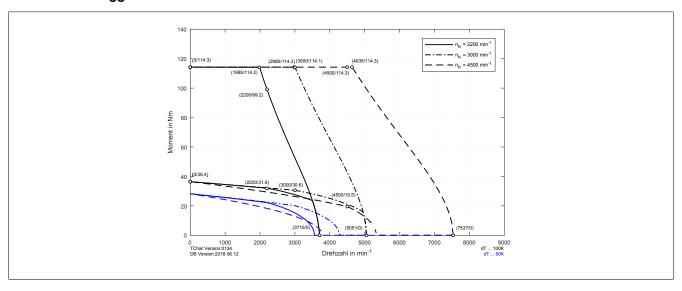


8LSC66.eennnffgg-3



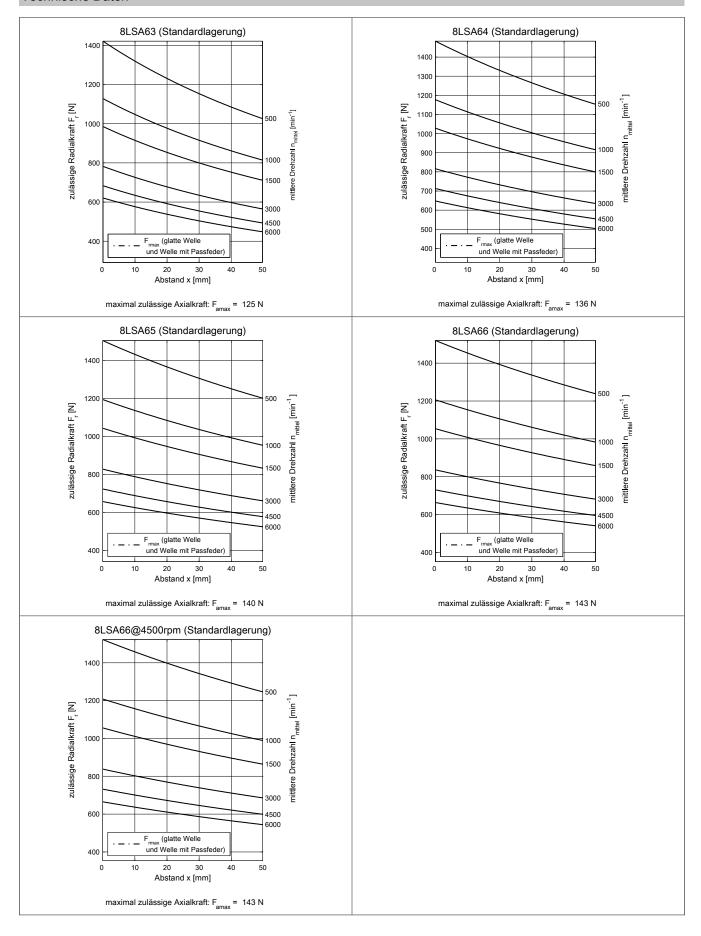
2.15.4.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSC63.eennnffgg-3


8LSC64.eennnffgg-3

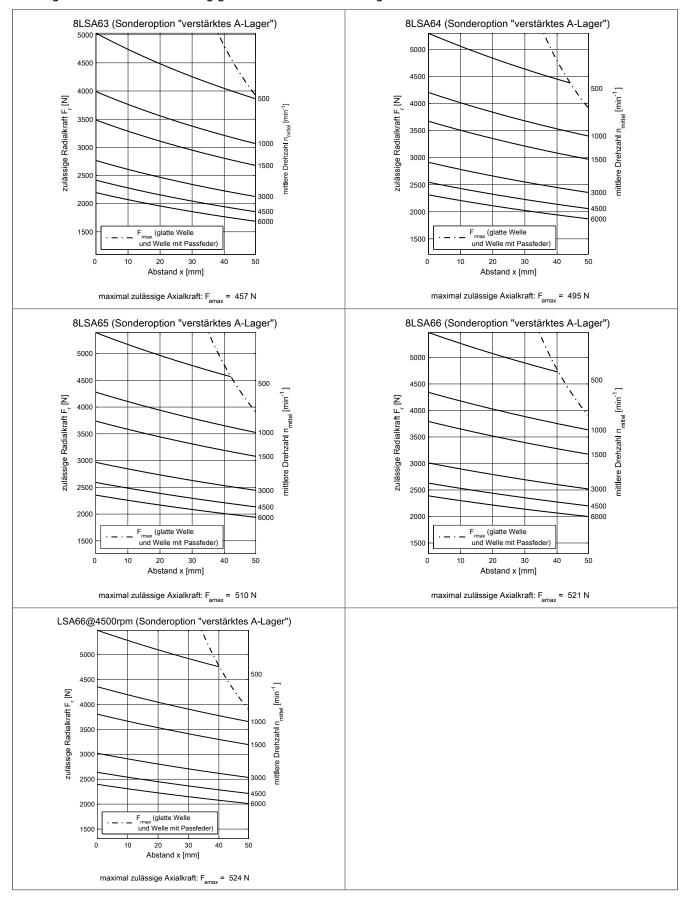
8LSC65.eennnffgg-3

8LSC66.eennnffgg-3

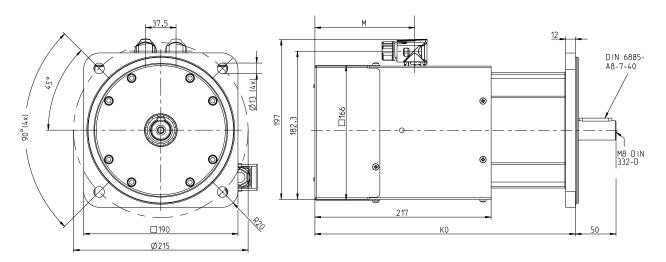


2.15.4.4 Zulässige Wellenbelastung

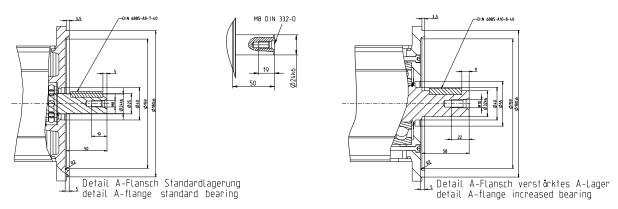
Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.


2.15.4.4.1 8LSA6...-3 / 8LSC6...-3 Standardlagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!


2.15.4.4.2 8LSA6...-3 / 8LSC6...-3 verstärkte Lagerung

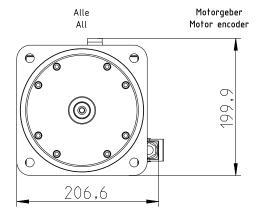
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



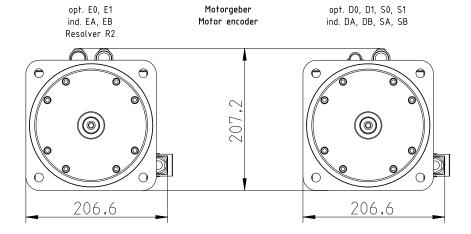
8LS...-3 Anwenderhandbuch V2.51

2.15.4.5 Abmessungen 8LSC6...-3

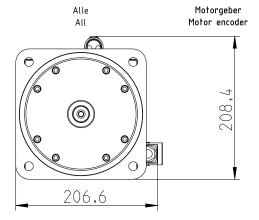
Wellenoption glatte Welle shaft option smooth shaft

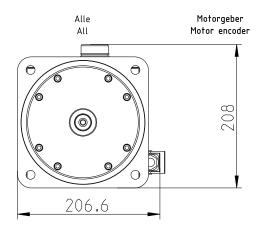

EnDat / Resolver Rückführung		Verlängerung von K₀ und M abhängig von der Motoroption [mm]			
Bestellnummer	K ₀	M	Haltebremse	verstärkte Haltebremse	verstärktes A-Lager
8LSC63.eennnffgg-3	276	123	60	70	28
8LSC64.eennnffgg-3	321	123	60	70	28
8LSC65.eennnffgg-3	344	123	60	70	28
8LSC66.eennnffgg-3	366	123	60	70	28
8LSC66.ee045ffgg-3, Leistungsstecker Gr. 1,5!	381	131	60	70	28

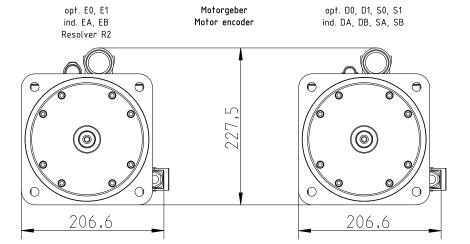
ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.


2.15.4.6 Abmessungen Anschluss 8LSC6...-3 (Steckergröße 1)

Diese Abmessungen sind gültig bis 8LSC65...-3 bzw. bis 8LSC66...-3 Nenndrehzahl 3000. Ab 8LSC66...-3 Nenndrehzahl 4500 gelten die Abmessungen der Steckergröße 1,5 auf Seite 216.






8LS...-3 Anwenderhandbuch V2.51

2.15.4.7 Abmessungen Abmessungen 8LSC6...-3 (Steckergröße 1,5)

2.15.5 Technische Daten 8LSC7...-3

Bestellnummer	8LSC73.ee022ffgg-3	8LSC73.ee030ffgg-3	8LSC73.ee045ffgg-3	8LSC74.ee022ffgg-3
Motor				,
Nenndrehzahl n _N [min-1]	2200	3000	4500	2200
Polpaarzahl			5	
Nennmoment M _n [Nm]	28,5	26,8	21,5	36,8
Nennleistung P _N [W]	6566	8419	10132	8478
Nennstrom I _N [A]	12,84	16,44	19,72	16,58
Stillstandsmoment M ₀ [Nm]	3	3,8	33	43
Stillstandsstrom I ₀ [A]	15,23	20,74	30	19,37
Maximalmoment M _{max} [Nm]		107		150
Maximalstrom I _{max} [A]	71	96,54	144	99
Maximaldrehzahl n _{max} [min-1]		60	000	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	1,09	2,22
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	65,97	134,04
Statorwiderstand R _{2ph} [Ω]	0,72	0,395	0,19	0,51
Statorinduktivität L _{2ph} [mH]	12,3	6,5	2,9	9
Elektrische Zeitkonstante t _{ei} [ms]	17,08	15,48	15,26	16,67
Thermische Zeitkonstante t _{therm} [min]		37	1	41
Trägheitsmoment J [kgcm²]		46	_	60
Masse ohne Bremse m [kg]		20	-	24
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]			17	
Masse der Bremse [kg]			0	
Trägheitsmoment der Bremse J _{Br}			32	-
[kgcm ²]				
Empfehlungen				
ACOPOS 8Vxxxx.xx	1180		1320	
ACOPOSmulti 8BVIxxxx	0220		330	0220
ACOPOS P3 8Elxxxx	017X 024X 034X 1.5 4			024X
Kabelquerschnitt für B&R Motorkabel [mm²]	1,5			
Steckergröße	1	1,0	1,5	1,0

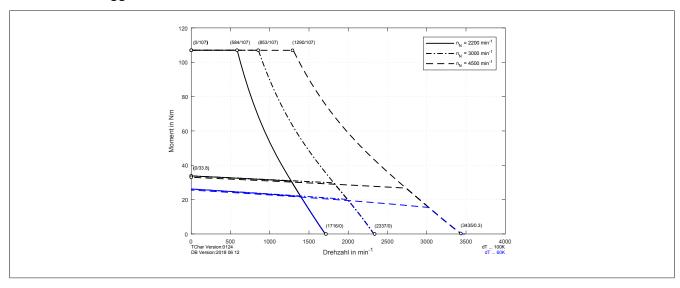
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

8LS...-3 Anwenderhandbuch V2.51

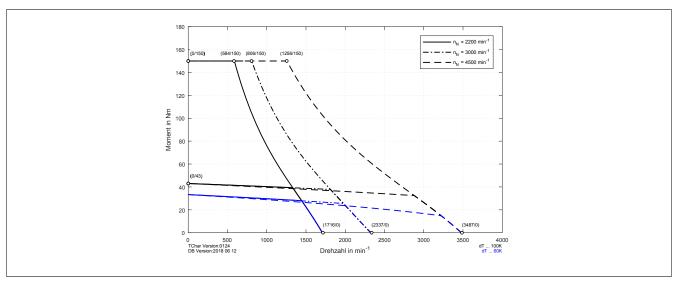
Technische Daten

Bestellnummer	8LSC74.ee030ffgg-3	8LSC74.ee045ffgg-3	8LSC75.ee022ffgg-3	8LSC75.ee030ffgg-3	
Motor				,	
Nenndrehzahl n _N [min-1]	3000	4500	2200	3000	
Polpaarzahl			5	,	
Nennmoment M _n [Nm]	34	24,6	45,5	41	
Nennleistung P _N [W]	10681	11592	10482	12881	
Nennstrom I _N [A]	20,86	22,57	20,5	25,15	
Stillstandsmoment M ₀ [Nm]	4	13	56	48,9	
Stillstandsstrom I ₀ [A]	26,38	39,45	25,2	30	
Maximalmoment M _{max} [Nm]	1	50	1:	87	
Maximalstrom I _{max} [A]	135,33	202	124	169	
Maximaldrehzahl n _{max} [min ⁻¹]	60	000	45	600	
Drehmomentkonstante K _T [Nm/A]	1,63	1,09	2,22	1,63	
Spannungskonstante K _E [V/1000 min ⁻¹]	98,44	65,97	134,04	98,44	
Statorwiderstand R_{2ph} [Ω]	0,28	0,13	0,39	0,21	
Statorinduktivität L _{2ph} [mH]	4,9	2,2	7,1	3,9	
Elektrische Zeitkonstante t _{el} [ms]	17,5	16,92	17,5	18,57	
Thermische Zeitkonstante t _{therm} [min]	4	11	46		
Trägheitsmoment J [kgcm²]	6	60	74		
Masse ohne Bremse m [kg]	2	24	28		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]			47		
Masse der Bremse [kg]			0		
Trägheitsmoment der Bremse J _{Br}		-	32		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx	1320	1640		20	
ACOPOSmulti 8BVIxxxx	0330	0440	0330		
ACOPOS P3 8EIxxxx	034X	044X	03	4X	
Kabelquerschnitt für B&R Motorkabel [mm²]	4	10	•	4	
Steckergröße	1,0	1,5	1,0	1,5	

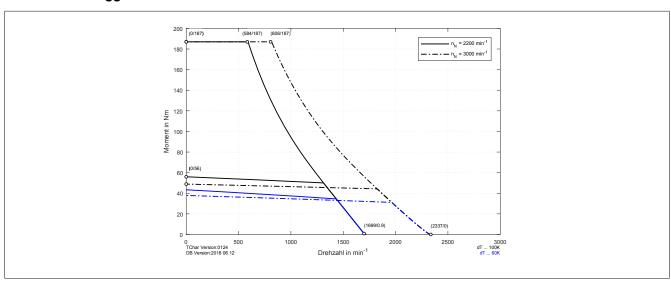
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

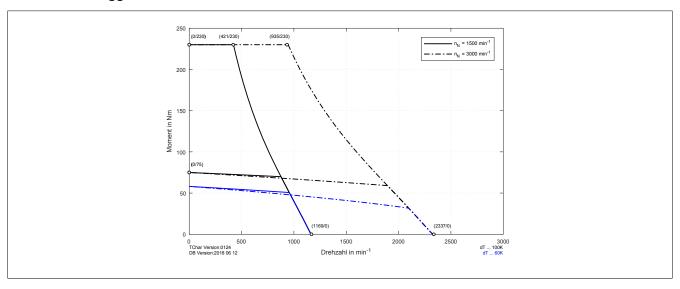

218

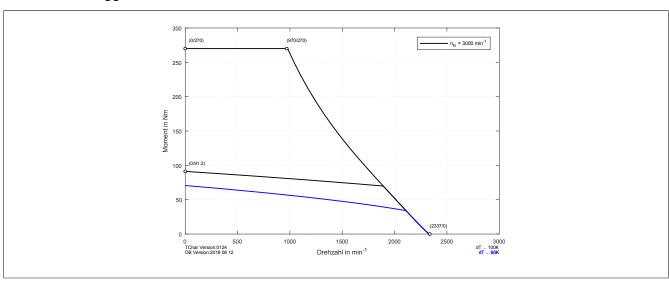
Bestellnummer	8LSC76.ee015ffgg-3	8LSC76.ee030ffgg-3	8LSC77.ee030ffgg-3	8LSC78.ee030ffgg-3
Motor				
Nenndrehzahl n _N [min-1]	1500		3000	
Polpaarzahl			5	
Nennmoment M _n [Nm]	66	47,3	53,6	59
Nennleistung P _N [W]	10367	14860	16839	18535
Nennstrom I _N [A]	20,25	29	32,9	36,2
Stillstandsmoment M ₀ [Nm]	7	75	91,2	104
Stillstandsstrom I ₀ [A]	23,01	46	56	63,8
Maximalmoment M _{max} [Nm]	2	30	270	330
Maximalstrom I _{max} [A]	92,5	185	212	260
Maximaldrehzahl n _{max} [min ⁻¹]		45	500	
Drehmomentkonstante K _⊤ [Nm/A]	3,26		1,63	
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87		98,44	
Statorwiderstand $R_{2ph} [\Omega]$	0,57	0,15	0,11	0,08
Statorinduktivität L _{2ph} [mH]	11,5	2,7	2,2	1,8
Elektrische Zeitkonstante t _{el} [ms]	17,85	18	18,2	22,5
Thermische Zeitkonstante t _{therm} [min]	5	56	65	74
Trägheitsmoment J [kgcm²]	11	02	130	158
Masse ohne Bremse m [kg]	3	36	44	52
Haltebremse				
Haltemoment der Bremse M _{Br} [Nm]		4	7	
Masse der Bremse [kg]		(0	
Trägheitsmoment der Bremse J _{Br} [kgcm²]		3	32	
Empfehlungen				
ACOPOS 8Vxxxx.xx	1320	1320 1640		
ACOPOSmulti 8BVIxxxx	0330	0660 0880		
ACOPOS P3 8EIxxxx	034X		-	
Kabelquerschnitt für B&R Motorkabel [mm²]	4	10 16		
Steckergröße	1	,5	1,5	/16

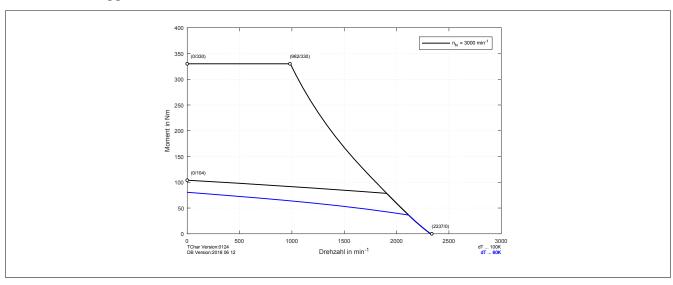

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

2.15.5.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

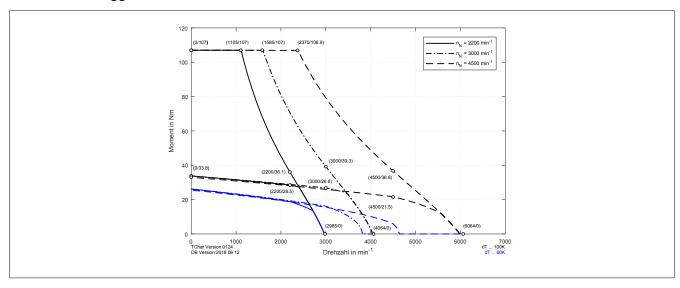

8LSC73.eennnffgg-3


8LSC74.eennnffgg-3

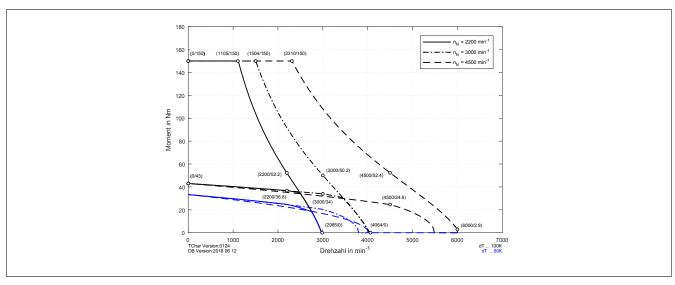

8LSC75.eennnffgg-3


8LSC76.eennnffgg-3

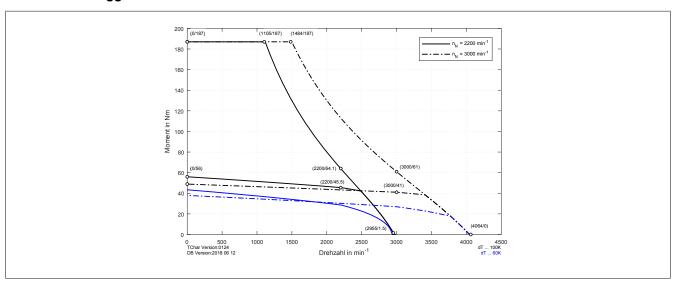
8LSC77.eennnffgg-3

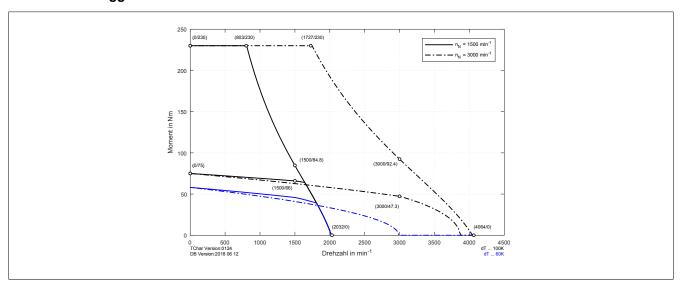


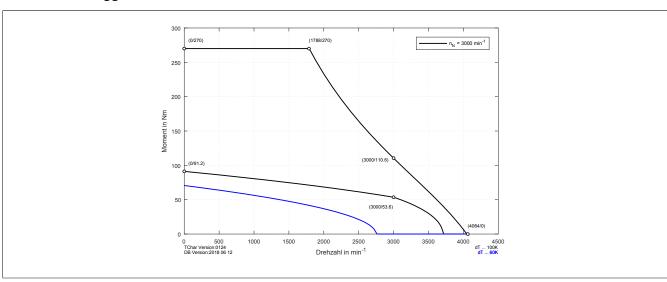
8LSC78.eennnffgg-3

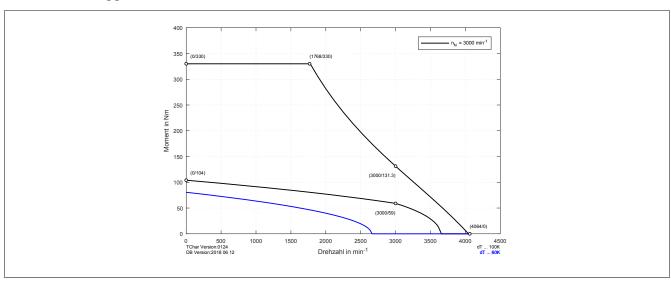


2.15.5.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

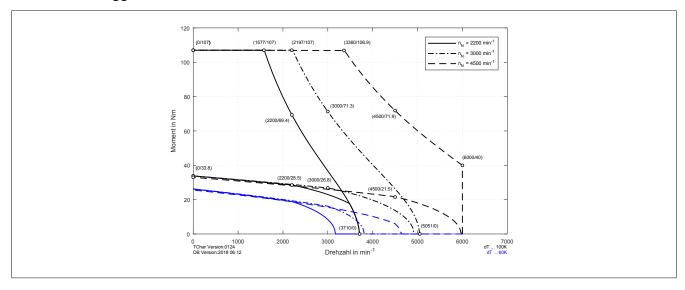

8LSC73.eennnffgg-3


8LSC74.eennnffgg-3

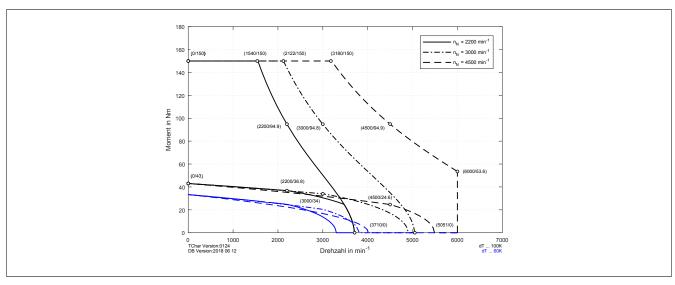

8LSC75.eennnffgg-3


8LSC76.eennnffgg-3

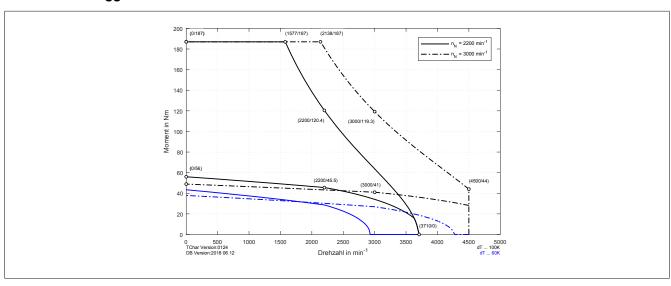
8LSC77.eennnffgg-3

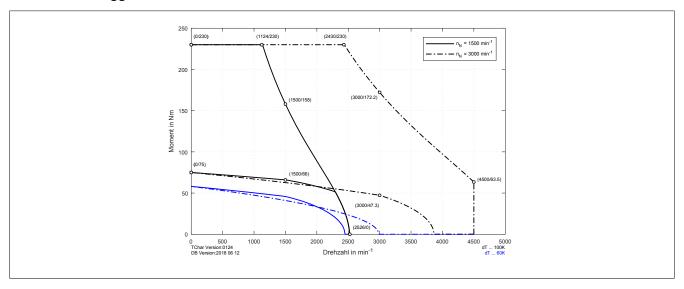


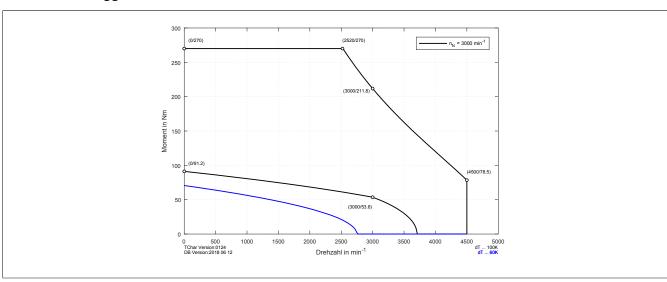
8LSC78.eennnffgg-3

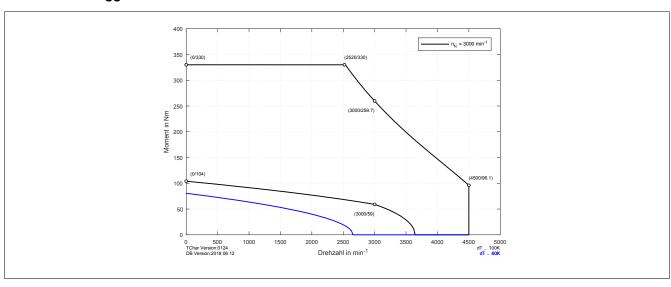


2.15.5.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSC73.eennnffgg-3

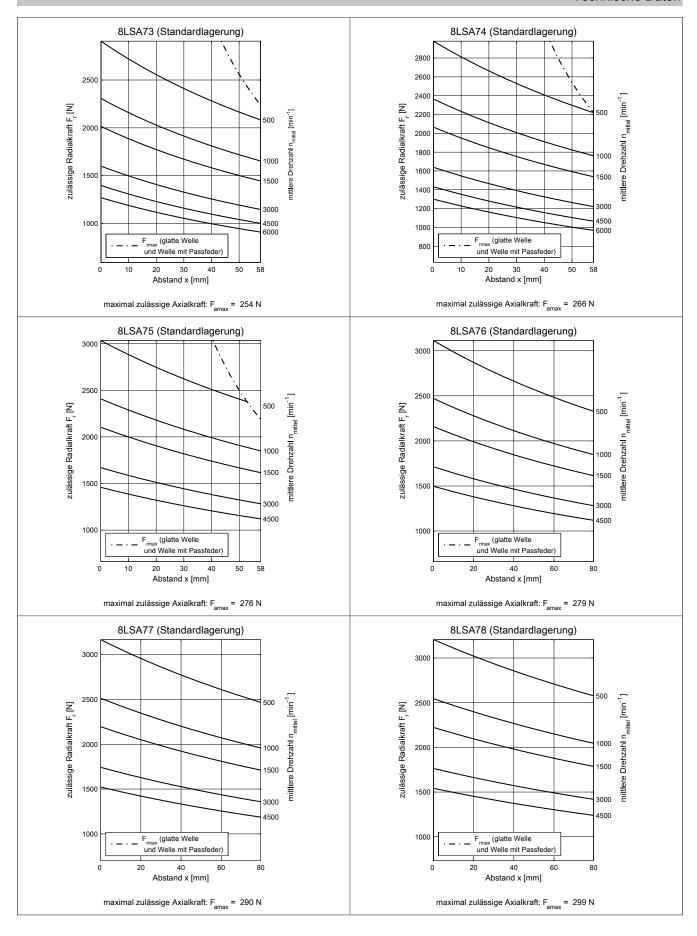

8LSC74.eennnffgg-3


8LSC75.eennnffgg-3


8LSC76.eennnffgg-3

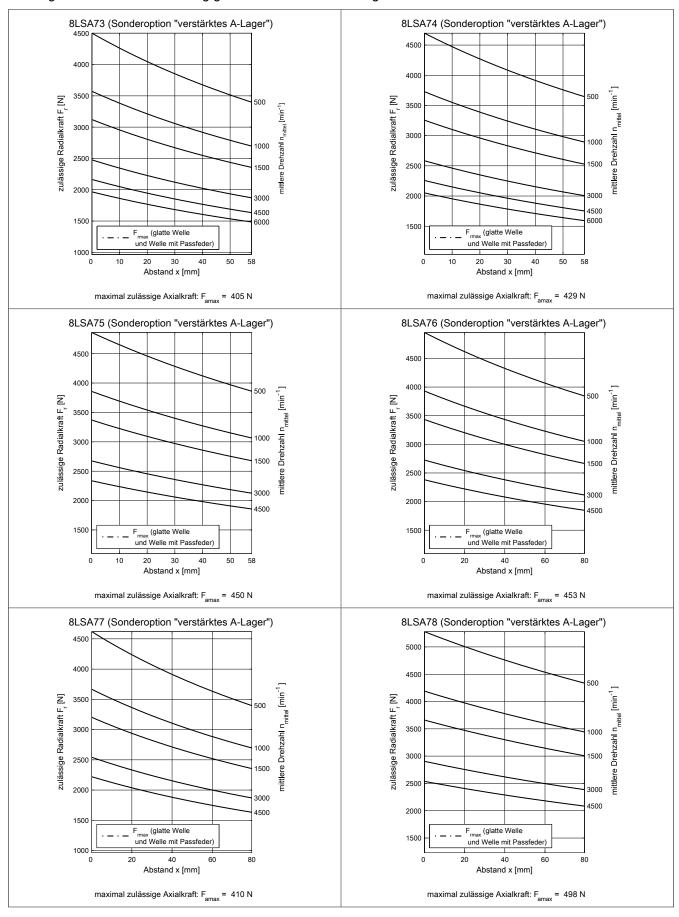
8LSC77.eennnffgg-3

8LSC78.eennnffgg-3

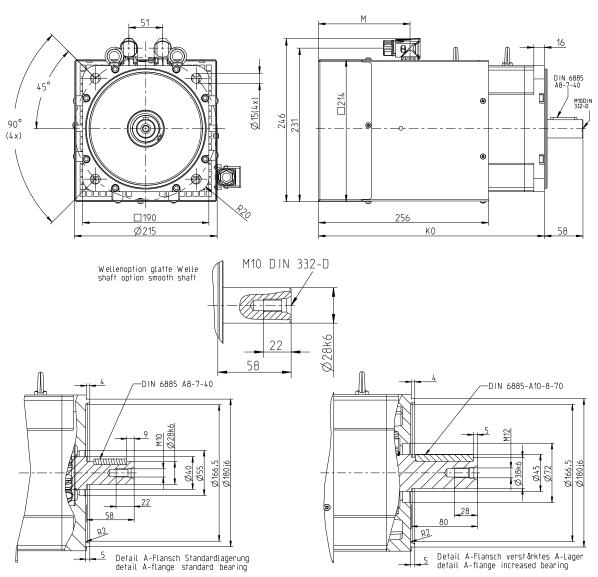

Technische Daten

2.15.5.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

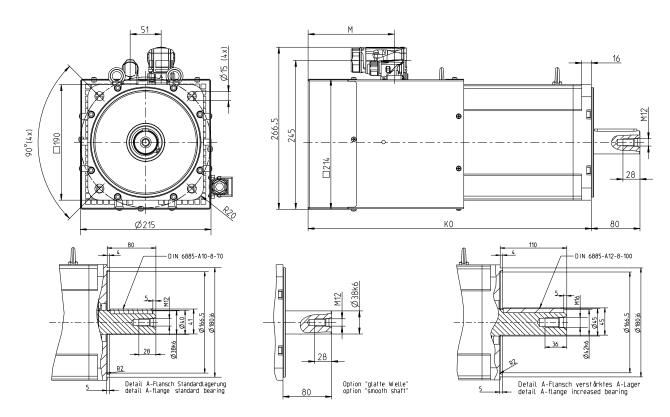

2.15.5.4.1 8LSA7...-3 / 8LSC7...-3 Standardlagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!



2.15.5.4.2 8LSA7...-3 / 8LSC7...-3 verstärkte Lagerung

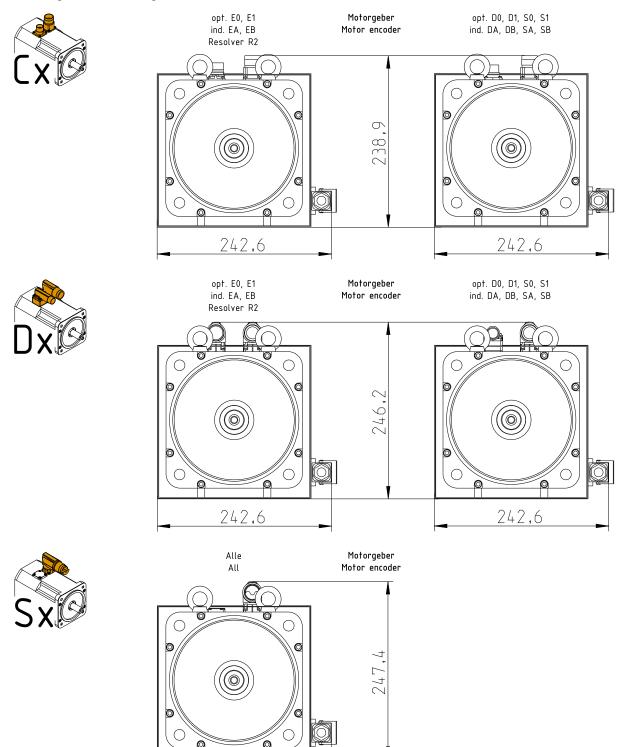
Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!


2.15.5.5 Abmessungen 8LSC73/74/75...-3

EnDat / Resolver Rückführung			Verlängerung von \mathbf{K}_0 und \mathbf{M} abhängig von der Motoroption [mm]			
Bestellnummer	K ₀	M	Haltebremse	verstärkte Halte- bremse	verstärktes A-Lager	
8LSC73.eennnffgg-3	318	137,8	37	54	10	
8LSC73.ee045ffgg-3, Leistungsstecker Gr. 1,5!			auf Anfrage			
8LSC74.eennnffgg-3	340,5	137,8	37	54	10	
8LSC74.ee045ffgg-3, Leistungsstecker Gr. 1,5!	353,5	141,8	37	54	10	
8LSC75.eennnffgg-3	363,0	137,8	37	54	10	
8LSC75.ee045ffgg-3, Leistungsstecker Gr. 1,5!	auf Anfrage					

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

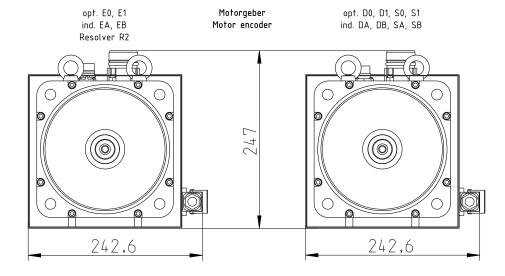
2.15.5.6 Abmessungen 8LSC76/77/78...-3

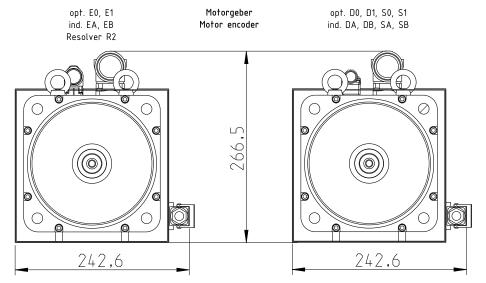


EnDat / Resolver Rückführung			Verlängerung voi [mm]	Verlängerung von K₀ und M abhängig von der Motoroption [mm]			
Bestellnummer	K ₀	M	Haltebremse	verstärkte Halte- bremse	verstärktes A-Lager		
8LSC76.eennnffgg-3	421	142	37	54	10		
8LSC77.eennnffgg-3	466	142	37	54	10		
8LSC78.eennnffgg-3	511	142	37	54	10		

ACHTUNG: Die Motoroption "Wellendichtring" hat keinen Einfluss auf die Motorlänge.

2.15.5.7 Abmessungen Anschluss 8LSC7...-3 (Steckergröße 1)


Ab 8LSC76...3 und auch für 8LSC73...-3 Nenndrehzahl 4500 und 8LSC74...-3 Nenndrehzahl 4500 gelten die Abmessungen der Steckergröße 1,5 auf Seite 232.


242,6

2.15.5.8 Abmessungen Anschluss 8LSC7...-3 (Steckergröße 1,5)

2.15.6 Technische Daten 8LSC8...-3

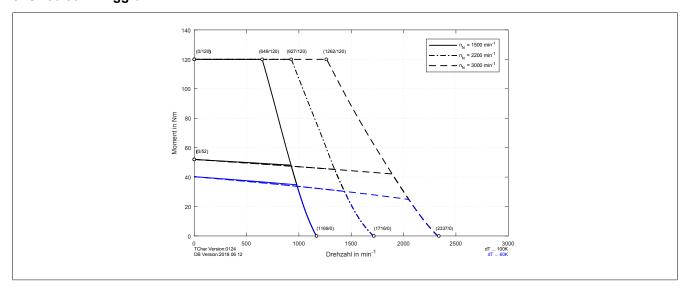
Bestellnummer	8LSC83.ee015ffgg-3	8LSC83.ee022ffgg-3	8LSC83.ee030ffgg-3	8LSC84.ee015ffgg-3		
Motor				,		
Nenndrehzahl n _N [min-1]	1500	2200	3000	1500		
Polpaarzahl			3	,		
Nennmoment M _n [Nm]	45,5	40,3	35,1	75,4		
Nennleistung P _N [W]	7147	9284	11027	11844		
Nennstrom I _N [A]	14	18,2	21,5	23,1		
Stillstandsmoment M ₀ [Nm]		52		89,7		
Stillstandsstrom I ₀ [A]	16	23,5	31,9	27,5		
Maximalmoment M _{max} [Nm]		120		204		
Maximalstrom I _{max} [A]	50	73	102	79		
Maximaldrehzahl n _{max} [min-1]		36	600			
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,22	1,63	3,26		
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87	134,04	98,44	196,87		
Statorwiderstand $R_{2ph}[\Omega]$	0,896	0,41	0,23	0,34		
Statorinduktivität L _{2ph} [mH]	16,86	9,6	5,4	10,3		
Elektrische Zeitkonstante t _{el} [ms]	18,8	23,4	23,5	30,3		
Thermische Zeitkonstante t _{therm} [min]		50		65		
Trägheitsmoment J [kgcm²]		65		114		
Masse ohne Bremse m [kg]		47,7		65,7		
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]		1	30			
Masse der Bremse [kg]			9			
Trägheitsmoment der Bremse J _{Br} [kgcm²]		Ę	53			
Empfehlungen						
ACOPOS 8Vxxxx.xx	1180	1320	1640	1320		
ACOPOSmulti 8BVIxxxx	0220	0330	0440	0330		
ACOPOS P3 8Elxxxx	024X 034X 044X			034X		
Kabelquerschnitt für B&R Motorkabel [mm²]	4					
Steckergröße		1	,5			

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

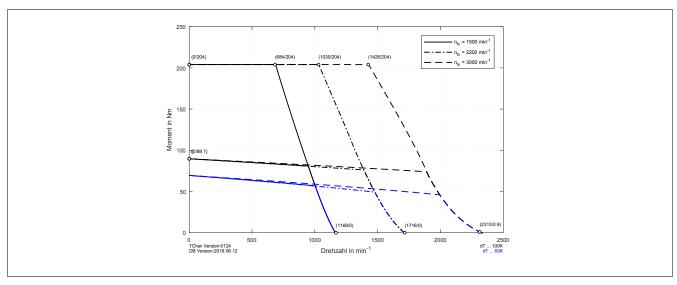
Technische Daten

Bestellnummer	8LSC84.ee022ffgg-3	8LSC84.ee030ffgg-3	8LSC85.ee015ffgg-3	8LSC85.ee020ffgg-3	
Motor				,	
Nenndrehzahl n _N [min-1]	2200	3000	1500	2000	
Polpaarzahl			3	,	
Nennmoment M _n [Nm]	66,95	62,92	100,1	93,6	
Nennleistung P _N [W]	15424	19767	15724	19604	
Nennstrom I _N [A]	30,2	38,6	30,7	38,2	
Stillstandsmoment M ₀ [Nm]	8	9,7	12	2,2	
Stillstandsstrom I ₀ [A]	40,5	55	37,5	49,9	
Maximalmoment M _{max} [Nm]	2	04	2	80	
Maximalstrom I _{max} [A]	115	171	113	151	
Maximaldrehzahl n _{max} [min ⁻¹]		36	800	J	
Drehmomentkonstante K _⊤ [Nm/A]	2,22	1,63	3,26	2,45	
Spannungskonstante K _E [V/1000 min ⁻¹]	134,04	98,44	196,87	147,65	
Statorwiderstand $R_{2ph}[\Omega]$	0,16	0,09	0,29	0,17	
Statorinduktivität L _{2ph} [mH]	4,9	2,6	8,9	5,3	
Elektrische Zeitkonstante t _{el} [ms]	30,6	28,9	30,7	31,2	
Thermische Zeitkonstante t _{therm} [min]	(65	80		
Trägheitsmoment J [kgcm²]	1	14	150		
Masse ohne Bremse m [kg]	6	5,7	80,2		
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]		1	30		
Masse der Bremse [kg]			9		
Trägheitsmoment der Bremse J _{Br}		Ę	53		
[kgcm ²]					
Empfehlungen					
ACOPOS 8Vxxxx.xx			640		
ACOPOSmulti 8BVIxxxx	0660		0440	0660	
ACOPOS P3 8Elxxxx	-		044X	-	
Kabelquerschnitt für B&R Motorkabel [mm²]	10	16	1	0	
Steckergröße	1,5	1,5/16	1,5	1,5/16	

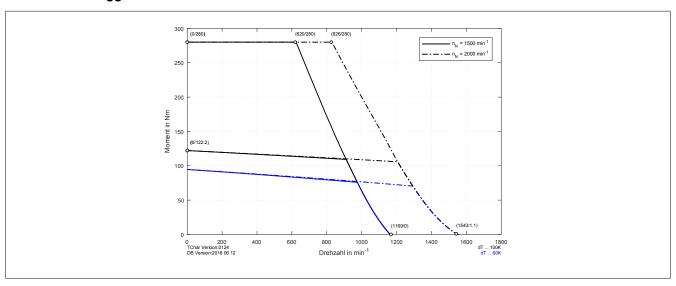
HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

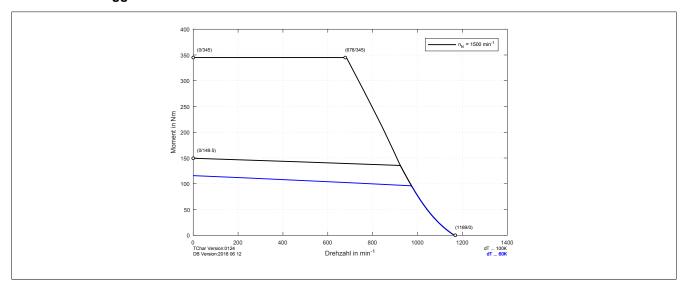

234

Bestellnummer	8LSC86.ee015ffgg-3	8LSC86.ee020ffgg-3			
Motor					
Nenndrehzahl n _N [min-1]	1500	2000			
Polpaarzahl		3			
Nennmoment M _n [Nm]	126,1	110,5			
Nennleistung P _N [W]	19808	23143			
Nennstrom I _N [A]	38,7	42,8			
Stillstandsmoment M ₀ [Nm]	14	19,5			
Stillstandsstrom I ₀ [A]	45,9	57,9			
Maximalmoment M _{max} [Nm]	3	345			
Maximalstrom I _{max} [A]	137	182			
Maximaldrehzahl n _{max} [min ⁻¹]	31	600			
Drehmomentkonstante K _⊤ [Nm/A]	3,26	2,58			
Spannungskonstante K _E [V/1000 min ⁻¹]	196,87	156,03			
Statorwiderstand R _{2ph} [Ω]	0,208	0,15			
Statorinduktivität L _{2ph} [mH]	6,1	4,9			
Elektrische Zeitkonstante t _{el} [ms]	30,5	32,6			
Thermische Zeitkonstante t _{therm} [min]		90			
Trägheitsmoment J [kgcm²]	1	92			
Masse ohne Bremse m [kg]	9	3,7			
Haltebremse					
Haltemoment der Bremse M _{Br} [Nm]	1	30			
Masse der Bremse [kg]		9			
Trägheitsmoment der Bremse J _{Br} [kgcm²]	53				
Empfehlungen					
ACOPOS 8Vxxxx.xx	1640				
ACOPOSmulti 8BVIxxxx	0660				
Kabelquerschnitt für B&R Motorkabel [mm²]	10	16			
Steckergröße	1,5	1,5/16			

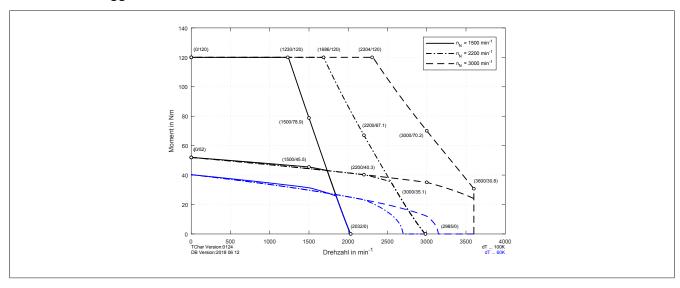

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

2.15.6.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung

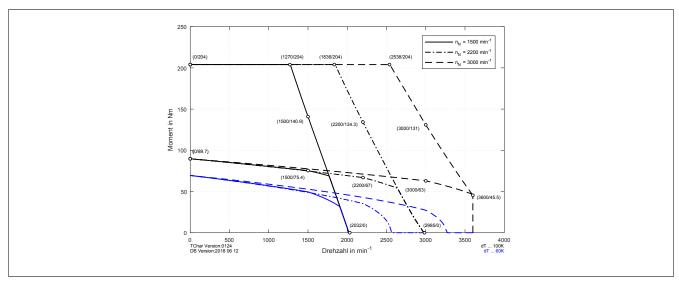

8LSC83.eennnffgg-3


8LSC84.eennnffgg-3

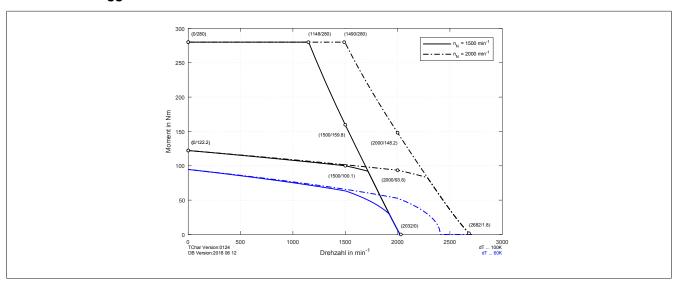
8LSC85.eennnffgg-3

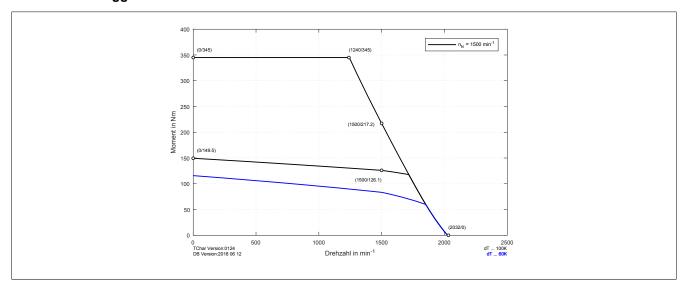


8LSC86.eennnffgg-3

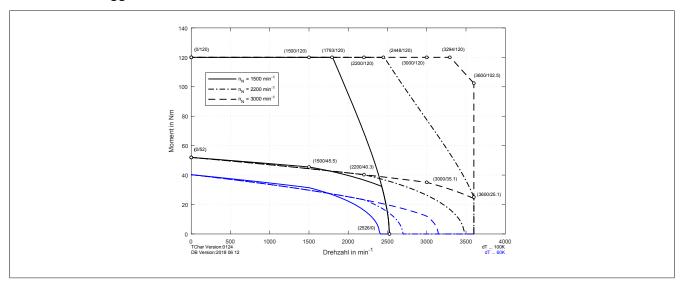


2.15.6.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

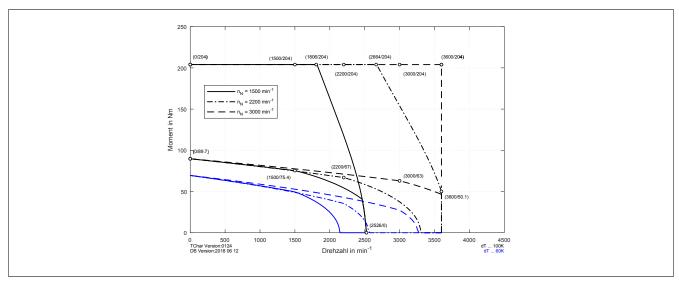

8LSC83.eennnffgg-3


8LSC84.eennnffgg-3

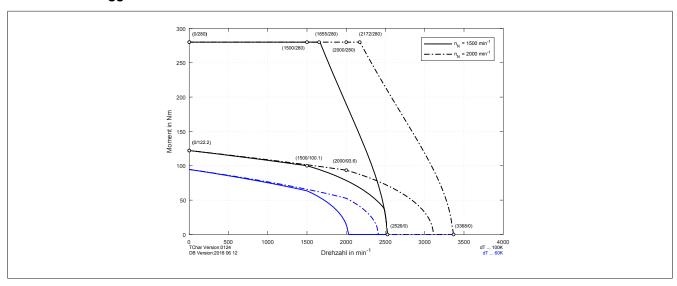
8LSC85.eennnffgg-3

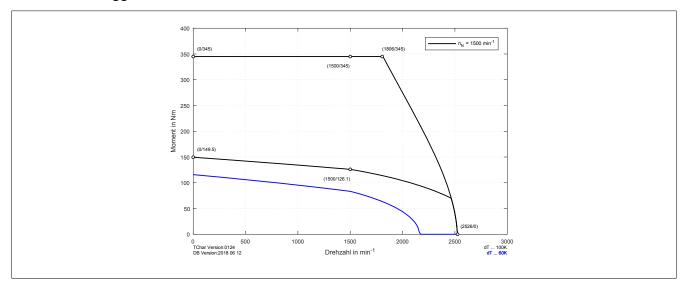


8LSC86.eennnffgg-3



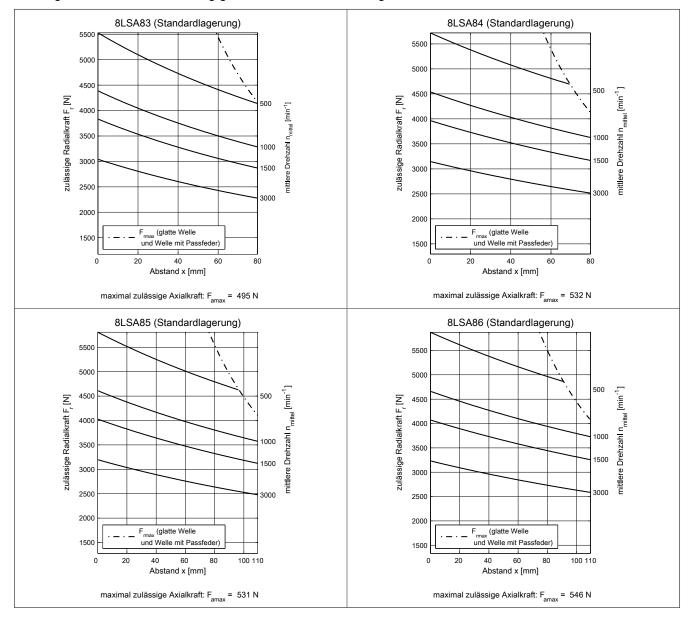
2.15.6.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSC83.eennnffgg-3


8LSC84.eennnffgg-3

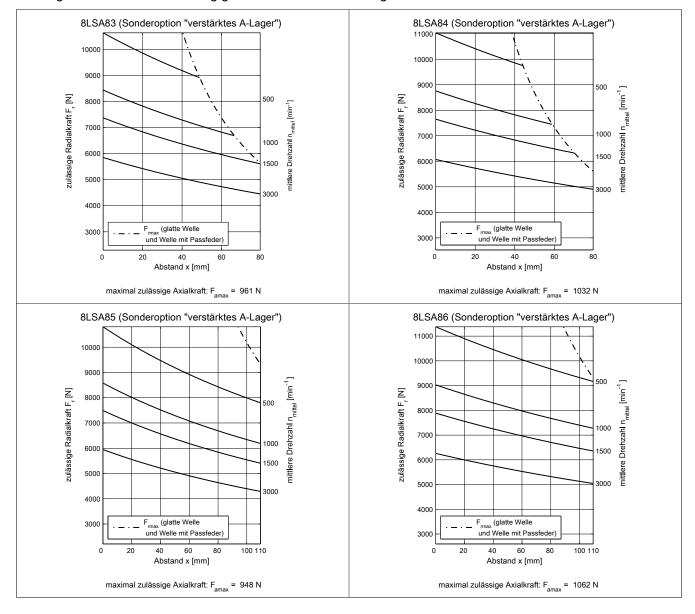
8LSC85.eennnffgg-3

8LSC86.eennnffgg-3

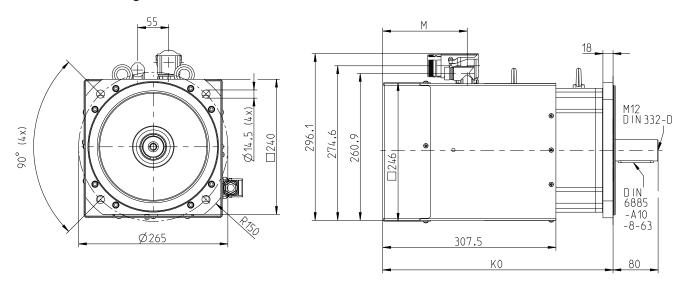


2.15.6.4 Zulässige Wellenbelastung

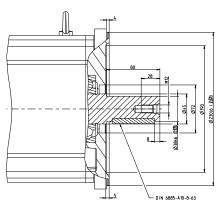
Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

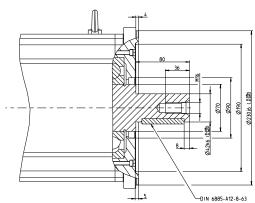

2.15.6.4.1 8LSA8...-3 / 8LSC8...-3 Standardlagerung

Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

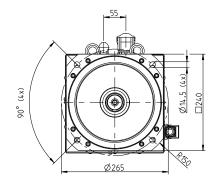


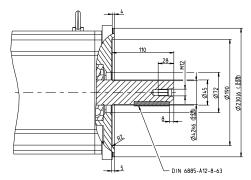
2.15.6.4.2 8LSA8...-3 / 8LSC8...-3 verstärkte Lagerung


Die Angaben zur Wellenbelastung gelten für 8LSA und 8LSC gleichermaßen!

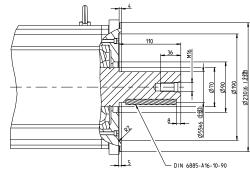

2.15.6.5 Abmessungen 8LSC8...-3

Detail A-Flansch Standardlagerung detail A-flange standard bearing

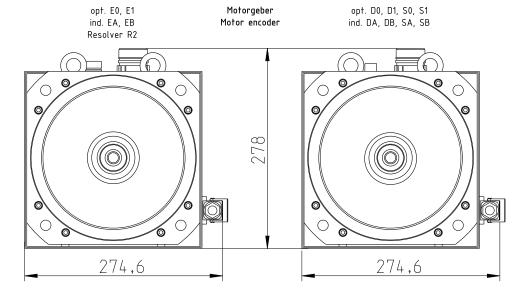



Detail A-Flansch verstörktes A-Lager detail A-flange increased bearing

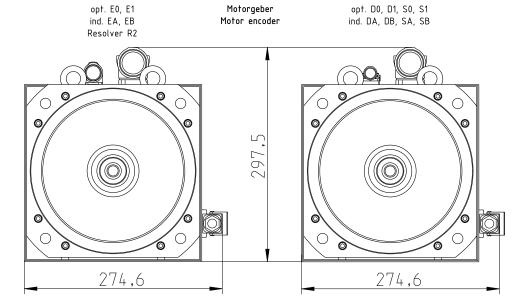

EnDat-Rückführung / Resolver-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]			
Bestellnummer K ₀ M			Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager	
8LSC83.eennnffgg-3	409	150	50		16.5	
8LSC84.eennnffgg-3	489	150	50		16.5	


Die Motoroption "Haltebremse" ist nicht in Kombination mit der Sondermotoroption "verstärktes A-Lager" bestellbar.

Detail A-Flansch Standardlagerung detail A-flange standard bearing


Detail A-Flansch verstörktes A-Lager detail A-flange increased bearing

EnDat-Rückführung / Resolver-Rückführung			Verlängerung von K₀ abhängig von der Motoroption [mm]		
Bestellnummer K ₀ M			Haltebremse ¹⁾	Wellendichtring	verstärktes A-Lager
8LSC85.eennnffgg-3	549	150	50		16.5
8LSC86.eennnffgg-3	609	150	50		16.5


Die Motoroption "Haltebremse" ist nicht in Kombination mit der Sondermotoroption "verstärktes A-Lager" bestellbar.

2.15.6.6 Abmessungen Anschluss 8LSC8...-3

Motorgeber

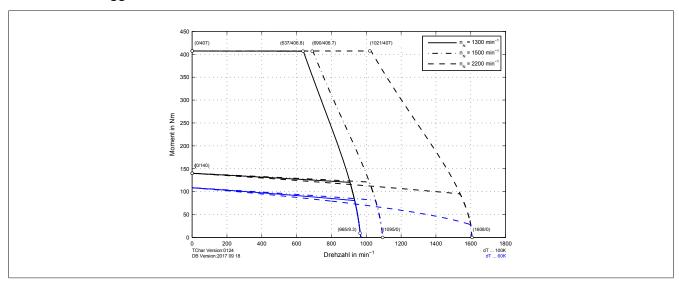
2.16 Technische Daten 8LSO

2.16.1 Technische Daten 8LSO9...-3

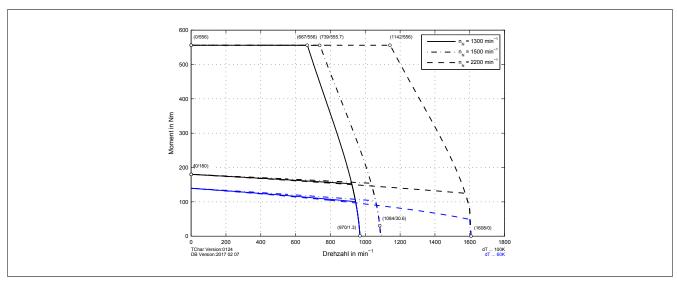
Bestellnummer	8LSO93. ee013ffgg-3	8LSO93. ee015ffgg-3	8LSO93. ee022ffgg-3	8LSO94. ee013ffgg-3	8LSO94. ee015ffgg-3	8LSO94. ee022ffgg-3
Motor						,
Nenndrehzahl n _N [min-1]	1300	1500	2200	1300	1500	2200
Polpaarzahl			4	1		
Nennmoment M _n [Nm]	11	10	67	14	40	96
Nennleistung P _N [W]	14975	17279	15436	19059	21991	22117
Nennstrom I _N [A]	30	38	30,3	38	43	43,4
Stillstandsmoment M ₀ [Nm]		140	,		180	,
Stillstandsstrom I ₀ [A]	38	43	63,3	49	55	81,5
Maximalmoment M _{max} [Nm]		407	,		556	,
Maximalstrom I _{max} [A]	138	146	216	177	200	295
Maximaldrehzahl n _{max} [min ⁻¹]			30	00	ı	,
Drehmomentkonstante K _T [Nm/A]	3,64	3,26	2,21	3,64	3,26	2,21
Spannungskonstante K _E [V/1000 min ⁻¹]	219,91	196,87	134,04	219,91	196,87	134,04
Statorwiderstand R _{2ph} [Ω]	0,194	0,158	0,076	0,115	0,103	0,049
Statorinduktivität L _{2ph} [mH]	5,39	4,7	2,23	3,75	3,1	1,35
Elektrische Zeitkonstante t _{el} [ms]	28	29,8	29	33		
Thermische Zeitkonstante t _{therm} [min]		63	'		65	
Trägheitsmoment J [kgcm²]		290			373	
Masse ohne Bremse m [kg]	11	18	128	14	150	
Haltebremse						,
Haltemoment der Bremse M _{Br} [Nm]			()		
Masse der Bremse [kg]			()		
Trägheitsmoment der Bremse J _{Br}			()		
[kgcm ²]						
Empfehlungen						
ACOPOS 8Vxxxx.xx		40	128M	-	40	128M
ACOPOSmulti 8BVIxxxx	0440	0660	0880		60	1650
Kabelquerschnitt für B&R Motorkabel [mm²]	1	0	16	10	16	25

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

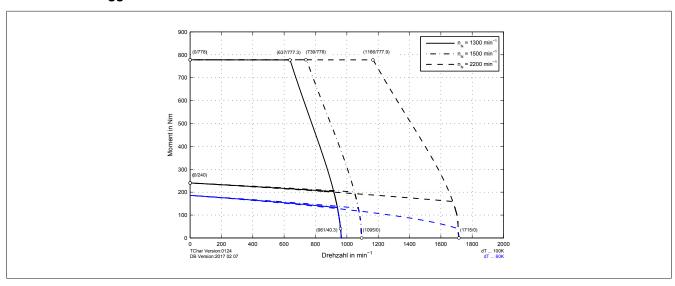
8LS...-3 Anwenderhandbuch V2.51


Technische Daten

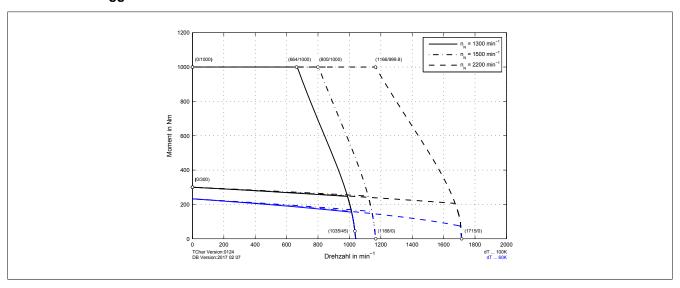
Bestellnummer	8LSO95. ee013ffgg-3	8LSO95. ee015ffgg-3	8LSO95. ee022ffgg-3	8LSO96. ee013ffgg-3	8LSO96. ee015ffgg-3	8LSO96. ee022ffgg-3
Motor						,
Nenndrehzahl n _N [min ⁻¹]	1300	1500	2200	1300	1500	2200
Polpaarzahl			4	1		
Nennmoment M _n [Nm]	18	83	123	22	29	165
Nennleistung P _N [W]	24913	28746	28337	31175	35971	38013
Nennstrom I _N [A]	50	56	55,7	62	70	74,7
Stillstandsmoment M ₀ [Nm]		240			300	
Stillstandsstrom I ₀ [A]	65	74	108,6	82	92	135,7
Maximalmoment M _{max} [Nm]		778	,		1000	,
Maximalstrom I _{max} [A]	249	280	412	320	359	530
Maximaldrehzahl n _{max} [min-1]		,	30	00	,	,
Drehmomentkonstante K _⊤ [Nm/A]	3,64	3,26	2,21	3,64	3,26	2,21
Spannungskonstante K _E [V/1000 min ⁻¹]	219,91	196,87	134,04	219,91	196,87	134,04
Statorwiderstand R _{2ph} [Ω]	0,083	0,062	0,03	0,066	0,045	0,022
Statorinduktivität L _{2ph} [mH]	2,95	2,22	1,06	2,4	1,7	0,83
Elektrische Zeitkonstante t _{el} [ms]	35	36	35	36	37,8	37
Thermische Zeitkonstante t _{therm} [min]		67			69	
Trägheitsmoment J [kgcm²]		497		622		
Masse ohne Bremse m [kg]	17	71	183	20	04	216
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]			()		
Masse der Bremse [kg]			()		
Trägheitsmoment der Bremse J _{Br} [kgcm²]			()		
Empfehlungen						
ACOPOS 8Vxxxx.xx			128M			-
ACOPOSmulti 8BVIxxxx	08	80		1650		
Kabelquerschnitt für B&R Motorkabel [mm²]	16	25	50	25	35	70


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

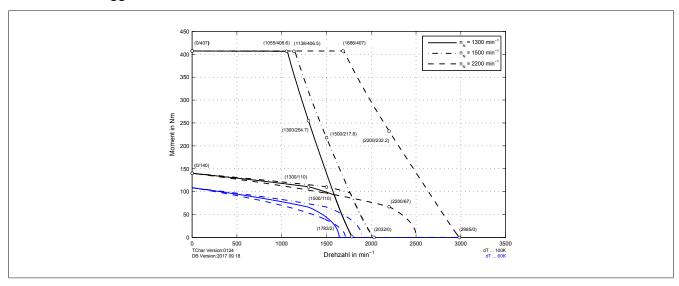
2.16.1.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSO93.eennnffgg-3

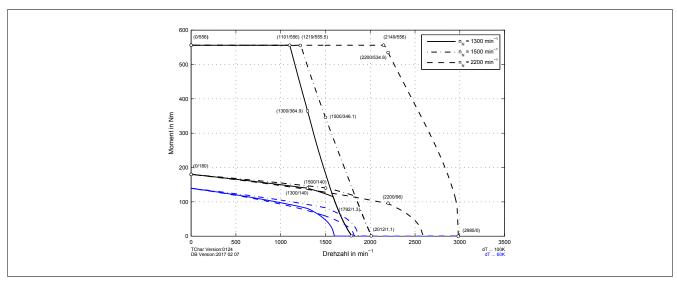
8LSO94.eennnffgg-3



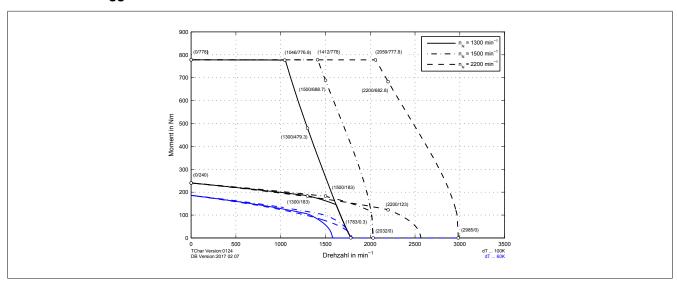
8LSO95.eennnffgg-3

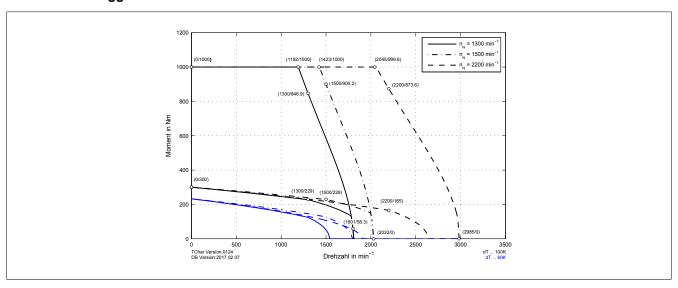

Technische Daten

8LSO96.eennnffgg-3

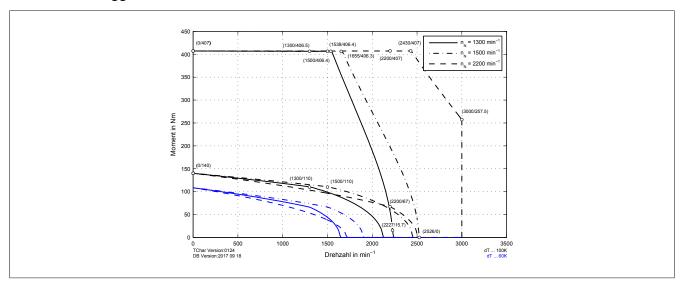


2.16.1.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

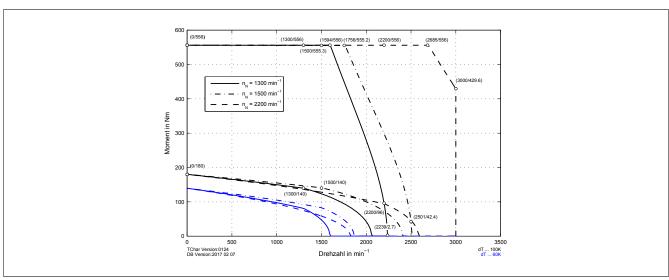

8LSO93.eennnffgg-3


8LSO94.eennnffgg-3

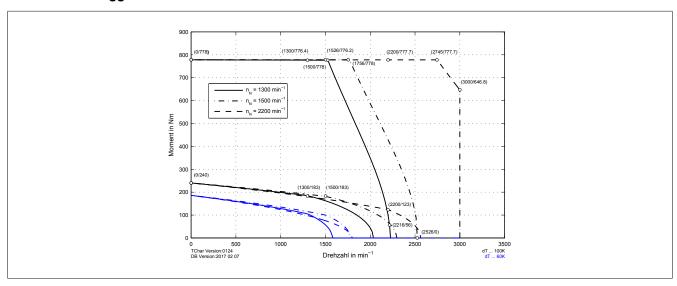
8LSO95.eennnffgg-3

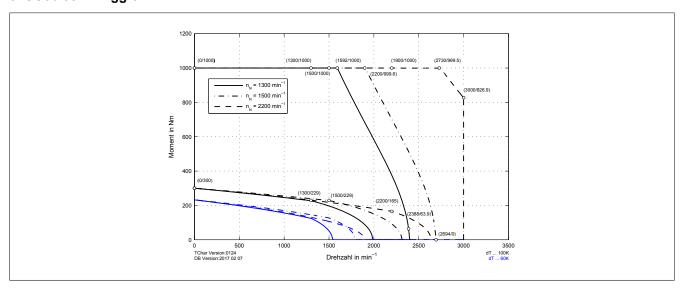


8LSO96.eennnffgg-3

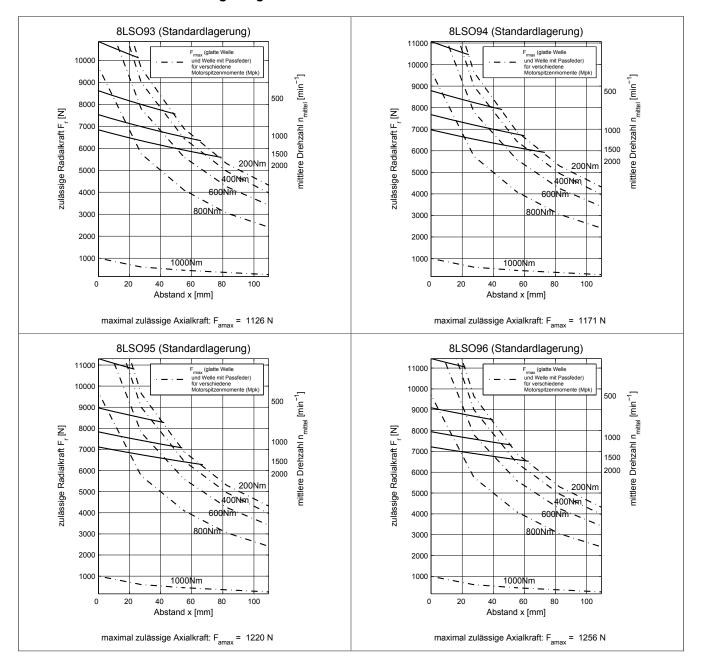


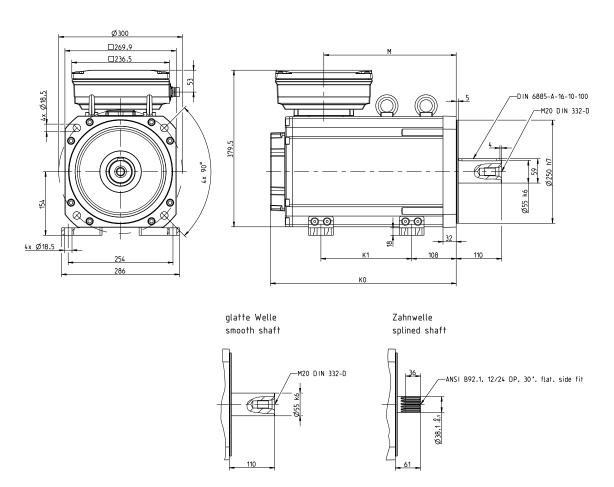
2.16.1.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSO93.eennnffgg-3


8LSO94.eennnffgg-3

8LSO95.eennnffgg-3


8LSO96.eennnffgg-3


2.16.1.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

2.16.1.4.1 8LSO9...-3 Standardlagerung

2.16.1.5 Abmessungen 8LSO9...-3

EnDat / Resolver Rückführung					Verlängerung von K₀ und M abhängig von der Motoroption [mm]
	K ₀		K ₁	М	Wellendichtring
Geberzuordnung	R2, DA, DB	D0, D1	Alle Geber	Alle Geber	
8LSO933	422	450	220	321	0
8LSO943	482	510	280	381	0
8LSO953	572	600	370	471	0
8LSO963	662	690	460	561	0

ACHTUNG: Maß \mathbf{K}_0 ist abhängig von der Länge des Geberdeckels

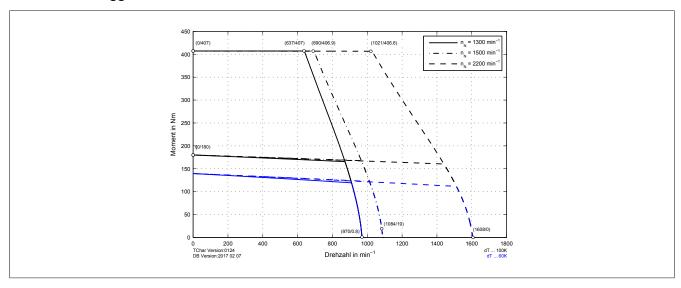
2.17 Technische Daten 8LSP

2.17.1 Technische Daten 8LSP9...-3

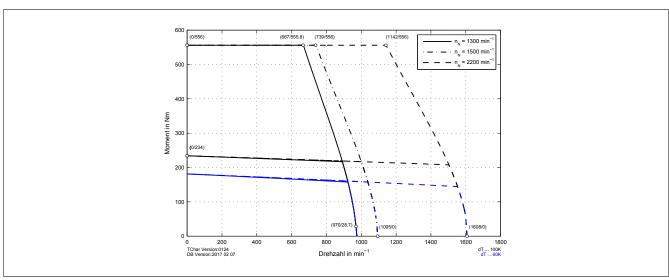
Bestellnummer	8LSP93. ee013ffgg-3	8LSP93. ee015ffgg-3	8LSP93. ee022ffgg-3	8LSP94. ee013ffgg-3	8LSP94. ee015ffgg-3	8LSP94. ee022ffgg-3
Motor						
Nenndrehzahl n _N [min-1]	1300	1500	2200	1300	1500	2200
Polpaarzahl			4	4		,
Nennmoment M _n [Nm]	10	60	148	20	08	195
Nennleistung P _N [W]	21782	25133	34097	28316	32673	44925
Nennstrom I _N [A]	43	49	67	57	63,8	88
Stillstandsmoment M ₀ [Nm]		180	,		234	,
Stillstandsstrom I ₀ [A]	49	55	81	64	71,8	106
Maximalmoment M _{max} [Nm]		407	,		556	,
Maximalstrom I _{max} [A]	138	146	216	177	200	295
Maximaldrehzahl n _{max} [min ⁻¹]				3000		
Drehmomentkonstante K _T [Nm/A]	3,64	3,26	2,21	3,64	3,26	2,21
Spannungskonstante K _E [V/1000 min-1]	219,91	196,87	134,04	219,91	196,87	134,04
Statorwiderstand R_{2ph} [Ω]	0,194	0,158	0,076	0,115	0,103	0,049
Statorinduktivität L _{2ph} [mH]	5,39	4,7	2,23	3,75	3,1	1,35
Elektrische Zeitkonstante tel [ms]	28	29,8	29		33	
Thermische Zeitkonstante t _{therm} [min]		63	'		65	
Trägheitsmoment J [kgcm²]		290		373		
Masse ohne Bremse m [kg]	128	118	128	150	140	150
Haltebremse						,
Haltemoment der Bremse M _{Br} [Nm]			0			
Masse der Bremse [kg]			0			
Trägheitsmoment der Bremse J _{Br}			0			
[kgcm ²]						
Empfehlungen						
ACOPOS 8Vxxxx.xx		40	128M			
ACOPOSmulti 8BVIxxxx		60	1650	08		1650
Kabelquerschnitt für B&R Motorkabel [mm²]	10	16	25	16	25	50

HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

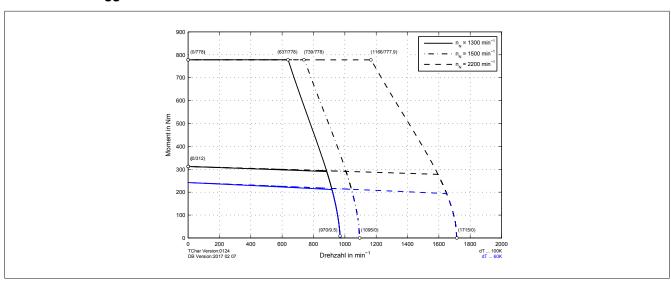
8LS...-3 Anwenderhandbuch V2.51


Technische Daten

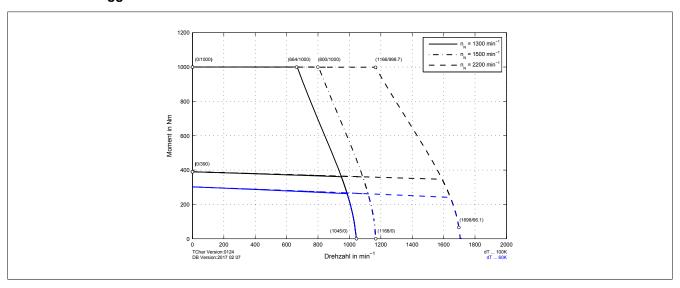
Bestellnummer	8LSP95. ee013ffgg-3	8LSP95. ee015ffgg-3	8LSP95. ee022ffgg-3	8LSP96. ee013ffgg-3	8LSP96. ee015ffgg-3	8LSP96. ee022ffgg-3
Motor				,		,
Nenndrehzahl n _N [min ⁻¹]	1300	1500	2200	1300	1500	2200
Polpaarzahl			4	4		
Nennmoment M _n [Nm]	28	30	263	35	50	325
Nennleistung P _N [W]	38118	43982	60591	47647	54978	74875
Nennstrom I _N [A]	76	86	119	96	107,3	147
Stillstandsmoment M ₀ [Nm]		312			390	
Stillstandsstrom I ₀ [A]	85	96	141	107	119,6	175
Maximalmoment M _{max} [Nm]		778			1000	,
Maximalstrom I _{max} [A]	249	280	412	320	359	530
Maximaldrehzahl n _{max} [min-1]	3(000		
Drehmomentkonstante K _T [Nm/A]	3,64	3,26	2,21	3,64	3,26	2,21
Spannungskonstante K _E [V/1000 min-1]	219,91	196,87	134,04	219,91	196,87	134,04
Statorwiderstand R _{2ph} [Ω]	0,083	0,062	0,03	0,066	0,045	0,022
Statorinduktivität L _{2ph} [mH]	2,95	2,22	1,06	2,4	1,7	0,83
Elektrische Zeitkonstante t _{ei} [ms]	35	36	35	36	37,8	37
Thermische Zeitkonstante t _{therm} [min]		67			69	
Trägheitsmoment J [kgcm²]		497	_		622	
Masse ohne Bremse m [kg]	183	171	183	216	204	216
Haltebremse						
Haltemoment der Bremse M _{Br} [Nm]			(0		
Masse der Bremse [kg]			(0		
Trägheitsmoment der Bremse J _{Br} [kgcm²]			(0		
Empfehlungen						
ACOPOS 8Vxxxx.xx	12	8M	-	128M		-
ACOPOSmulti 8BVIxxxx			1650			-
Kabelquerschnitt für B&R Motorkabel [mm²]	25	35	70	5	0	70


HINWEIS Servoverstärker: Der empfohlene Servoverstärker/ das Wechselrichtermodul ist für den 1,1-fachen Stillstandsstrom ausgelegt. Sollte während der Beschleunigungsphase mehr als das Zweifache benötigt werden, ist der nächstgrößere Servoverstärker zu wählen. Diese Empfehlung stellt nur einen Richtwert dar, die detaillierte Betrachtung der zugehörigen Drehzahl/Drehmoment Kennlinie kann zu Abweichungen der Servoverstärkergröße nach oben oder nach unten führen. HINWEIS Kabelquerschnitt: Die B&R Motorkabel mit diesem Kabelquerschnitt sind optimal für den jeweils empfohlenen ACOPOS Servoverstärker bzw. das ACOPOS Wechselrichtermodul konfektioniert. B&R Motorkabel mit anderen Kabelquerschnitten können (innerhalb des klemmbaren Querschnittbereichs) prinzipiell ebenfalls verwendet werden und sind in der gewünschten Konfektion auf Anfrage bei B&R erhältlich. Die Verlegeart ist zu beachten.

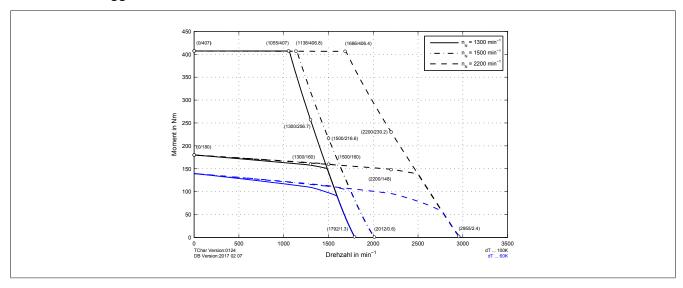
2.17.1.1 Drehzahl-Drehmomentkennlinien bei 325 VDC Zwischenkreisspannung


8LSP93.eennnffgg-3

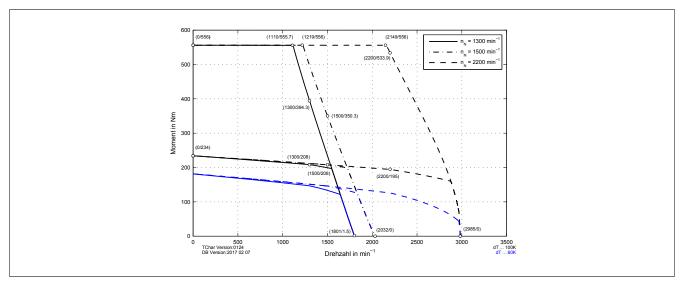
8LSP94.eennnffgg-3



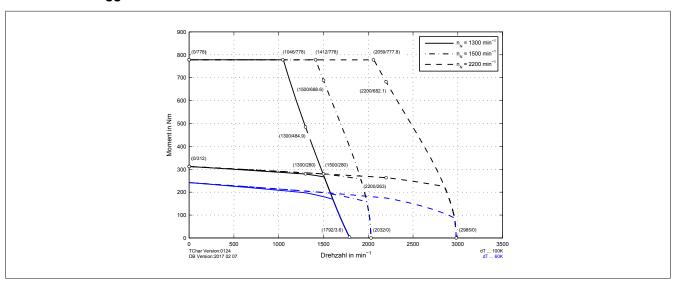
8LSP95.eennnffgg-3

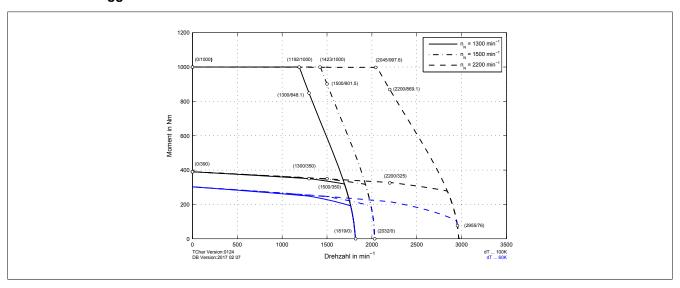

Technische Daten

8LSP96.eennnffgg-3

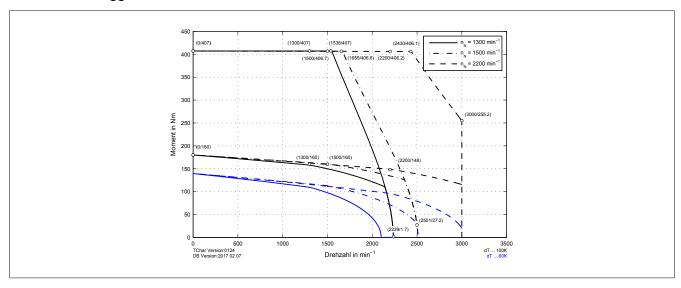


2.17.1.2 Drehzahl-Drehmomentkennlinien bei 560 VDC Zwischenkreisspannung

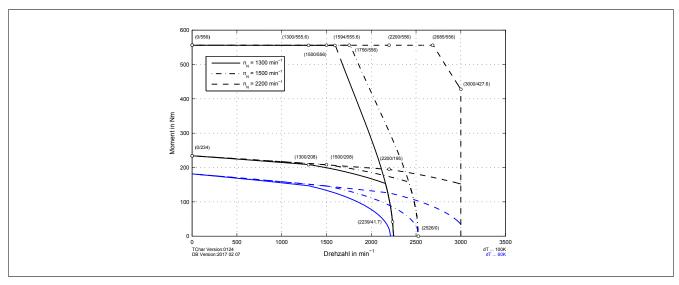

8LSP93.eennnffgg-3


8LSP94.eennnffgg-3

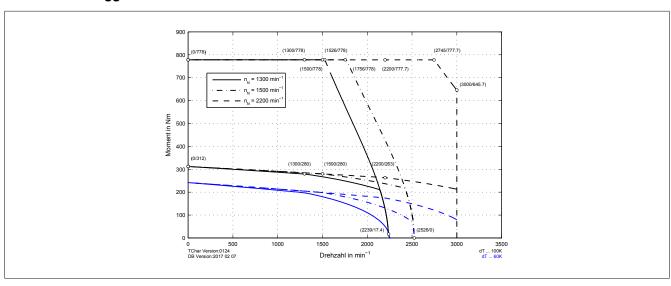
8LSP95.eennnffgg-3

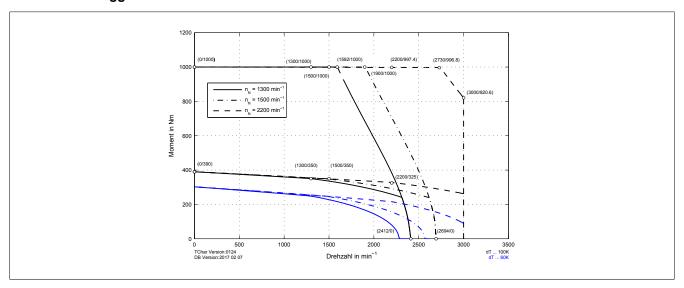


8LSP96.eennnffgg-3

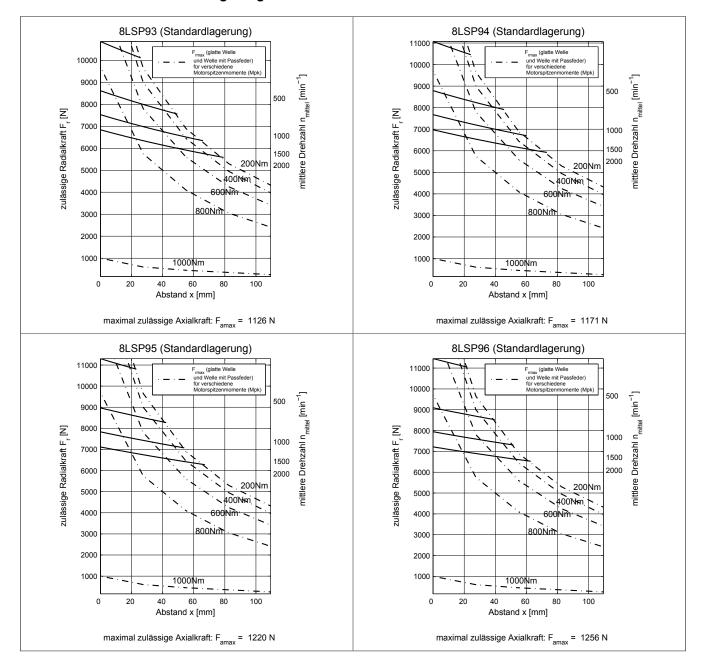


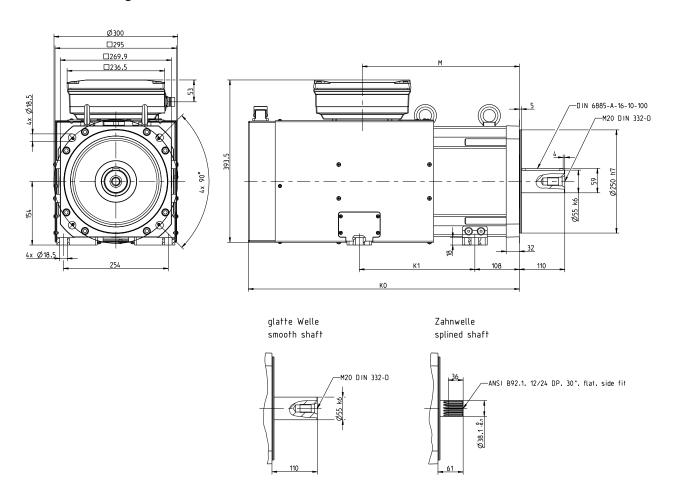
2.17.1.3 Drehzahl-Drehmomentkennlinien bei 750 VDC Zwischenkreisspannung


8LSP93.eennnffgg-3


8LSP94.eennnffgg-3

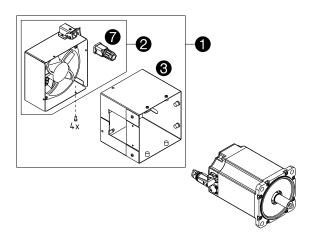
8LSP95.eennnffgg-3


8LSP96.eennnffgg-3


2.17.1.4 Zulässige Wellenbelastung

Beachten Sie die Informationen im Kapitel Aufstellbedingungen unter Abschnitt "Belastbarkeit des Wellenendes und Lagerung" auf Seite 273.

2.17.1.4.1 8LSP9...-3 Standardlagerung

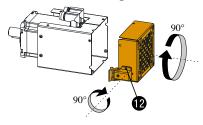


2.17.1.5 Abmessungen 8LSP9...-3

EnDat / Resolver Rückführung				Verlängerung von K₀ und M abhängig von der Motoroption [mm]
	K ₀	K ₁	М	Wellendichtring
Geberzuordnung	Alle Geber	Alle Geber	Alle Geber	
8LSP933	597	220	321	0
8LSP943	657	280	381	0
8LSP953	747	370	471	0
8LSP963	837	460	561	0

2.18 Ersatzteile - Fan Kit 8LSC

Für Motoren der Kühlart 8LSC sind Ersatzteile für die Lüfterbaugruppe erhältlich.


Übersicht Ersatzteile

		1 2 3		3		7	
	Fan	Fan Kit Haube m		nit Lüfter	Seitenverkleidung für Lüfter	Lüfters	stecker
	24 VDC	230 VAC	24 VDC	230 VAC		Metall	Kunststoff
8LS C 43	8XMFL4.00-1	8XMFL4.10-1	8XMFL4.02-1	8XMFL4.12-1	8XMFL4.01-1		
8LS C 53 8LS C 63	8XMFL5.00-1	8XMFL5.10-1	8XMFL5.02-1	8XMFL5.12-1	8XMFL5.01-1	OVAMELO OO 4	OVMELO 04.4
8LSC5A/B/C3	8XMFL5.C0-1	8XMFL5.C2-1			8XMFL5.C3-1	8XMFLC.02-1	8XMFLC.01-1
8LS C 73	8XMFL7.00-1	8XMFL7.10-1	8XMFL7.02-1	8XMFL7.12-1	8XMFL7.01-1		
8LS C 83	8XMFL8.00-1	8XMFL8.10-1	8XMFL8.02-1	8XMFL8.12-1	8XMFL8.01-1		

Technische Daten (Lüfter 230 VAC / 24 VDC)

siehe "Lüfterbaugruppen" auf Seite 39

Anschlussrichtung

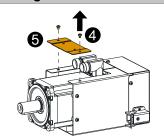
Drehstrom-Synchronmotoren 8LSC sind ab Werk nur mit der dargestellten Lüfter Anschlussrichtung erhältlich.

Andere Anschlussrichtungen sind möglich, müssen jedoch selbst vorgenommen werden.

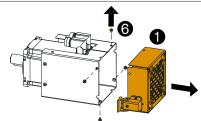
Anschlussdose und Haube mit Lüfter lassen sich in 90° Schritten drehen, achten Sie hierbei auf eine evtl. Kollision mit den Motoranschlüssen.

Einbaudose: Lösen Sie die beiden Befestigungsschrauben (12) und heben Sie die Einbaudose vorsichtig an. Drehen Sie die Einbaudose in die gewünschte Position (in 90° Schritten möglich). Stellen Sie sicher, dass die Einbaudosendichtung nicht beschädigt und kein Kabel gequetscht wird. Ziehen Sie die Befestigungsschrauben (12) wieder fest.

Haube mit Lüfter: Nach der Demontage lässt sich die Haube mit Lüfter ganz einfach in der gewünschten Position montieren, siehe nachfolgende Demontage und Montage Anleitung.

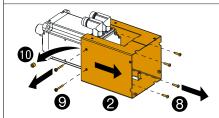

Demontage / Montage

Vorsicht!


Arbeiten an Motoren und deren Verkabelung dürfen nur im spannungsfreien Zustand und durch qualifiziertes Fachpersonal ²⁾ erfolgen. Der Schaltschrank ist zuvor spannungsfrei zu schalten und gegen Wiedereinschalten zu sichern.

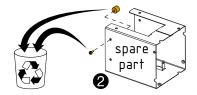
²⁾ siehe "Qualifiziertes Fachpersonal" auf Seite 9

Demontage 8LSC

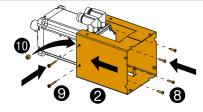


Entfernen Sie die Schrauben (4) und die Stabilisierungsplatte (5).

Entfernen Sie die Schrauben (6) und die Haube mit Lüfter (1).

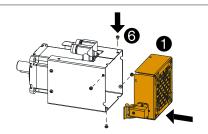

Hinweis: Bewahren Sie die Schrauben (6) gut auf, diese werden zur Befestigung der neuen Haube mit Lüfter benötigt (wenn ein kompletter Fan Kit als Ersatz verwendet wird, sind diese Schrauben im Lieferumfang enthalten).

Entfernen Sie die an drei Seiten angebrachten Schrauben (8) und (9) und die Distanzbuchsen (10). Ziehen Sie die Seitenverkleidung (2) vom Motor ah


Hinweis: Bewahren Sie die Befestigungsmittel (8) und (9) und (10) gut auf, diese werden zur Befestigung der neuen Seitenverkleidung benötigt.

Montage 8LSC

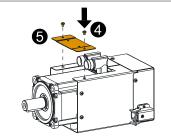
Entfernen Sie von der Seitenverkleidung (2), dem Ersatzteil, die Schrauben und Gummipuffer. Entsorgen Sie die entfernten Teile fachgerecht.


Hinweis: Eine Montage mit diesen Gummipuffern ist für 8LSC Motoren nicht vorgesehen!

Schieben Sie die neue Seitenverkleidung (2) auf den Motor und befestigen Sie diese mit den Schrauben (8). Zu den Schrauben (9) montieren Sie auch die Distanzbuchsen (10) an allen drei Seiten.

Hinweis: Die Befestigungsmittel (8) und (9) und (10) werden wiederverwendet und sind nicht Bestandteil des Ersatzteiles.

Anzugsdrehmoment für Schraube (8): bis 8LSC6, M4x10, 1,8 Nm und Schraubensicherung; 8LSC7 und 8LSC8, M5x16, 3,7 Nm und Schraubensicherung



Schieben Sie die neue Haube mit Lüfter (1) auf die Seitenverkleidung und befestigen Sie diese mit den neuen Schrauben (6).

Hinweis: Sie können die Haube mit Lüfter (1) in 90° Schritten gedreht montieren, wie auch die Richtung der Einbaudose ändern. Siehe Anschlussrichtung (Seite 267).

Hinweis: Die Schrauben (6) werden wiederverwendet und sind nicht Bestandteil des Ersatzteiles (wenn ein kompletter Fan Kit als Ersatz verwendet wird, sind diese Schrauben im Lieferumfang enthalten).

Befestigen Sie die Stabilisierungsplatte (5) mit den neuen Schrauben (4).

3 Transport und Lagerung

Bei Transport und Lagerung muss das Produkt vor unzulässigen Beanspruchungen (mechanischer Belastung, Temperatur, Feuchtigkeit, aggressiver Atmosphäre) geschützt werden.

Schützen Sie auch ggf. vorhandene elektrostatisch gefährdete Bauelemente, wie z. B. die Geber in Motoren, gegen elektrostatische Entladung (ESD).

Verwenden sie niemals Anbauteile (Kabelanschluss, Klemmkasten, Lüfter etc.) zur Transportsicherung und nutzen Sie diese auch nicht als Auflagefläche.

Bedingungen für Transport und Lagerung

- Der Raum muss trocken, staubfrei, frostfrei und erschütterungsfrei sein.
- · Der Raum muss gut belüftet und frei von Zugluft sein.
- · Die Raumluft darf keine aggressiven oder gefährlichen Gase enthalten.

Lager- und Transportbedingungen	8LSA	8LSC	8LSO	8LSP
Lagerungstemperatur	-20 bis +60 °C			
Luftfeuchtigkeit bei Lagerung	max. 90 %, nicht kondensierend			
Transporttemperatur	-20 bis +60 °C			
Luftfeuchtigkeit bei Transport	max. 90 %, nicht kondensierend			

Radial- bzw. Axialkräfte an der Welle

Vorsicht!

Sachschäden durch zu hohe Radial- bzw. Axialkräfte an der Welle.

Durch zu hohe Radial- bzw. Axialkräfte an der Welle können die Lager beschädigt und die Wirkung einer ggf. vorhandenen Haltebremse kann so stark beeinträchtigt werden, dass sie keine oder nur eine reduzierte Bremswirkung besitzt. Ebenso können dadurch Geberfehler oder Getriebeschäden auftreten.

- Transportieren und lagern Sie nur in der Originalverpackung und am Gehäuse aufliegend.
- Vermeiden Sie Druck und Stöße auf das Wellenende und Gehäuse.
- Verwenden Sie die Welle nicht zur Transportsicherung.
- Transportieren und heben Sie schwere Abtriebswellenanbauelemente gesondert und nicht am Wellenende montiert.

Transport

Kontrollieren Sie Produktanlieferungen sofort auf Transportschäden und melden Sie Schäden sofort dem Transportunternehmen. Bei Beschädigung ist die Verwendung ggf. auszuschließen.

Gefahr!

Verletzungsgefahr durch Lasten!

Schwebende Lasten können durch Herabfallen zu Personenschäden bis hin zum Tod führen. Schwere Lasten können kippen und Personen einklemmen bzw. schwer verletzen.

Unsachgemäße Ausführung, ungeeignete oder schadhafte Geräte und Hilfsmittel können zu schweren Verletzungen und/oder Sachschäden führen.

- Heben Sie Motoren ohne produktfremde Zusatzlast (z. B. Zahnräder, Riemenscheiben, Kupplungen etc.) hoch.
- Wenn Motoren über Ringschrauben verfügen, heben Sie die Motoren nur an den Ringschrauben hoch
- Verwenden Sie nur zulässige Hub-, Transport- und Hilfsmittel mit ausreichender Tragkraft.
- Halten Sie sich nie in der Gefahrenzone bzw. unter schwebenden Lasten auf.
- Sichern Sie das Produkt gegen Herabfallen und Kippen.
- Tragen Sie Sicherheitsschuhe, Schutzkleidung und einen Schutzhelm.
- Beachten Sie die jeweiligen nationalen und örtlichen Vorschriften.

Lagerung

Vorsicht!

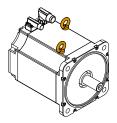
Schäden durch Verlust von Materialeigenschaften.

Durch lange Lagerung oder Lagerung unter falschen Bedingungen altern gewisse Materialien vorzeitig, verlieren an ihren Eigenschaften und können Schaden nehmen. Beschädigte Komponenten können in Folge weitere Sachschäden verursachen.

Empfehlungen zur Vermeidung von Schäden durch die Lagerung:

- Reduzieren Sie die Lagerzeit auf das Nötigste und überschreiten Sie die max. Lagerzeit von 2 Jahren nicht.
- Drehen Sie die Motorwelle mindestens alle 6 Monate einige Umdrehungen von Hand oder mit geringer Geschwindigkeit (max. 50 min⁻¹). In dieser Einlaufphase können Lagergeräusche auftreten, diese sind völlig normal und kein Anzeichen eines Lagerschadens.
- Versehen Sie blanke, äußere Bauteile wie z. B. Wellenenden mit einem Konservierungsmittel.
- · Vermeiden Sie Kontaktkorrosion.
- Verwenden Sie die Originalverpackung.
- Verwenden Sie Abdeckungen zum Schutz vor Staub.
- Kontrollieren Sie die Dichtungen bei der Warenausgabe bzw. vor der Verwendung auf Schäden.

3.1 Ringschrauben


Wenn Motoren über Ringschrauben verfügen, heben Sie die Motoren nur an den Ringschrauben hoch. Die Position der Ringschrauben ist abhängig von der Baulänge des Motors.

Vorsicht!

Die mitgelieferten Ringschrauben sind ausschließlich für das Anheben der Motoren vorgesehen, jedoch nicht für das Anheben von Motoren inklusive Anbauelementen!

Ausführungen der Ringschrauben

8LSA / 8LSC / 8LSO / 8LSP

8LSA5A/B/C / 8LSC5A/B/C

8LSA...-3 / 8LSC...-3

8LSA	8LSC	Verfügbarkeit Ringschrauben
8LSA5A/B/C3	8LSC5A/B/C3	Ja
8LSA733	8LSC733	Ja
8LSA743	8LSC743	Ja
8LSA753	8LSC753	Ja
8LSA763	8LSC763	Ja
8LSA773	8LSC773	Ja
8LSA783	8LSC783	Ja
8LSA833	8LSC833	Ja
8LSA843	8LSC843	Ja
8LSA853	8LSC853	Ja
8LSA863	8LSC863	Ja

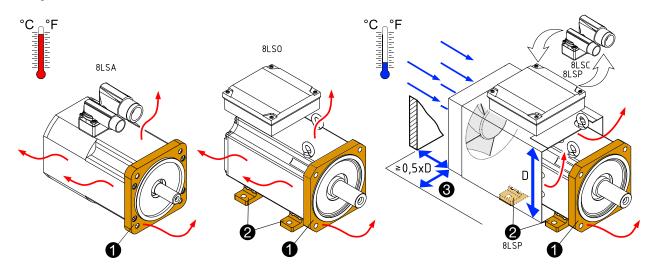
8LSO...-3 / 8LSP...-3

8LSO	8LSP	Verfügbarkeit Ringschrauben
8LSO93	8LSP93	Ja

4 Aufstellbedingungen

Vor jeder Inbetriebnahme des Motors hat eine Prüfung durch qualifiziertes Fachpersonal zu erfolgen. Die Prüfung hat den ordnungsgemäßen Zustand hinsichtlich der Montage und Installation, den Aufstellbedingungen und der sicheren Funktion zu umfassen.

Einsatzbedingungen	8LSA	8LSC	8LSO	8LSP
Bemessungsklasse, Betriebsart nach EN 60034-1	S1 - Dauerbetrieb			
Umgebungstemperatur in Betrieb		-15 °C bis	+40 °C	
Reduktion des Nenn- und Stillstandsstromes sowie des Nenn- und Stillstandsmomentes bei Temperaturen über 40 °C	10 % pro 10 °C			
max. Umgebungstemperatur im Betrieb	+55 °C ³)			
Reduktion des Nenn- und Stillstandsstromes so- wie des Nenn- und Stillstandsmomentes bei Auf- stellungshöhen ab 1.000 m über NN (Meeresspie- gel)	5 % pro 1000 m			
max. Aufstellungshöhe	2000 m ⁴⁾			
max. Flanschtemperatur		65 °	C	
Schutzart nach EN 60034-5 (IP-Code): Schutzart mit Option Wellendichtring (DIN 3760):	IP64 IP64, Lüfter IP20 IP64 IP65 IP65, Lüfter IP20 IP65			IP64, Lüfter IP20 IP65, Lüfter IP20
Bau- und Aufstellungsart nach EN 60034-7 (IM- Code)	horizontal (IM3001) vertikal, Motor hängt an der Maschine (IM3011) ⁵⁾ vertikal, Motor steht auf der Maschine (IM3031))


4.1 Montageart und Kühlung

Achten Sie auf ungehinderte Luftzirkulation und Kühlung, damit am Motor kein Wärmestau entstehen kann.

Bauen Sie den Motor vorzugsweise mit dem **Anbauflansch** (1), der gleichzeitig auch als **Kühlfläche** dient, an die Maschine an.

Wird der Motor (8LSO / 8LSP) nur mit den **Montagefüßen** (2) und nicht mit dem Anbauflansch angebaut, reduziert sich die Dauerleistung im S1 Betrieb.

Fremdgekühlte Motoren (8LSC / 8LSP) saugen am B-Flansch kühle Luft an, welche zwischen Motorgehäuse und Lüfterseitenverkleidung hindurchströmt und den Motor auf der Seite des A-Flansch wieder verlässt. Halten Sie bei fremdgekühlten Motoren auf allen Seiten einen Mindestabstand (3) von ≥0,5xD zu anderen Bauteilen ein (D entspricht einer Seitenhöhe der Seitenverkleidung). Ein ausreichender Lüftungsquerschnitt (DxD) für kühle Luft muss sichergestellt werden, eine Ansaugung von bereits erwärmter Luft bzw. Umluftbetrieb ist nicht zulässig.

³⁾ Ein Dauerbetrieb der Servomotoren bei einer Umgebungstemperatur von +40 °C bis max. +55 °C ist möglich, führt aber zu einer frühzeitigen Alterung.

272

⁴⁾ Darüber hinaus gehende Anforderungen sind mit B&R zu vereinbaren.

⁵⁾ Bei der Bau- und Aufstellungsart IM3011 (vertikal, Motor hängt an der Maschine) besteht die Gefahr, dass flanschseitig Produktionsflüssigkeiten oder Öle in den Motor eindringen. Motoren bzw. Motor-Getriebe-Kombinationen, die in dieser Aufstellungsart eingesetzt werden sollen, müssen daher flanschseitig mindestens die Schutzart IP65 aufweisen.

Folgendes muss sichergestellt werden:

- Die Gegenseite zum Anbauflansch darf nicht thermisch isoliert sein und es muss ausreichend Wärme vom Motor abgegeben werden können.
- Die ungehinderte Luftzirkulation, mit ausreichend kühlender Luft am Motorgehäuse, muss gegeben sein.
- Die vorgegebenen Höchstwerte der Motortemperatur dürfen nicht überschritten werden.

Zu beachten ist:

- Die Verlustleistung bzw. Wärme der Motoren wird über den Anbauflansch und die Motorgehäuse Oberfläche abgeführt.
- Der Motor kann sich durch externe Wärmequellen aufheizen.

Vorsicht!

Personen- und Sachschäden durch Ausfall bzw. Überhitzung des Antriebes.

Bei Überschreitung der maximal zulässigen Betriebstemperatur ist die Entstehung eines Antriebsdefektes mit Folgeschäden sehr wahrscheinlich.

Ursache für einen Defekt könnte z. B. nicht ausreichende Schmierung durch Überhitzung sein.

- Schalten sie die Maschine aus Sicherheitsgründen ab, wenn die maximal zulässige Temperatur überschritten wird.
- Achten Sie auf ungehinderte Luftzirkulation und Kühlung, damit im Antrieb bzw. in der Maschine kein Wärmestau entstehen kann.

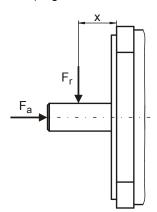
4.2 Belastbarkeit des Wellenendes und Lagerung

Die Drehstrom-Synchronmotoren 8LS sind mit beidseitig geschlossenen Rillenkugellagern mit Fettschmierung ausgerüstet. Die im Betrieb und bei der Montage auftretenden Radial- und Axialkräfte (F_r , F_a) auf das Wellenende müssen die unten genannten Randbedingungen einhalten. Es dürfen keinesfalls Stöße oder Schläge auf die Lagerungselemente einwirken! Bei unsachgemäßer Handhabung wird die Lebensdauer der Lager verringert bzw. die Lagerung beschädigt.

Radialkraft

Die am Wellenende wirkende Radialkraft F_r setzt sich aus Montagekräften (z.B. Riemenspannung an Riemenscheibe) und aus Kräften durch den Betrieb (z.B. Lastmoment an Ritzel) zusammen. Die maximal zulässige Radialkraft F_r ist von der Ausführung des Wellenendes, der Lagerung, der mittleren Drehzahl, der Position des Angriffspunktes der Radialkraft sowie der angestrebten Lebensdauer der Lager abhängig.

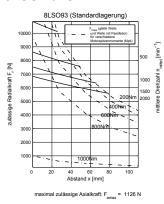
Axialkraft, Verschiebung der Welle durch Axialkraft


Die am Wellenende wirkende Axialkraft F_a setzt sich aus Montagekräften (z.B. Verspannung durch die Montage) und aus Kräften durch den Betrieb (z.B. Schubkraft bei schrägverzahnten Ritzel) zusammen. Die maximal zulässige Axialkraft F_a ist von der Lagerung und der angestrebten Lebensdauer der Lager abhängig. Das Festlager ist am A-Flansch mit einem Lagersicherungsring gesichert. Das Loslager am B-Flansch ist mit einer Feder in Richtung A-Flansch vorgespannt. Durch Axialkräfte in Richtung B-Flansch kann die Federvorspannung der Lagerung überwunden werden, so dass sich die Welle entsprechend dem vorhandenen Axialspiel der Lager (ca. 0.1 - 0.2 mm) verschiebt. Diese Verschiebung kann zu Problemen bei Motoren mit Haltebremsen bzw. bei allen Motoren mit induktiven Gebersystemen führen. Daher dürfen beim Einsatz dieser Motoren keine Axialkräfte in Richtung B-Flansch auftreten, die die zu errechnenden Werte überschreiten. (s. "Bestimmung der zulässigen Werte von F_r und F_a)

Die Wellenenden von Motoren mit Haltebremsen dürfen nicht axial belastet werden. Insbesondere Axialkräfte in Richtung B-Flansch sind zu vermeiden, da dadurch ein Bremsversagen auftreten kann!

Bestimmung der zulässigen Werte von F, und Fa

Angaben zur Bestimmung der zulässigen Werte von F_r und F_a sind den Diagrammen im Kapitel Technische Daten (Abschnitt "Zulässige Wellenbelastung" beim jeweiligen Motor) zu entnehmen.


Die zulässigen Werte in den Diagrammen basieren auf einer mechanischen Lagerlebensdauer von 20.000 Betriebsstunden (Lagerlebensdauerberechnung angelehnt an DIN ISO 281).

F_r...... Radialkraf


x..... Abstand zwischen Motorflansch und Angriffspunkt der Radialkraft Fr

8LSO / 8LSP

Bei den Motoren 8LSO / 8LSP ist das Spitzenmoment zu beachten, weil die Welle zusätzlich mit hoher Torsion belastet wird.

4.3 Einkabellösung (hybrid)

Hinweis:

Bei Motoren mit Einkabellösung (hybrid) wird das Temperatursignal nicht wie bisher mit zwei einzelnen Leitungen im Motorkabel geführt, sondern digital über die Geberschnittstelle übermittelt.

Für den Betrieb eines Motors mit Einkabellösung (hybrid) sind seitens der Antriebe folgende Bedingungen zu erfüllen.

- Für ACOPOSmulti: die Kabelabdeckung muss für den Betrieb mit Hybridkabel vorgesehen sein (Kabelausbruch vorhanden; Lieferdatum ab 2015)
- Für ACOPOSmulti mit SafeMC: die eingestellte Version des Betriebssystems (NC Version) muss größer oder gleich Version 2.48.0 sein; das Safety Release muss mindestens Version 1.9 sein
- Für alle Antriebe: die eingestellte Version des Betriebssystems (NC Version) muss größer oder gleich Version 2.42.2 sein

Werden oben genannte Bedingungen nicht erfüllt, funktioniert die Temperaturauswertung am Antrieb nicht.

5 Montage und Anschluss

5.1 Vor der Montage

Lesen Sie dieses Anwenderhandbuch vollständig und führen Sie erst dann die Arbeiten aus.

Berücksichtigen Sie außerdem die technische Dokumentation aller anderen Maschinenkomponenten und die der fertigen Maschine.

5.2 Sicherheit

Arbeiten an Motoren und deren Verkabelung dürfen nur im spannungsfreien Zustand und durch qualifiziertes Fachpersonal ²⁾ erfolgen. Der Schaltschrank ist zuvor spannungsfrei zu schalten und gegen Wiedereinschalten zu sichern.

Verwenden Sie nur geeignete Einrichtungen, Werkzeuge und schützen Sie sich durch Sicherheitsausrüstung.

Warnung!

Personen- und Sachschäden durch eigenmächtige Umbauten!

Durch eigenmächtige Umbauten am Produkt können sich dessen Leistungs- und Grenzwerte negativ verändern und Gefahren entstehen. Dadurch sind schwere Sachschäden und Verletzungen nicht auszuschließen.

Eigenmächtige Umbauten sind daher verboten!

- Führen Sie keine eigenmächtigen Umbauten und Veränderungen am Produkt durch.
- Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.

Vorsicht!

Die mitgelieferten Ringschrauben sind ausschließlich für das Anheben der Motoren vorgesehen, jedoch nicht für das Anheben von Motoren inklusive Anbauelementen!

5.2.1 Allgemeine Gefahrenquellen

Manipulation von Schutz- bzw. Sicherheitseinrichtungen

Schutz- bzw. Sicherheitseinrichtungen schützen Sie und andere Personen vor gefährlicher Spannung, sich drehenden oder bewegenden Elementen und vor heißen Oberflächen.

Gefahr!

Personen- und Sachschäden durch Manipulation von Schutzeinrichtungen!

Werden Schutz- bzw. Sicherheitseinrichtungen entfernt oder außer Betrieb gesetzt, ist kein Personenschutz mehr gegeben und es kann zu sehr schweren Personen- und Sachschäden kommen.

- Entfernen Sie keine Sicherheitseinrichtungen.
- Setzen Sie keine Sicherheitseinrichtungen außer Betrieb.
- Verwenden Sie auch bei kurzzeitigem Test- und Probebetrieb immer alle Sicherheitseinrichtungen!

Gefährliche Spannung

Zum Betrieb der Motoren ist es notwendig, dass an bestimmten Teilen eine gefährliche Spannung anliegt.

2) siehe "Qualifiziertes Fachpersonal" auf Seite 9

Gefahr!

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Gefahr durch Elektromagnetische Felder

Beim Betrieb von Anlagen der elektrischen Energietechnik, z. B. Transformatoren, Umrichter, Motoren usw., werden elektromagnetische Felder erzeugt.

Gefahr!

Gesundheitsgefahr durch elektromagnetische Felder!

Ein Herzschrittmacher kann durch elektromagnetische Felder in seiner Funktion beeinträchtigt werden, so dass es beim Träger zu gesundheitlichen Schäden mit möglicher Todesfolge kommen kann.

- Beachten Sie die entsprechenden nationalen Schutz- und Sicherheitsvorschriften.
- Der Aufenthalt von Personen mit Herzschrittmachern ist in gefährdeten Bereichen untersagt.
- Warnen Sie das Personal durch Information, Warnhinweise und Sicherheitskennzeichnung.
- Sichern Sie die Gefahrenzone durch Absperrungen ab.
- Sorgen Sie z. B. mit Abschirmungen dafür, dass die elektromagnetischen Felder an ihrer Quelle reduziert werden.

Gefährliche Bewegung

Durch Dreh- und Positionierbewegungen der Motoren werden Maschinenelemente bewegt oder angetrieben, wie auch Lasten befördert.

Nach dem Einschalten der Maschine ist grundsätzlich jederzeit mit Bewegungen der Motorwelle zu rechnen! Ein Schutz von Personen und Maschine kann daher nur durch übergeordnete Schutzmaßnahmen gewährleistet werden. Ein solcher Schutz kann z. B. durch ausreichend stabile mechanische Schutzeinrichtungen wie Schutzabdeckungen, Schutzzäune, Schutzgitter sowie durch Lichtschranken erreicht werden.

Bringen Sie in unmittelbarer Nähe der Maschine ausreichend und leicht zugängliche Notaus-Schalter an, um die Maschine im Unglücksfall schnellstmöglich anhalten zu können.

Gefahr!

Verletzungsgefahr durch sich drehende oder bewegende Elemente und durch Lasten!

Durch sich drehende oder bewegende Elemente können Körperteile eingezogen oder abgetrennt werden und Stöße auf den Körper ausgeübt werden.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen gegen das Betreten durch unbefugte Personen.
- Bevor Sie an der Maschine arbeiten, sichern Sie diese gegen ungewollte Bewegungen ab. Eine ggf. vorhandene Haltebremse ist nach einem Anbau von Antriebselementen sowie nach der Durchführung von Wartungs- und Reparaturarbeiten auf Funktion zu prüfen!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Motoren k\u00f6nnen durch Fernsteuerung automatisch anlaufen! Gegebenenfalls ist ein dementsprechendes Warnsymbol anzubringen und ein Schutz gegen das Betreten des Gefahrenbereiches vorzusehen!

Gefahr!

Verletzungsgefahr durch Lasten!

Schwebende Lasten können durch Herabfallen zu Personenschäden bis hin zum Tod führen. Schwere Lasten können kippen und Personen einklemmen bzw. schwer verletzen.

Unsachgemäße Ausführung, ungeeignete oder schadhafte Geräte und Hilfsmittel können zu schweren Verletzungen und/oder Sachschäden führen.

- Heben Sie Motoren ohne produktfremde Zusatzlast (z. B. Anbauelemente) hoch.
- Verwenden Sie nur zulässige Hub-, Transport- und Hilfsmittel mit ausreichender Tragkraft.
- · Halten Sie sich nie in der Gefahrenzone bzw. unter schwebenden Lasten auf.
- Sichern Sie das Produkt gegen Herabfallen und Kippen.
- Tragen Sie Sicherheitsschuhe, Schutzkleidung und einen Schutzhelm.
- Beachten Sie die jeweiligen nationalen und örtlichen Vorschriften.

Warnung!

Verletzungsgefahr durch fehlerhafte Ansteuerung oder Defekt!

Durch fehlerhafte Ansteuerung von Motoren oder Defekt können ungewollte und gefährliche Bewegungen ausgelöst und Verletzungen herbeigeführt werden.

Ein solches fehlerhaftes Verhalten kann ausgelöst werden durch:

- fehlerhafte Installation bzw. Fehler bei der Handhabung der Komponenten
- fehlerhafte oder unvollständige Verdrahtung
- defekte Geräte (Servoverstärker, Motor, Positionsgeber, Kabel, Bremse)
- fehlerhafte Ansteuerung (z. B. durch Softwarefehler)

Gefahr durch heiße Oberflächen

Durch Verlustleistung vom Motor und Reibung im Getriebe, können diese Komponenten wie auch deren Umfeld eine Temperatur von über 100°C erreichen.

Die entstehende Wärme wird über das Gehäuse und den Flansch an die Umgebung abgegeben.

Warnung!

Verbrennungsgefahr durch heiße Oberflächen!

Bei Berührung von heißen Oberflächen (z. B. Motor- und Getriebegehäuse, wie auch damit in Verbindung stehenden Bauteilen) kann es auf Grund der sehr hohen Temperatur dieser Teile zu sehr schweren Verbrennungen kommen.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Berühren Sie das Motor- oder Getriebegehäuse wie auch angrenzende Oberflächen niemals im Nennlastbetrieb.
- Achten Sie auch bei Stillstand auf heiße Oberflächen.
- Lassen Sie Motor und Getriebe vor Arbeiten daran ausreichend abkühlen, denn auch nach dem Abschalten besteht noch über einen längeren Zeitraum Verbrennungsgefahr.
- Betreiben Sie den Motor bzw. das Getriebe immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!

5.2.2 Geräuschemission

Achten Sie auf die Gesundheit der Personen im Umfeld der laufenden Maschine.

Warnung!

Gehörschäden durch Arbeitsgeräusche.

Der Motor kann während des Betriebes den zulässigen Geräuschpegel für Arbeitsstätten überschreiten und auch Gehörschäden verursachen.

- Führen Sie geeignete Maßnahmen zur Geräuschminderung durch (z. B. Einhausungen, Abdeckungen oder andere schallisolierende Maßnahmen).
- Berücksichtigen Sie die geltenden Arbeitsschutzbestimmungen.

5.3 Wellenende und Lagerung

Die Motorwelle ist mit beidseitig geschlossenen fettgeschmierten Rillenkugellagern gelagert. Schützen Sie den Motor vor Schäden durch zu hohe Radial- und Axialkräfte!

Vermeiden Sie unter allen Umständen folgende Belastungen auf das vordere Wellenende bzw. den hinteren Motorgehäusedeckel:

- · übermäßigen Druck
- Stöße
- Hammerschläge

Warnung!

Schäden durch zu hohe Axialkräfte!

Durch zu hohe Axialkräfte (z. B. durch Aufschlagen oder Aufpressen) an der Welle, können die Motorlager beschädigt oder deren Lebensdauer verkürzt werden. Ebenso sind Schäden am Geber oder an ggf. verbauten Optionen (Haltebremse, Getriebe) möglich.

- Führen Sie keine Hammerschläge auf den Motor oder die Abtriebswelle aus. Durch Hammerschläge verursachte Belastungen überschreiten die zulässigen Werte in jedem Fall.
- Unterlassen Sie auch Stöße und übermäßigen Druck auf den Motor und die Abtriebswelle.

Überbestimmte Lagerung

Vermeiden Sie beim Anbau von Antriebselementen an die Abtriebswelle unbedingt eine überbestimmte Lagerung. Die zwangsläufig vorhandenen Toleranzen verursachen zusätzliche Kräfte auf die Lagerung der Abtriebswelle. Dies kann zu einer deutlich verminderten Lebensdauer bzw. zur Beschädigung des Lagers führen!

Heben und Transportieren

Das Gewicht von Anbauelementen (Zahnräder, Riemenscheiben, Kupplungen etc.) kann beim Heben und Transportieren vom Motor schädigende Wirkung auf die Lagerung haben. Beachten Sie diese Radial- und Axialbelastung bei diesen Vorgängen!

Montage und Demontage von Anbauelementen

Montieren und demontieren Sie die Anbauelemente (Zahnräder, Riemenscheiben, Kupplungen etc.) am Wellenende immer ohne Axialbelastung für die Motorlager und alle anderen im Motor verbauten Teile. Verwenden Sie dazu passende Spannsätze, Druckhülsen, andere Spannelemente, Aufziehvorrichtungen etc. Die stirnseitig am Wellenende vorhandene Zentrierbohrung kann für diese Arbeiten verwendet werden.

Achten Sie auf ausgewuchtete Anbauelemente bzw. entsprechende Montage.

Sichern Sie die Anbauelemente nach der Montage und vor dem Betrieb gegen unbeabsichtigtes Lösen.

5.4 Einbau in die Anlage

Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.

Kontrolle

Prüfen Sie die Komponenten vor dem Einbau darauf, ob sie geeignet und unbeschädigt sind.

Warnung!

Personen- und Sachschäden durch beschädigte oder ungeeignete Maschinenkomponenten!

Der Betrieb einer Maschine mit beschädigten oder ungeeigneten Komponenten ist ein Sicherheitsrisiko und kann zu Ausfällen führen. Schwere Sachschäden und Verletzungen sind nicht auszuschließen.

- Betreiben Sie niemals eine Maschine mit beschädigtem Motor oder Getriebe bzw. mit einer anderen beschädigten Komponente.
- Bauen Sie niemals eine beschädigte Komponente in eine Maschine ein.
- Verwenden Sie keine Motoren oder Getriebe die bereits einmal überlastet betrieben wurden.
- Vergewissern Sie sich vor dem Einbau, dass der Motor bzw. das Getriebe für die Maschine geeignet ist.
- Unterlassen Sie auch kurzzeitige Test- und Probebetriebe mit beschädigten oder ungeeigneten Maschinenkomponenten.
- Kennzeichnen Sie beschädigte bzw. nicht einsatzbereite Komponenten gut ersichtlich und eindeutig.

Reinigung

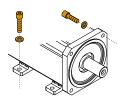
Reinigen Sie die Abtriebswelle und den Flansch des Motors, wie auch die Wellen- und Flanschgegenseite an der Maschine, gründlich von Korrosionsschutzmittel und Verschmutzung.

Vorsicht!

Sachschäden durch unsachgemäße Reinigung.

Kommen Wellendichtringe, Dichtlippen und Dichtungen mit Reinigungsmittel in Kontakt, können diese dadurch beschädigt werden.

- Verwenden Sie nur geeignete und materialschonende Reinigungsmittel.
- Stellen Sie sicher, dass Wellendichtringe, Dichtlippen und Dichtungen nicht mit Reinigungsmittel in Kontakt kommen.


Anbau mit dem Anbauflansch

Bauen Sie den Motor mit dem Anbauflansch, der gleichzeitig auch als Kühlfläche dient, an die Maschine an.

Der Motor ist dazu am Flansch mit der Maschine zu verschrauben.

Ziehen Sie die Schrauben mit dem der Norm entsprechenden Anzugsdrehmoment an und verwenden Sie ein Schraubensicherungsmittel.

5.4.1 Befestigungsmittel und Anzugsdrehmomente

Verwenden Sie Zylinderschrauben mit Innensechskant (ISO 4762 - Festigkeitsklasse mind. 8.8) und Unterlegscheiben.

Ziehen Sie die Schrauben gleichmäßig, über Kreuz und mit dem korrekten Anzugsdrehmoment an, um Verzug am Flansch und ein überdehnen der Schrauben zu vermeiden.

Die angegebenen Werte für Schrauben sind rechnerische Werte und basieren auf folgenden Voraussetzungen:

- Reibungskoeffizient $\mu = 0.14$
- · Einschrauben in Stahl

Wird der Motor an anderen Materialien angeschraubt bzw. gibt es abweichende Oberflächenrauheiten, so ist vom Anwender selbst ein korrektes Anzugsdrehmoment zu ermitteln.

	Schraube	Unterlegscheibe [mm]	Anzugsdrehmoment [Nm]
8LSA2	M5	5,3 x 9	6
8LSAA	M5	1)	6
8LSA3	M6	6,4 x 11	10
8LSA4 / 8LSC4	M8	8,4 x 14	23
8LSA5 / 8LSC5	M10	10,5 x 18	43
8LSA6 / 8LSC6	M12	13 x 20	54
8LSA7 / 8LSC7	M12	13 x 20	70
8LSA8 / 8LSC8	M12	13 x 20	70
8LSO9 / 8LSP9	M16	17 x 28	145

¹⁾ Bei Motorbaugröße 8LSAA ist keine Unterlegscheibe vorgesehen.

5.5 An- und Abklemmen des Motors

Beim An- und Abklemmen des Motors sind zwingend die nachfolgenden Sicherheitshinweise und Anweisungen zu beachten:

Der Schutzleiter ist über den Leistungsanschluss bzw. Motorstecker anzuschließen.

Gefahr!

Personen- und Sachschäden durch fehlendes Erdpotential!

Wenn am Motorgehäuse oder Servoverstärker kein ordnungsgemäßes Erdpotential vorhanden ist, können Fehlerströme zu schweren Personen und Sachschäden führen.

 Verbinden Sie (auch bei kurzzeitigem Test- und Probebetrieb!) das Motorgehäuse und den Servoverstärker ordnungsgemäß mit Erdpotential (PE-Schiene).

Gefahr!

Personen- und Sachschäden durch direkten Netzanschluss!

Wird der Motor direkt ans Netz angeschlossen, führt dies zu schweren Personen- und Sachschäden.

Betreiben Sie den Motor ausschließlich mit B&R Antriebssystemen.

Gefahr!

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Warnung!

Verbrennungsgefahr durch heiße Oberflächen!

Bei Berührung von heißen Oberflächen (z. B. Motor- und Getriebegehäuse, wie auch damit in Verbindung stehenden Bauteilen) kann es auf Grund der sehr hohen Temperatur dieser Teile zu sehr schweren Verbrennungen kommen.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Berühren Sie das Motor- oder Getriebegehäuse wie auch angrenzende Oberflächen niemals im Nennlastbetrieb.
- Achten Sie auch bei Stillstand auf heiße Oberflächen.
- Lassen Sie Motor und Getriebe vor Arbeiten daran ausreichend abkühlen, denn auch nach dem Abschalten besteht noch über einen längeren Zeitraum Verbrennungsgefahr.
- Betreiben Sie den Motor bzw. das Getriebe immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!

5.5.1 Kabel und Stecker

Information:

Die technischen Daten sowie Bestelldaten der Kabel sind dem jeweils aktuellen Anwenderhandbuch zum verwendeten B&R Antriebssystem zu entnehmen.

Dieses finden Sie im Downloadbereich der B&R Homepage www.br-automation.com

5.5.1.1 Kabel anderer Hersteller

Vorsicht!

Schäden durch Spannungsüberhöhung!

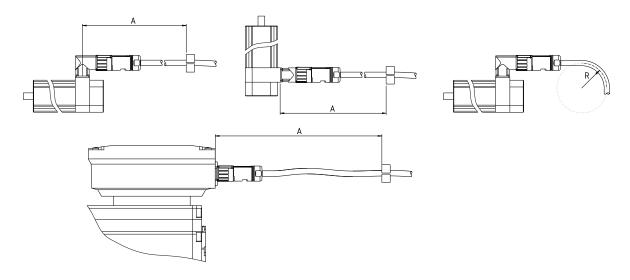
Die Spannungsüberhöhung an der Wicklung kann durch Kabel anderer Hersteller negativ beeinflusst werden. Durch Spannungsüberhöhung an der Wicklung können Wicklungsschäden auftreten.

- Wenn Sie keine B&R Kabel verwenden, müssen Sie die Einhaltung der Spannungsklasse A nach EN 60034-25 nachweisen.
- Ist dieser Nachweis nicht erbracht, besteht kein Anspruch auf Gewährleistung aufgrund von Wicklungsschäden, die auf Spannungsüberhöhung an der Wicklung zurückzuführen sind.

5.5.1.2 Stecker anderer Hersteller

Hinweis:

Störungen durch elektrische oder elektromagnetische Effekte!

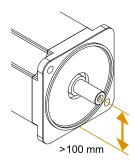

Bei Verwendung von Steckern anderer Hersteller sind EMV Störungen nicht auszuschließen.

- Verwenden Sie B&R Stecker um die Einhaltung der EMV Grenzwerte der Steckverbindung zu gewährleisten.
- Achten Sie auf korrekte Konfektionierung mit ordnungsgemäßer Kontaktierung der Kabelschirme.

5.5.1.3 Kabelabfangung und Biegeradius

Damit Kabel und Steckverbindungen keiner schädlichen Belastung ausgesetzt werden, sind bei der Installation die Kabelabfangung (A) und der minimale Biegeradius (R) unbedingt zu beachten.

283


Kabelabfangung (A)

- A = max. 300 mm in Richtung der Steckerlängsachse
- die Verbindung muss kraft- und momentenfrei ausgeführt sein
- · eine relative Bewegung zum Stecker ist nicht zulässig!
- · Zugbeanspruchung auf Kabel und Stecker sind unzulässig!

Biegeradius (R)

· die minimalen Radien sind dem aktuellen technischen Datenblatt des Kabels zu entnehmen

5.5.1.4 Vermeidung von Lagerströmen (Common-Mode-Ströme)

Beim Betrieb von Servomotoren mit einer Achshöhe von >100 mm kann es durch Lagerströme (Common-Mode-Ströme) zu Schäden an der Lauffläche der Motorlager kommen. Diese Schäden führen zu lauten Laufgeräuschen, treten typischerweise nach einer Betriebsdauer von ein bis zwei Jahren auf und können bis zur Zerstörung der Motorlager führen.

Um das Auftreten von Lagerströmen auf ein zulässiges Minimum zu reduzieren, empfiehlt B&R bei der Verkabelung der Motoren den Einsatz von Ringbandkernen 8BXC. Die erforderliche Anzahl von Ringbandkernen 8BXC ist von der Achshöhe des jeweiligen Motors abhängig.

Motor Achshöhe	Ringbandkern 8BXC006.0000-00	Ringbandkern 8BXC008.0000-00
100 - 131 mm	1 Stück	1 Stück (je Einzelphase)
132 - 159 mm	2 Stück	1 Stück (je Einzelphase)
>160 mm	3 Stück	2 Stück (je Einzelphase)

Tabelle 55: Dimensionierung der Ringbandkerne

Information:

Tabelle 1 enthält typische Werte. Wenn für eine bestimmte Achshöhe die Ringbandkerne 8BXC in Betrieb Temperaturen >80°C aufweisen, dann sind die Lagerströme so hoch, dass die Anzahl der Ringbandkerne 8BXC um jeweils 1 erhöht werden muss.

8LS...-3 Anwenderhandbuch V2.51

Bestelldaten

Bestellnummer	Kurzbeschreibung	Abbildung
	Zubehörsätze	
8BXC006.0000-00	ACOPOSmulti Zubehörsatz: 16x Ringbandkern 68x43x36 mm, 23,3 bis 46,6 μH [10 kHz]	

Tabelle 56: 8BXC006.0000-00 - Bestelldaten

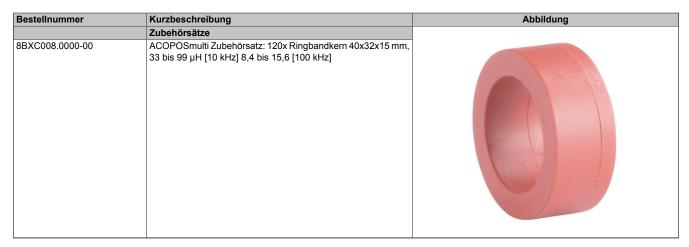
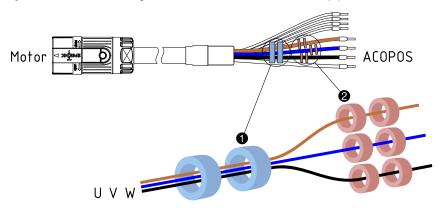



Tabelle 57: 8BXC008.0000-00 - Bestelldaten

Ringbandkerne 8BXC montieren

Führen Sie die drei Motorphasen U V W gemeinsam durch die Ringbandkerne 8BXC006.0000-00 (1) und die Einzelphasen U V W jeweils durch die Ringbandkerne 8BXC008.0000-00 (2).

5.5.2 Anschlussreihenfolge

Beim Anklemmen oder Abklemmen des Servomotors sind zwingend die folgenden Sicherheitshinweise und Reihenfogen zu beachten.

Gefahr!

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

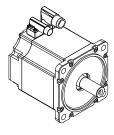
- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Gefahr!

Nach dem Abschalten der Servoverstärker ist die Entladezeit des Zwischenkreises von mindestens fünf Minuten abzuwarten. Um eine Gefährdung auszuschließen, muss die aktuelle Spannung am Zwischenkreis vor Beginn der Arbeiten mit einem geeigneten Messgerät zwischen -DC1 und +DC1 gemessen werden und kleiner als 42 VDC sein. Das Erlöschen der Betriebs-LED ist kein Indikator dafür, dass das Gerät spannungslos ist!

Vorsicht!

Der Temperatursensor des Motors ist ESD empfindlich. Aus diesem Grund müssen erst die Anschlusskabel auf der Antriebssystem Seite (ACOPOS) fertig konfektioniert und angeschlossen werden. Erst dann dürfen die Stecker am Motor, in der beschriebenen Reihenfolge, angesteckt werden.


Getrennte Anschlüsse für Motor und Geber

Anklemmen

- Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Kabel am Antriebssystem (ACOPOS) anschließen
- 3. Leistungsstecker am Motor anschließen
- 4. Geberstecker am Motor anschließen

Abklemmen

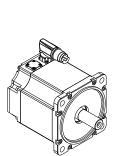
- 1. Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Geberstecker am Motor abstecken
- 3. Leistungsstecker am Motor abstecken
- 4. Kabel am Antriebssystem (ACOPOS) abstecken

Getrennte Anschlüsse für Motor (Klemmkasten) und Geber

Anklemmen

- 1. Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Kabel am Antriebssystem (ACOPOS) anschließen
- 3. Temperatursensor am Motor anschließen
- 4. Leistungsversorgung am Motor montieren
- 5. Geberstecker am Motor anschließen

- 1. Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Geberstecker am Motor abstecken
- 3. Leistungsversorgung am Motor demontieren
- 4. Temperatursensor am Motor abschließen
- 5. Kabel am Antriebssystem (ACOPOS) abstecken



Anklemmen

- 1. Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Kabel am Antriebssystem (ACOPOS) anschließen
- 3. Stecker (Hybrid) am Motor anschließen

Abklemmen

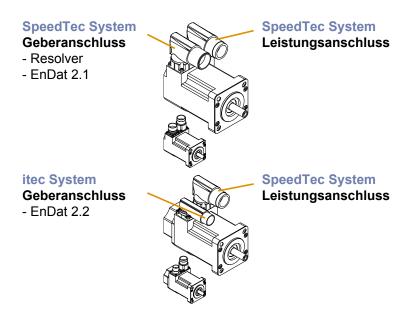
- 1. Trennen Sie die Maschine vom Netz und sichern Sie diese gegen Wiedereinschalten
- 2. Stecker (Hybrid) am Motor abstecken
- 3. Kabel am Antriebssystem (ACOPOS) abstecken

5.5.3 Stecker fachgerecht anschließen

Die Stecker für den Leistungs- und Geberanschluss von B&R Motoren sind als SpeedTec System¹ und itec System verfügbar. Die Systeme unterscheiden sich in der Verriegelungsart.

 Das motorseitige SpeedTec System ist rückwärtskompatibel zu Verkabelungen mit Schraubanschluss. Damit kann beim Austausch von Motoren eine bestehende Verkabelung mit Schraubanschlüssen weiterverwendet werden. Fachgerechtes Anschließen siehe "Schraubanschluss (für Motoren mit SpeedTec Anschluss)" auf Seite 290.

Vorsicht!

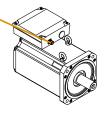

Schäden durch nicht fachgerecht angeschlossene Stecker!

Nicht fachgerecht angeschlossene Stecker können zu Störungen und Schäden an Motor und Geber führen!

- Stecker immer gerade, gewaltfrei und werkzeuglos anschließen oder abziehen.
- Darauf achten, dass die Stecker vollständig aufgesteckt und verriegelt sind.

5.5.3.1 Systemübersicht

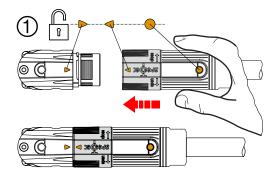
8LSA / 8LSC

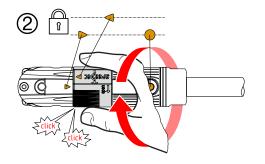


8LSA / 8LSC (htec Rundstecker für Einkabellösung)

8LSO / 8LSP

SpeedTec System
Geberanschluss
- Resolver
itec System
Geberanschluss
- EnDat 2.2

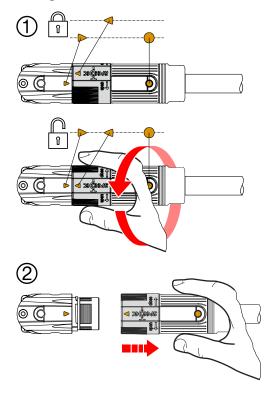

Weitere Details zum Klemmkasten siehe "Motoren mit Klemmkasten (8LSO9 / 8LSP9)" auf Seite 292.


5.5.3.2 SpeedTec System

Das SpeedTec System verfügt über einen werkzeuglosen Schnellverschluss und zusätzlich auch über ein Innengewinde, wodurch es kompatibel zu Einbaudosen mit Schraubanschluss ist.

dung links, Schritt 2).

Anschließen und verriegeln

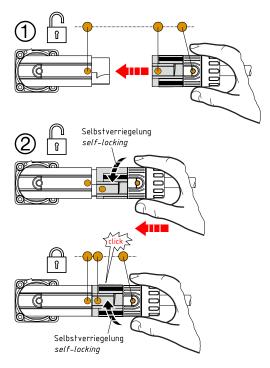

Die Markierungen ► ◀• aufeinander ausrichten.
 Den Stecker gerade und spaltfrei auf die Einbaudose aufschieben.

2. Verriegelungsring im Uhrzeigersinn (Pfeilrichtung "close")

handfest anziehen.

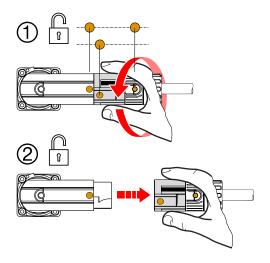
Die Verriegelung muss um mindestens 2 hörbare "Klicks" verdreht werden. Für eine korrekte Verriegelung müssen zudem die Markierungen ▶ ◄• zueinander versetzt sein (siehe Abbil-

Entriegeln und Stecker abziehen



- Verriegelungsring gegen den Uhrzeigersinn (Pfeilrichtung "open") drehen, bis die Markierungen ► ◄• aufeinander ausgerichtet sind.
- 2. Stecker gerade und gewaltfrei von der Einbaudose abziehen. Bei der Demontage darf nur am Stecker und keinesfalls am Kabel gezogen werden.

5.5.3.3 itec System


Die werkzeuglose Selbstverriegelung des itec Systems verdreht beim Aufstecken den vorderen Ring des Steckers und lässt diesen nach erfolgter Verriegelung in die Mittelstellung zurückspringen.

Anschließen und verriegeln

- 1. Die Markierungen • aufeinander ausrichten. Den Stecker gerade und spaltfrei aufschieben.
- Beim Aufschieben verdreht sich der vordere Ring des Steckers von selbst gegen den Uhrzeigersinn und springt nach erfolgter Verriegelung wieder in die Mittelstellung zurück.
 Eine korrekte Verriegelung ist an der Mittelstellung des vorderen Ringes und am erfolgten "Klick" erkennbar.

Entriegeln und Stecker abziehen

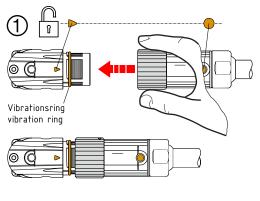
- 1. Den vorderen Ring des Steckers eine Achteldrehung gegen den Uhrzeigersinn drehen und in dieser Position halten.
- Den Stecker gerade und Gewaltfrei abziehen.
 Bei der Demontage darf nur am Stecker und keinesfalls am Kabel gezogen werden.

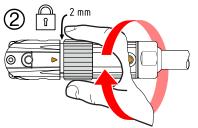
5.5.3.4 Schraubanschluss (für Motoren mit SpeedTec Anschluss)

Der Schraubanschluss wird verwendet, wenn ein bestehender Motor mit Schraubanschluss, durch einen neuen Motor (der gleichen Baureihe mit dem rückwärtskompatiblen SpeedTec Anschluss) ersetzt wird. Damit kann die bestehende Verkabelung mit Schraubanschlüssen weiterverwendet werden.

Der Anschluss erfolgt werkzeuglos, es ist dabei auf eine verkantungsfreie Montage zu achten.

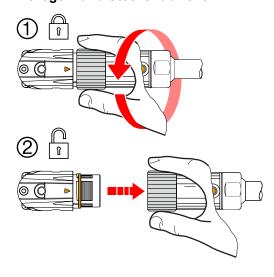
Vibrationsring


Sollte im Betrieb mit starken Vibrationen (>4-6 g) zu rechnen sein, so ist der Schraubanschluss mit einem Vibrationsring zu sichern. Dadurch wird die unbeabsichtigte Lösung der Schraubverbindung verhindert. Der Vibrationsring erfüllt keine Abdichtungsfunktion. Die **Montage** erfolgt werkzeuglos durch Aufschieben auf die motorseitige Einbaudose. Die entsprechende Nut für den Vibrationsring befindet sich gleich nach dem Feingewinde.


betragen.

Bestellnummer Vibrationsring: Lieferumfang:

8PX000.00-1 50 Stück Vibrationsring Gr.1 (für Motoren mit SpeedTec Anschluss) 8PX001.00-1 10 Stück Vibrationsring Gr.1,5 (für Motoren mit SpeedTec Anschluss)

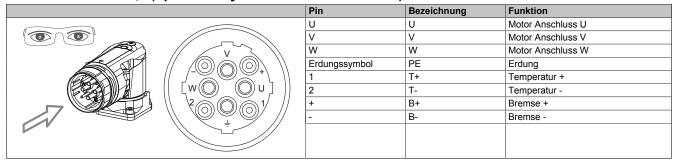

Anschließen und verriegeln

- Im Bedarfsfall einen Vibrationsring anbringen.
 Die Markierungen ▶ aufeinander ausrichten.
 Den Stecker gerade auf die Einbaudose aufschieben.
- Verriegelungsring im Uhrzeigersinn drehen und handfest bis zum Anschlag anziehen.
 Der Spalt zwischen Stecker und Einbaudose sollte ca. 2 mm

Entriegeln und Stecker abziehen

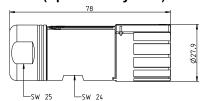
- 1. Verriegelungsring gegen den Uhrzeigersinn drehen, bis sich dieser vollständig vom Gewinde der Einbaudose gelöst hat.
- 2. Stecker gerade und gewaltfrei von der Einbaudose abziehen. Bei der Demontage darf nur am Stecker und keinesfalls am Kabel gezogen werden.

5.5.4 Anschlusstechnik


5.5.4.1 Leistungsanschluss

5.5.4.1.1 Pinbelegung Leistungsanschluss

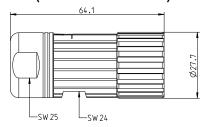
Einbaudose Größe 1 (SpeedTec System / Schraubanschluss)

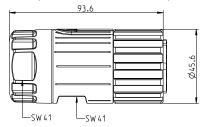

Pin	Bezeichnung	Funktion
1	U	Motor Anschluss U
4	V	Motor Anschluss V
3	W	Motor Anschluss W
2	PE	Erdung
Α	T+	Temperatur +
В	T-	Temperatur -
С	B+	Bremse +
D	B-	Bremse -
	1 4 3 2 A B C	1 U 4 V 3 W 2 PE A T+ B T- C B+

Einbaudose Größe 1,5 (SpeedTec System / Schraubanschluss)

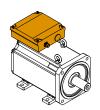


5.5.4.1.2 Abmessungen Leistungsstecker


Steckergröße 1 (SpeedTec System)


Steckergröße 1,5 (SpeedTec System)

Steckergröße 1 (Schraubanschluss ¹)


Steckergröße 1,5 (Schraubanschluss ¹)

1) Das motorseitige SpeedTec System ist rückwärtskompatibel zu Verkabelungen mit Schraubanschluss. Damit kann die bestehende Verkabelung mit Schraubanschlüssen weiterverwendet werden. Dieser Stecker ist Bestandteil von Kabeln, welche noch nicht über das SpeedTec System verfügen.

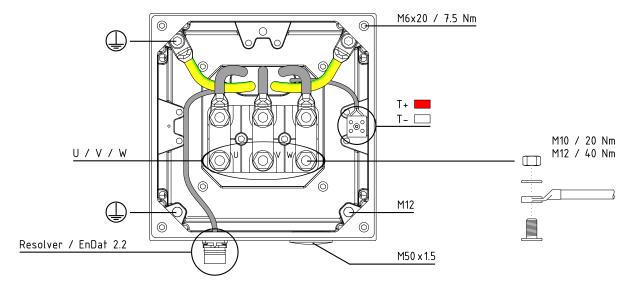
8LS...-3 Anwenderhandbuch V2.51

5.5.4.2 Motoren mit Klemmkasten (8LSO9 / 8LSP9)

Der Geberanschluss erfolgt gerade und in Anschlussrichtung.

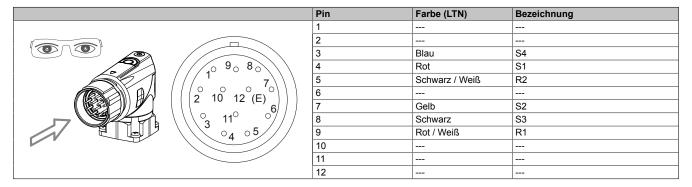
Bei Resolver wird das SpeedTec und bei EnDat 2.2 das itec System verwendet.

Die Größe der **Leistungsanschlüsse** ist abhängig von der Motorleistung. Die Motorphasen U V W werden an M10 (M12 für 8LSO96.ee022ffgg-h und 8LSP96.ee022ffgg-h) angeschlossen und mit Muttern gesichert. Die notwendigen Muttern und Scheiben sind im Lieferumfang enthalten.

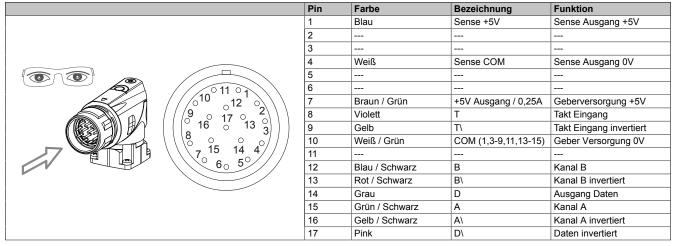

Die **Klemmkastendurchführung** (Leistungsanschluss) ist mit einem M50x1,5 Innengewinde ausgeführt und ab Werk mit einem Blindstopfen verschlossen.

Hinweis:

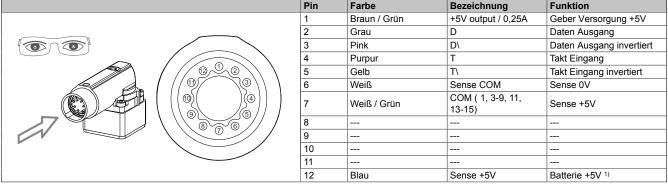
Verwenden Sie bei der Klemmkastendurchführung eine EMV Kabelverschraubung, bei der die Kabelverschraubung bzw. der Erdanschluss das Schirmgeflecht des Kabels die vollen 360° umfasst. Die benötigte EMV Kabelverschraubung M50x1,5 ist nicht im Lieferumfang enthalten.


Der **Temperatursensor** ist mit einem roten Kabel für T+ und einem weißen Kabel für T- entsprechend anzuschließen.

Für den Erdungsanschluss sind zwei freie M12 Gewindebohrungen verfügbar.

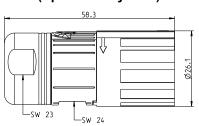

5.5.4.3 Geberanschluss

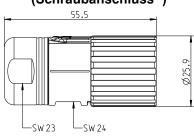
5.5.4.3.1 Pinbelegung Resolver (SpeedTec System / Schraubanschluss)



5.5.4.3.2 Pinbelegung EnDat Anschlüsse

EnDat 2.1 (SpeedTec System / Schraubanschluss)


EnDat 2.2 (itec System)


Nur relevant, wenn im Motor ein Geber mit batteriegepufferter Multiturn-Funktion verbaut ist. Die Batteriepufferung kann beispielweise über in ACO-POSmulti Wechselrichtermodule 8BVI eingebaute Pufferbatterien 8BXB000.0000-00 oder ACOPOS Einsteckmodule 8AC126.60-1 mit Batteriemodul 8AXB000.0000-00 realisiert werden. Im Geber selbst ist keine Pufferbatterie verbaut.

5.5.4.3.3 Abmessungen Geberstecker

EnDat 2.1 / Resolver (SpeedTec System)

EnDat 2.1 / Resolver (Schraubanschluss 1)

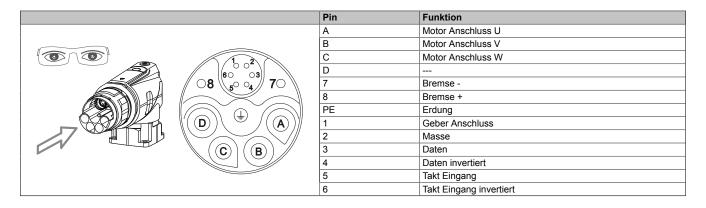
EnDat 2.2 (itec System)

1) Das motorseitige SpeedTec System ist rückwärtskompatibel zu Verkabelungen mit Schraubanschluss. Damit kann die bestehende Verkabelung mit Schraubanschlüssen weiterverwendet werden. Dieser Stecker ist Bestandteil von Kabeln, welche noch nicht über das SpeedTec System verfügen.

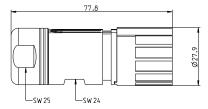
5.5.4.4 Einkabellösung (hybrid) - (SpeedTec System)

- 300° verdrehbarer SpeedTec Anschluss
- · Geber- und Leistungsleitung in einem Kabel zusammengefasst
- Schnellverschluss mit Selbstverriegelung
- · Robuste, industrietaugliche Steckverbindung mit optimaler EMV-Schirmung
- Robustes Metallgehäuse

Hinweis:


Bei Motoren mit Einkabellösung (hybrid) wird das Temperatursignal nicht wie bisher mit zwei einzelnen Leitungen im Motorkabel geführt, sondern digital über die Geberschnittstelle übermittelt.

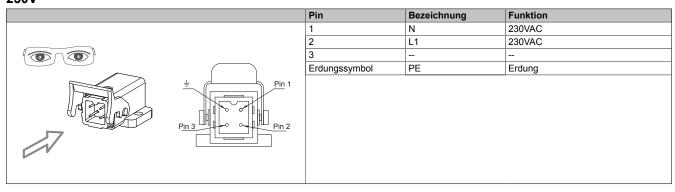
Für den Betrieb eines Motors mit Einkabellösung (hybrid) sind seitens der Antriebe folgende Bedingungen zu erfüllen.


- Für ACOPOSmulti: die Kabelabdeckung muss für den Betrieb mit Hybridkabel vorgesehen sein (Kabelausbruch vorhanden; Lieferdatum ab 2015)
- Für ACOPOSmulti mit SafeMC: die eingestellte Version des Betriebssystems (NC Version) muss größer oder gleich Version 2.48.0 sein; das Safety Release muss mindestens Version 1.9 sein
- Für alle Antriebe: die eingestellte Version des Betriebssystems (NC Version) muss größer oder gleich Version 2.42.2 sein

Werden oben genannte Bedingungen nicht erfüllt, funktioniert die Temperaturauswertung am Antrieb nicht.

5.5.4.4.1 Pinbelegung Einkabellösung (hybrid) - (SpeedTec System)

5.5.4.4.2 Abmessungen Einkabellösung (hybrid) - (SpeedTec System)


5.5.4.5 Lüfteranschluss

5.5.4.5.1 Pinbelegung Lüfteranschluss

24V

	Pin	Bezeichnung	Funktion
	1	Lüfteranschluss -	Masse
	2		
	3	Lüfteranschluss +	24VDC
	4		
Pin 3			

230V

Bestelldaten Steckverbinder kabelseitig

Der 4-polige Steckverbinder ist in Kunststoff- und Aluminium-Ausführung erhältlich.

Kunststoffgehäuse

• Bestellnummer: 8XMFLC.01-1

• 4x 0,75-1,5 mm²

• Anzugsdrehmoment-Überwurfmutter: 3 Nm

Umgebungstemperatur (Betrieb) -25 °C ... 80 °C

Aluminiumdruckgussgehäuße

• Bestellnummer: 8XMFLC.02-1

· Push-In Anschluss

• 4x 0,14-1,5 mm²

• Anzugsdrehmoment-Überwurfmutter: 5,5 Nm

• Umgebungstemperatur (Betrieb) -40 °C ... 125 °C

6 Inbetriebnahme und Betrieb

6.1 Vor Inbetriebnahme und Betrieb

Lesen Sie dieses Anwenderhandbuch vollständig und beginnen Sie erst dann mit der Inbetriebnahme bzw. dem Betrieb.

Berücksichtigen Sie außerdem die technische Dokumentation aller anderen Maschinenkomponenten (z. B. des B&R Antriebssystems) und die der fertigen Maschine.

6.2 Sicherheit

Die Inbetriebnahme darf nur durch qualifiziertes Fachpersonal ²⁾ erfolgen.

Verwenden Sie nur geeignete Einrichtungen, Werkzeuge und schützen Sie sich durch Sicherheitsausrüstung.

Vorsicht!

Personen- und Sachschäden durch Ausfall des Servoverstärkers!

Wenn der Servoverstärker ausfällt, kann ein unkontrollierter Motor Schäden verursachen.

Elektronische Geräte sind grundsätzlich nicht ausfallsicher!

 Sorgen Sie dafür, dass der Motor bei Ausfall des Servoverstärkers in einen sicheren Zustand gebracht wird.

6.2.1 Allgemeine Gefahrenquellen

Manipulation von Schutz- bzw. Sicherheitseinrichtungen

Schutz- bzw. Sicherheitseinrichtungen schützen Sie und andere Personen vor gefährlicher Spannung, sich drehenden oder bewegenden Elementen und vor heißen Oberflächen.

Gefahr!

Personen- und Sachschäden durch Manipulation von Schutzeinrichtungen!

Werden Schutz- bzw. Sicherheitseinrichtungen entfernt oder außer Betrieb gesetzt, ist kein Personenschutz mehr gegeben und es kann zu sehr schweren Personen- und Sachschäden kommen.

- Entfernen Sie keine Sicherheitseinrichtungen.
- Setzen Sie keine Sicherheitseinrichtungen außer Betrieb.
- Verwenden Sie auch bei kurzzeitigem Test- und Probebetrieb immer alle Sicherheitseinrichtungen!

Gefährliche Spannung

Zum Betrieb der Motoren ist es notwendig, dass an bestimmten Teilen eine gefährliche Spannung anliegt.

8LS...-3 Anwenderhandbuch V2.51

²⁾ siehe "Qualifiziertes Fachpersonal" auf Seite 9

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Gefahr durch Elektromagnetische Felder

Beim Betrieb von Anlagen der elektrischen Energietechnik, z. B. Transformatoren, Umrichter, Motoren usw., werden elektromagnetische Felder erzeugt.

Gefahr!

Gesundheitsgefahr durch elektromagnetische Felder!

Ein Herzschrittmacher kann durch elektromagnetische Felder in seiner Funktion beeinträchtigt werden, so dass es beim Träger zu gesundheitlichen Schäden mit möglicher Todesfolge kommen kann.

- Beachten Sie die entsprechenden nationalen Schutz- und Sicherheitsvorschriften.
- Der Aufenthalt von Personen mit Herzschrittmachern ist in gefährdeten Bereichen untersagt.
- Warnen Sie das Personal durch Information, Warnhinweise und Sicherheitskennzeichnung.
- Sichern Sie die Gefahrenzone durch Absperrungen ab.
- Sorgen Sie z. B. mit Abschirmungen dafür, dass die elektromagnetischen Felder an ihrer Quelle reduziert werden.

Gefährliche Bewegung

Durch Dreh- und Positionierbewegungen der Motoren werden Maschinenelemente bewegt oder angetrieben, wie auch Lasten befördert.

Nach dem Einschalten der Maschine ist grundsätzlich jederzeit mit Bewegungen der Motorwelle zu rechnen! Ein Schutz von Personen und Maschine kann daher nur durch übergeordnete Schutzmaßnahmen gewährleistet werden. Ein solcher Schutz kann z. B. durch ausreichend stabile mechanische Schutzeinrichtungen wie Schutzabdeckungen, Schutzzäune, Schutzgitter sowie durch Lichtschranken erreicht werden.

Bringen Sie in unmittelbarer Nähe der Maschine ausreichend und leicht zugängliche Notaus-Schalter an, um die Maschine im Unglücksfall schnellstmöglich anhalten zu können.

Verletzungsgefahr durch sich drehende oder bewegende Elemente und durch Lasten!

Durch sich drehende oder bewegende Elemente können Körperteile eingezogen oder abgetrennt werden und Stöße auf den Körper ausgeübt werden.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen gegen das Betreten durch unbefugte Personen.
- Bevor Sie an der Maschine arbeiten, sichern Sie diese gegen ungewollte Bewegungen ab. Eine ggf. vorhandene Haltebremse ist nach einem Anbau von Antriebselementen sowie nach der Durchführung von Wartungs- und Reparaturarbeiten auf Funktion zu prüfen!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Motoren k\u00f6nnen durch Fernsteuerung automatisch anlaufen! Gegebenenfalls ist ein dementsprechendes Warnsymbol anzubringen und ein Schutz gegen das Betreten des Gefahrenbereiches vorzusehen!

Gefahr!

Verletzungsgefahr durch Lasten!

Schwebende Lasten können durch Herabfallen zu Personenschäden bis hin zum Tod führen. Schwere Lasten können kippen und Personen einklemmen bzw. schwer verletzen.

Unsachgemäße Ausführung, ungeeignete oder schadhafte Geräte und Hilfsmittel können zu schweren Verletzungen und/oder Sachschäden führen.

- Heben Sie Motoren ohne produktfremde Zusatzlast (z. B. Anbauelemente) hoch.
- Verwenden Sie nur zulässige Hub-, Transport- und Hilfsmittel mit ausreichender Tragkraft.
- · Halten Sie sich nie in der Gefahrenzone bzw. unter schwebenden Lasten auf.
- Sichern Sie das Produkt gegen Herabfallen und Kippen.
- Tragen Sie Sicherheitsschuhe, Schutzkleidung und einen Schutzhelm.
- Beachten Sie die jeweiligen nationalen und örtlichen Vorschriften.

Warnung!

Verletzungsgefahr durch fehlerhafte Ansteuerung oder Defekt!

Durch fehlerhafte Ansteuerung von Motoren oder Defekt können ungewollte und gefährliche Bewegungen ausgelöst und Verletzungen herbeigeführt werden.

Ein solches fehlerhaftes Verhalten kann ausgelöst werden durch:

- fehlerhafte Installation bzw. Fehler bei der Handhabung der Komponenten
- fehlerhafte oder unvollständige Verdrahtung
- defekte Geräte (Servoverstärker, Motor, Positionsgeber, Kabel, Bremse)
- fehlerhafte Ansteuerung (z. B. durch Softwarefehler)

Gefahr durch heiße Oberflächen

Durch Verlustleistung vom Motor und Reibung im Getriebe, können diese Komponenten wie auch deren Umfeld eine Temperatur von über 100°C erreichen.

Die entstehende Wärme wird über das Gehäuse und den Flansch an die Umgebung abgegeben.

Warnung!

Verbrennungsgefahr durch heiße Oberflächen!

Bei Berührung von heißen Oberflächen (z. B. Motor- und Getriebegehäuse, wie auch damit in Verbindung stehenden Bauteilen) kann es auf Grund der sehr hohen Temperatur dieser Teile zu sehr schweren Verbrennungen kommen.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Berühren Sie das Motor- oder Getriebegehäuse wie auch angrenzende Oberflächen niemals im Nennlastbetrieb.
- Achten Sie auch bei Stillstand auf heiße Oberflächen.
- Lassen Sie Motor und Getriebe vor Arbeiten daran ausreichend abkühlen, denn auch nach dem Abschalten besteht noch über einen längeren Zeitraum Verbrennungsgefahr.
- Betreiben Sie den Motor bzw. das Getriebe immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!

6.2.2 Reversierbetrieb

Warnung!

Personen- und Sachschäden durch Wellenbruch!

Der Sitz der Passfeder kann bei starkem Reversierbetrieb ausschlagen. Dies kann im Extremfall zum Bruch des Wellenendes und in Folge zu schweren Schäden führen!

Setzen Sie bei starkem Reversierbetrieb vorzugsweise glatte Wellenenden ein.

6.2.3 Frei drehende Motoren

Bei frei drehenden Motoren ist eine eventuell vorhandene Passfeder gegen Wegschleudern zu sichern. Montageschrauben oder andere Montageelemente sind vor dem Betrieb gegen Wegschleudern zu sichern oder müssen entfernt werden. Eine Wellenschutzhülse, für Transport und Lagerung, ist kein entsprechender Schutz und muss ebenfalls entfernt werden.

Warnung!

Personen- und Sachschäden durch wegschleudernde Elemente!

Bei frei drehenden Motoren können wegschleudernde Elemente Personen- und Sachschäden verursachen.

- Nachfolgende Sicherheitsvorkehrungen gelten auch bei kurzzeitigem Test- und Probebetrieb!
- Sichern Sie Passfedern.
- Sichern oder entfernen Sie Montageschrauben oder andere Montageelemente.
- Eine Wellenschutzhülse, für Transport und Lagerung, muss ebenfalls entfernt werden.

6.2.4 Haltebremse

Die Motoren können optional mit einer Haltebremse ausgestattet sein. Diese dient nur zum Festhalten der Motorwelle im spannungslosen Zustand des Motors.

Das maximale Motormoment überschreitet das Haltemoment der Bremse wesentlich.

Personen- und Sachschäden durch nicht vorgesehene Verwendung der Haltebremse!

Wird die Haltebremse anders als vorgesehen verwendet, sind Funktionsausfälle und Unfälle mit Personen- und Sachschäden möglich.

- Verwenden Sie die Haltebremse nicht zum betriebsmäßigen Abbremsen! Sie ist keine Arbeitsbremse.
- Verwenden Sie die Haltebremse nicht zum Halten von Lasten! Sie gewährleisten keine sichernde Funktion (z. B. gegen das Absenken bei Hebelasten).
- Belasten Sie Motoren mit Haltebremse weder bei der Montage noch in Betrieb axial. Insbesondere Axialkräfte in Richtung B-Flansch sind zu vermeiden, da dadurch ein Bremsversagen auftreten kann!

Hinweis:

Lastbremsungen im Fall eines Nothaltes sind zulässig - sie reduzieren jedoch die Lebensdauer.

Weitere Informationen zur Haltebremse finden Sie im Kapitel "Technische Daten".

6.3 Prüfungen

6.3.1 Prüfungen vor der Inbetriebnahme

Folgendes muss vor der Inbetriebnahme sichergestellt werden:

- · Der Antrieb darf nicht beschädigt sein.
- Der Motor muss ordnungsgemäß ausgerichtet und befestigt sein und darf sich nicht im Gefahrenbereich anderer Einrichtungen befinden.
- · Die Verschraubungen müssen korrekt angezogen sein.
- Nicht benutzte Anschlussgewinde am Flanschlagerschild müssen verschlossen sein.
- · Alle an der Abtriebswelle befestigten Komponenten müssen gegen unbeabsichtigtes Lösen gesichert sein.
- Motoren, welche ein Wellenende mit Passfeder besitzen, dürfen nicht ohne Passfeder betrieben werden. Die daraus entstehende Unwucht kann einen Motorschaden verursachen.
- Bei frei drehenden Motoren müssen Passfedern gegen wegschleudern gesichert und Montageschrauben und andere Montageelemente ebenso gesichert oder entfernt sein.
- Es müssen alle zugehörigen Schutzeinrichtungen (mechanisch, thermisch, elektrisch) montiert sein.
- · Alle Motoranschlüsse müssen ordnungsgemäß ausgeführt sein.
- · Das Schutzleitersystem muss richtig ausgeführt und überprüft sein.
- · Die Leitungen dürfen die Motoroberfläche nicht berühren.
- Der Antrieb muss frei sein (ggf. Bremse lüften).
- · Die Not-Aus-Funktionen muss überprüft sein.
- Eine ggf. vorhandene Haltebremse muss funktionsfähig sein.
- Ein ggf. vorhandener Lüfter muss ordnungsgemäß angeschlossen und funktionsfähig sein.
- Eine ggf. vorhandene Flüssigkeitskühlung muss ordnungsgemäß angeschlossen, funktionsfähig und dicht sein.

8LS...-3 Anwenderhandbuch V2.51

Warnung!

Personen- und Sachschäden durch beschädigte oder ungeeignete Maschinenkomponenten!

Der Betrieb einer Maschine mit beschädigten oder ungeeigneten Komponenten ist ein Sicherheitsrisiko und kann zu Ausfällen führen. Schwere Sachschäden und Verletzungen sind nicht auszuschließen.

- Betreiben Sie niemals eine Maschine mit beschädigtem Motor oder Getriebe bzw. mit einer anderen beschädigten Komponente.
- Bauen Sie niemals eine beschädigte Komponente in eine Maschine ein.
- Verwenden Sie keine Motoren oder Getriebe die bereits einmal überlastet betrieben wurden.
- Vergewissern Sie sich vor dem Einbau, dass der Motor bzw. das Getriebe für die Maschine geeignet ist.
- Unterlassen Sie auch kurzzeitige Test- und Probebetriebe mit beschädigten oder ungeeigneten Maschinenkomponenten.
- Kennzeichnen Sie beschädigte bzw. nicht einsatzbereite Komponenten gut ersichtlich und eindeutig.

6.3.2 Prüfungen während der Inbetriebnahme

Folgendes muss während der Inbetriebnahme sichergestellt werden:

- Alle Baugruppen und Anbauten des Motors (wie z.B. Schutzeinrichtungen, Geber, Bremse, Kühlung, Getriebe etc.) müssen auf Funktion überprüft worden sein.
- Die Einsatzbedingungen (siehe Kapitel "Aufstellbedingungen") müssen eingehalten werden.
- Eine ggf. vorhandene Haltebremse muss bei drehendem Motor gelüftet sein.
- Eine ggf. vorhandene Flüssigkeitskühlung muss funktionsfähig und dicht sein.
- Alle elektrischen Anschlüsse und Verbindungen müssen vorschriftsmäßig ausgeführt und befestigt sein.
- Es müssen alle Schutzmaßnahmen getroffen worden sein, die ein Berühren von spannungsführenden Teilen, heißen Oberflächen, drehenden und sich bewegenden Teilen und Baugruppen ausschließen. Prüfen Sie auch ob diese Schutzmaßnahmen funktionstüchtig sind.
- Alle Abtriebselemente müssen nach Herstellervorgabe montiert und eingestellt sein.
- Die max. zul. Drehzahl n_{max} des Motors muss begrenzt sein und darf nicht überschritten werden können.
 Die max. zul. Drehzahl n_a ist die höchste kurzzeitig zulässige Betriebsdrehzahl.

6.3.3 Während des Betriebes

Achten Sie während des Betriebes auf folgende, möglicherweise eine Betriebsstörung ankündigende, Anzeichen:

- · ungewöhnliche Geräusche
- · ungewöhnliche Schwingungen
- ungewöhnliche Gerüche
- Rauchentwicklung
- · ungewöhnliche Temperaturentwicklung
- · erhöhte Leistungsaufnahme
- · Schmierstoffaustritt
- Ansprechen der Überwachungs- oder Sicherheitseinrichtung

Schalten Sie die Maschine ggf. schnellstmöglich ab, um Folgeschäden oder Unfälle zu vermeiden. Achten Sie bei Abschaltungen und Ursachenforschungen immer auf die Sicherheit anderer Personen, sowie auf die eigene Sicherheit!

Verständigen Sie bei Abschaltungen umgehend das zuständige Fachpersonal.

6.4 Betriebsstörungen

In nachfolgender Tabelle finden Sie, nach Störung gegliederte, mögliche Fehlerursachen und eine Angabe zu deren Behebung.

Störung	Mögliche Fehlerursache	Behebung
Motor läuft nicht an	Reglerfreigabe fehlt	Reglerfreigabe aktivieren
	Regler-Fehler, Geber-Fehler	Fehlerlisting am Umrichter bzw. Regler auslesen, Fehler beheben Stecker auf korrekte Montage prüfen (siehe Kapitel "Montage und Anschluss", Abschnitt "Stecker fachgerecht anschließen")
	Spannungsversorgung fehlt	Anschluss und Spannungsversorgung prüfen Stecker auf korrekte Montage prüfen (siehe Kapitel "Monta- ge und Anschluss", Abschnitt "Stecker fachgerecht anschlie- ßen")
	Drehfeld	Phasenfolge prüfen, ggf. Tausch der Anschlussleitung
	Bremse lüftet nicht (ggf. vorhandene optionale Ausstattung)	Ansteuerung, Anschluss und Spannungsversorgung prüfen
	Bremse defekt (ggf. vorhandene optionale Ausstattung)	Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.
Unruhiger Lauf	Schirmung in den Anschlussleitungen unzureichend	Schirmanbindung und Erdung überprüfen
	Reglerparameter zu hoch	Reglerparameter optimieren
Vibrationen	Kupplungselemente oder Arbeitsmaschine schlecht gewuchtet	Nachwuchten
	MangeInde Ausrichtung des Antriebsstranges	Maschinensatz neu ausrichten
	Befestigungsschrauben locker	Schraubverbindungen prüfen und sichern
Laufgeräusche	Fremdkörper im Motor	Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.
	Lagerschaden	Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.
Der Motor wird zu warm - die Tem- peraturüberwachung spricht an	Überlastung des Antriebs	Motorbelastung prüfen und mit Typenschilddaten vergleichen
	unzureichende Wärmeabfuhr	Sorgen Sie für ausreichende Wärmeabfuhr.
	Bremse lüftet unzureichend - schleifende Bremse (ggf. vorhandene optionale Ausstattung)	Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.
Stromaufnahme zu hoch - Motor- drehmoment zu gering	Rastwinkel falsch	Rastwinkel überprüfen und ggf. einstellen

Nehmen Sie im Bedarfsfall Kontakt mit B&R auf

Folgende Informationen sollten Sie dabei bereithalten:

- · Bestellbezeichnung und Serialnummer (siehe Typenschild)
- · Art und Ausmaß der Störung
- Begleitumstände der Störung
- Anwendungsdaten (Zyklus von Drehmoment, Drehzahl und Kräften über der Zeit, Umgebungsbedingungen)

8LS...-3 Anwenderhandbuch V2.51

7 Inspektion und Wartung

Abhängig von den Betriebsbedingungen (wie z.B. Betriebsart, Temperatur, Drehzahl, Belastung, Einbaulage) ergeben sich zum Teil sehr unterschiedliche Gebrauchsdauern für Schmierstoffe, Dichtelemente und Lagerstellen.

Führen Sie je nach Verschmutzungsgrad vor Ort, regelmäßige Reinigungen durch, um u.a. die Abfuhr der Verlustwärme sicherzustellen.

Zu den eigenverantwortlichen Aufgaben des Betreibers zählt:

- Die Erstellung eines Wartungsplans und die Dokumentation von Inspektionen und Wartungsarbeiten.
- Die Kontrolle von Motoren und der kühlluftversorgenden Konstruktion auf Verschmutzung, Feuchtigkeit und Undichtheiten.
- Die Reinigung von Motoren und der kühlluftversorgenden Konstruktion.
- Die Prüfung der Anschlüsse und Leitungen auf Beschädigungen.
- Die Prüfung aller Sicherheitsvorkehrungen für einen sicheren Betrieb.

7.1 Sicherheit

Arbeiten an Motoren und deren Verkabelung dürfen nur im spannungsfreien Zustand und durch qualifiziertes Fachpersonal ²⁾ erfolgen. Der Schaltschrank ist zuvor spannungsfrei zu schalten und gegen Wiedereinschalten zu sichern.

Verwenden Sie nur geeignete Einrichtungen, Werkzeuge und schützen Sie sich durch Sicherheitsausrüstung.

Warnung!

Personen- und Sachschäden durch eigenmächtige Umbauten!

Durch eigenmächtige Umbauten am Produkt können sich dessen Leistungs- und Grenzwerte negativ verändern und Gefahren entstehen. Dadurch sind schwere Sachschäden und Verletzungen nicht auszuschließen.

Eigenmächtige Umbauten sind daher verboten!

- Führen Sie keine eigenmächtigen Umbauten und Veränderungen am Produkt durch.
- Nehmen Sie im Bedarfsfall Kontakt mit B&R auf.

7.1.1 Allgemeine Gefahrenquellen

Manipulation von Schutz- bzw. Sicherheitseinrichtungen

Schutz- bzw. Sicherheitseinrichtungen schützen Sie und andere Personen vor gefährlicher Spannung, sich drehenden oder bewegenden Elementen und vor heißen Oberflächen.

Gefahr!

Personen- und Sachschäden durch Manipulation von Schutzeinrichtungen!

Werden Schutz- bzw. Sicherheitseinrichtungen entfernt oder außer Betrieb gesetzt, ist kein Personenschutz mehr gegeben und es kann zu sehr schweren Personen- und Sachschäden kommen.

- Entfernen Sie keine Sicherheitseinrichtungen.
- Setzen Sie keine Sicherheitseinrichtungen außer Betrieb.
- Verwenden Sie auch bei kurzzeitigem Test- und Probebetrieb immer alle Sicherheitseinrichtungen!

Gefährliche Spannung

Zum Betrieb der Motoren ist es notwendig, dass an bestimmten Teilen eine gefährliche Spannung anliegt.

Verletzungsgefahr durch Stromschlag!

Bei Berührung spannungsführender Teile besteht unmittelbare Lebensgefahr durch Stromschlag.

Werden Anschlüsse in falscher Reihenfolge oder unter Spannung an- oder abgeklemmt, können Lichtbögen entstehen und Personen und Kontakte können geschädigt werden.

Auch wenn sich der Motor nicht dreht oder wenn er fremd angetrieben als Generator läuft, können die Steuer- und Leistungsanschlüsse Spannung führen!

- Berühren Sie Anschlüsse niemals in eingeschaltetem Zustand.
- Lösen oder verbinden Sie elektrische Anschlüsse an Motor und Servoverstärker nie unter Spannung!
- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Bevor Sie an Motoren, Getrieben oder Servoverstärkern bzw. im Gefahrenbereich ihrer Maschine arbeiten, trennen Sie diese vollständig vom Netz und sichern Sie diese gegen Wiedereinschalten durch andere Personen oder Automatiken ab.
- Beachten Sie die Entladezeit eines ggf. vorhandenen Zwischenkreises.
- Schließen Sie Messgeräte nur im strom- und spannungslosen Zustand an!

Gefahr durch Elektromagnetische Felder

Beim Betrieb von Anlagen der elektrischen Energietechnik, z. B. Transformatoren, Umrichter, Motoren usw., werden elektromagnetische Felder erzeugt.

Gefahr!

Gesundheitsgefahr durch elektromagnetische Felder!

Ein Herzschrittmacher kann durch elektromagnetische Felder in seiner Funktion beeinträchtigt werden, so dass es beim Träger zu gesundheitlichen Schäden mit möglicher Todesfolge kommen kann.

- Beachten Sie die entsprechenden nationalen Schutz- und Sicherheitsvorschriften.
- Der Aufenthalt von Personen mit Herzschrittmachern ist in gefährdeten Bereichen untersagt.
- Warnen Sie das Personal durch Information, Warnhinweise und Sicherheitskennzeichnung.
- Sichern Sie die Gefahrenzone durch Absperrungen ab.
- Sorgen Sie z. B. mit Abschirmungen dafür, dass die elektromagnetischen Felder an ihrer Quelle reduziert werden.

Gefährliche Bewegung

Durch Dreh- und Positionierbewegungen der Motoren werden Maschinenelemente bewegt oder angetrieben, wie auch Lasten befördert.

Nach dem Einschalten der Maschine ist grundsätzlich jederzeit mit Bewegungen der Motorwelle zu rechnen! Ein Schutz von Personen und Maschine kann daher nur durch übergeordnete Schutzmaßnahmen gewährleistet werden. Ein solcher Schutz kann z. B. durch ausreichend stabile mechanische Schutzeinrichtungen wie Schutzabdeckungen, Schutzzäune, Schutzgitter sowie durch Lichtschranken erreicht werden.

Bringen Sie in unmittelbarer Nähe der Maschine ausreichend und leicht zugängliche Notaus-Schalter an, um die Maschine im Unglücksfall schnellstmöglich anhalten zu können.

Verletzungsgefahr durch sich drehende oder bewegende Elemente und durch Lasten!

Durch sich drehende oder bewegende Elemente können Körperteile eingezogen oder abgetrennt werden und Stöße auf den Körper ausgeübt werden.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen gegen das Betreten durch unbefugte Personen.
- Bevor Sie an der Maschine arbeiten, sichern Sie diese gegen ungewollte Bewegungen ab. Eine ggf. vorhandene Haltebremse ist nach einem Anbau von Antriebselementen sowie nach der Durchführung von Wartungs- und Reparaturarbeiten auf Funktion zu prüfen!
- Halten Sie während des Betriebes und so lange die Maschine nicht vom Netz getrennt wurde alle Abdeckungen und Schaltschranktüren geschlossen.
- Betreiben Sie den Motor immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!
- Motoren k\u00f6nnen durch Fernsteuerung automatisch anlaufen! Gegebenenfalls ist ein dementsprechendes Warnsymbol anzubringen und ein Schutz gegen das Betreten des Gefahrenbereiches vorzusehen!

Gefahr!

Verletzungsgefahr durch Lasten!

Schwebende Lasten können durch Herabfallen zu Personenschäden bis hin zum Tod führen. Schwere Lasten können kippen und Personen einklemmen bzw. schwer verletzen.

Unsachgemäße Ausführung, ungeeignete oder schadhafte Geräte und Hilfsmittel können zu schweren Verletzungen und/oder Sachschäden führen.

- Heben Sie Motoren ohne produktfremde Zusatzlast (z. B. Anbauelemente) hoch.
- Verwenden Sie nur zulässige Hub-, Transport- und Hilfsmittel mit ausreichender Tragkraft.
- Halten Sie sich nie in der Gefahrenzone bzw. unter schwebenden Lasten auf.
- Sichern Sie das Produkt gegen Herabfallen und Kippen.
- Tragen Sie Sicherheitsschuhe, Schutzkleidung und einen Schutzhelm.
- Beachten Sie die jeweiligen nationalen und örtlichen Vorschriften.

Warnung!

Verletzungsgefahr durch fehlerhafte Ansteuerung oder Defekt!

Durch fehlerhafte Ansteuerung von Motoren oder Defekt können ungewollte und gefährliche Bewegungen ausgelöst und Verletzungen herbeigeführt werden.

Ein solches fehlerhaftes Verhalten kann ausgelöst werden durch:

- fehlerhafte Installation bzw. Fehler bei der Handhabung der Komponenten
- fehlerhafte oder unvollständige Verdrahtung
- defekte Geräte (Servoverstärker, Motor, Positionsgeber, Kabel, Bremse)
- fehlerhafte Ansteuerung (z. B. durch Softwarefehler)

Gefahr durch heiße Oberflächen

Durch Verlustleistung vom Motor und Reibung im Getriebe, können diese Komponenten wie auch deren Umfeld eine Temperatur von über 100°C erreichen.

Die entstehende Wärme wird über das Gehäuse und den Flansch an die Umgebung abgegeben.

Warnung!

Verbrennungsgefahr durch heiße Oberflächen!

Bei Berührung von heißen Oberflächen (z. B. Motor- und Getriebegehäuse, wie auch damit in Verbindung stehenden Bauteilen) kann es auf Grund der sehr hohen Temperatur dieser Teile zu sehr schweren Verbrennungen kommen.

- Halten Sie sich während des Betriebes nicht im Gefahrenbereich auf und sichern Sie diesen vor Zutritt durch unbefugte Personen.
- Berühren Sie das Motor- oder Getriebegehäuse wie auch angrenzende Oberflächen niemals im Nennlastbetrieb.
- Achten Sie auch bei Stillstand auf heiße Oberflächen.
- Lassen Sie Motor und Getriebe vor Arbeiten daran ausreichend abkühlen, denn auch nach dem Abschalten besteht noch über einen längeren Zeitraum Verbrennungsgefahr.
- Betreiben Sie den Motor bzw. das Getriebe immer mit allen Sicherheitseinrichtungen. Tun Sie dies auch bei kurzzeitigem Test- und Probebetrieb!

7.2 Motorlager und Haltebremse

Motorlager

Bei störungsfreiem Betrieb empfehlen wir als allgemeinen Richtwert für die Wartung der Motorlagerung einen Wechsel nach etwa 20.000 Betriebsstunden (rechnerische Lagergebrauchsdauer L_{h10}: 20.000 Betriebsstunden).

Haltebremse

Das Bremsmoment kann sich über die Zeit bedingt durch Feuchtigkeit und Kontaminationen verringern. Daher sollte in der Applikation das benötigte Bremsmoment mit dem in der Applikation benötigten Sicherheitsfaktor von Zeit zu Zeit mittels der Bremstestfunktion überprüft werden.

Falls die Bremse das benötigte Moment nicht mehr erreicht, kann sie mit einem Refresh Zyklus das benötigte Moment wieder erreichen.

- Die Bremstestfunktion im verwendeten ACOPOS Servoverstärker muss aktiviert werden.
- Beim Refresh Zyklus wird der Motor eine Umdrehung bei geschlossener Bremse mit 50 min⁻¹ drehen gelassen. Dabei werden die Bremsflächen wieder gereinigt und die Bremse erreicht in der Regel wieder ihr Moment.
- Nach einem Refresh ist die Bremse erneut zu testen.
- Falls nach 5 Refresh Zyklen die Bremse ihr gefordertes Moment nicht mehr erreicht, muss der Motor ausgetauscht werden.

Tauschen Sie den Motor aus, wenn die Bremse ihr gefordertes Moment nicht mehr erreicht.

Nehmen Sie im Bedarfsfall Kontakt mit B&R auf. Reparaturen an Motor und Bremse sind ausschließlich von B&R durchzuführen!

Hinweis:

Die Motoren können optional mit einer Haltebremse ausgestattet sein. Diese dient zum Festhalten der Motorwelle im spannungslosen Zustand des Motors. Das maximale Motormoment überschreitet das Haltemoment der Bremse wesentlich.

Personen- und Sachschäden durch nicht vorgesehene Verwendung der Haltebremse!

Wird die Haltebremse anders als vorgesehen verwendet, sind Funktionsausfälle und Unfälle mit Personen- und Sachschäden möglich.

- Verwenden Sie die Haltebremse nicht zum betriebsmäßigen Abbremsen! Sie ist keine Arbeitsbremse.
- Verwenden Sie die Haltebremse nicht zum Halten von Lasten! Sie gewährleisten keine sichernde Funktion (z. B. gegen das Absenken bei Hebelasten).
- Belasten Sie Motoren mit Haltebremse weder bei der Montage noch in Betrieb axial. Insbesondere Axialkräfte in Richtung B-Flansch sind zu vermeiden, da dadurch ein Bremsversagen auftreten kann!

Hinweis:

Lastbremsungen im Fall eines Nothaltes sind zulässig - sie reduzieren jedoch die Lebensdauer.

7.3 Wellendichtring

Die Motoren können optional mit einem Wellendichtring (Form A nach DIN 3760) ausgestattet sein. Damit erfüllen die Motoren die Schutzart IP65 nach EN 60034-5.

Hinweis:

Ein Getriebeanbau ist dadurch jedoch unzulässig, da die Wellendichtringwartung durch das Getriebe behindert wird.

 Sorgen Sie w\u00e4hrend der gesamten Lebensdauer des Motors f\u00fcr ausreichende Schmierung des Wellendichtrings.

7.4 Reinigung

Reinigen Sie die Motoren regelmäßig, damit eine gute Wärmeableitung gewährleistet bleibt.

Information:

- Halten Sie bei den Reinigungsarbeiten die Antriebskabel / Stecker fest.
- Entfernen Sie Fasern und Fremdkörper von Hand vom Motorgehäuse, ohne die Motoroberfläche oder das Wellenende zu beschädigen.
- Verwenden Sie ein mit Wasser angefeuchtetes Tuch, um Staub und Schmutz vom Motorgehäuse (ausgenommen dem Wellenende) zu entfernen.

Vorsicht!

- Die Reinigung darf ausschließlich durch Fachpersonal durchgeführt werden.
- Stellen Sie vor Beginn der Reinigungsarbeiten sicher, dass der Motor ausgeschaltet, spannungslos, gestoppt und abgekühlt ist.
- Nicht geeignet für die Reinigung des Motors und der Kabel sind Druckluftwerkzeuge, Hochdruckreiniger, Drahtbürsten, Schaber etc.

8 Entsorgung

Werkstofftrennung

Damit die Geräte einem umweltgerechten Recycling-Prozess zugeführt werden können, ist es notwendig, die verschiedenen Werkstoffe voneinander zu trennen. Die Entsorgung muss gemäß den jeweils gültigen gesetzlichen Regelungen erfolgen.

Bestandteil	Entsorgung	Hinweis
Motoren	Elektronik-Recycling	Ein magnetisierter Rotor darf auf keinen Fall außerhalb des Stators transportiert oder verschickt werden!
Getriebe (ohne Öl)	Metallschrott	
Altöl (Getriebe)	Sondermüll	
Kühlflüssigkeit	Sondermüll	Nur bei flüssigkeitsgekühlten Motoren. Bestehend aus Wasser / Öl mit Additiven.
Module, Kabel	Elektronik-Recycling	
Batterien	Sondermüll	Brandgefahr: Lagern Sie Batterien bei der Entsorgung nicht zusammen mit leitfähigen Materialien.
Karton/Papier-Verpackung	Papier-/Kartonage-Recycling	

8.1 Sicherheit

8.1.1 Schutzausrüstung

Tragen Sie zu Ihrem persönlichen Schutz immer entsprechende Sicherheitskleidung und Ausrüstung.

8.1.2 Rotor mit Seltene Erd Magneten

In den B&R Motoren sind Rotoren mit Seltene Erd Magneten verbaut, die über hohe magnetische Energiedichten verfügen.

Warnung!

Personen- und Sachschäden durch Seltene Erd Magnete!

Die Motoren dürfen nicht in Einzelteile zerlegt werden.

Ein magnetisierter Rotor darf auf keinen Fall außerhalb des Stators transportiert oder verschickt werden!

- Durch die umgebenden Magnetfelder kann ein Herzschrittmacher in seiner Funktion derart beeinträchtigt werden, dass es beim Träger zu gesundheitlichen Schäden oder auch zum Tod führen kann.
- Durch die umgebenden Magnetfelder k\u00f6nnen elektronische und mechanische Messger\u00e4te beeinflusst oder zerst\u00f6rt werden.
- Durch die starke magnetische Anziehungskraft kann es zu unkontrollierten Bewegungen des Magneten oder auch zum Anziehen anderer Gegenständen kommen. Personenschäden durch stoßen oder einklemmen sind möglich. Wenn Magnete beim aufeinanderprallen zersplittern sind auch hierdurch Personenschäden nicht auszuschließen.
- In explosionsgefährdeter Umgebung kann ein durch Magnete ausgelöster Funke zu schweren Explosionen führen und Personen und Sachschäden verursachen.

Impressum

B&R Industrial Automation GmbH B&R Straße 1 5142 Eggelsberg Österreich

Telefon: +43 7748 6586-0 Fax: +43 7748 6586-26 office@br-automation.com