
X20CM4800X

Data sheet V 1.03 1

X20CM4800X

1 Order data
Model number Short description Figure

Other functions
X20CM4800X X20 analog input module, vibration measurement, 4 IEPE ana-

log inputs, 50 kHz sampling frequency, 24-bit converter resolu-
tion
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed
Optional accessories
Sensor cable

0ACC0020.01-1 Cable for accelerometer, length 2 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC0050.01-1 Cable for accelerometer, length 5 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC0100.01-1 Cable for accelerometer, length 10 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC0150.01-1 Cable for accelerometer, length 15 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC0200.01-1 Cable for accelerometer, length 20 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC0500.01-1 Cable for accelerometer, length 50 m, 2x 0.34 mm², female M12
connector on the sensor side, can be used in cable drag chains,
UL listed

0ACC1000.01-1 Cable for accelerometer, length 100 m, 2x 0.34 mm², female
M12 connector on the sensor side, can be used in cable drag
chains, UL listed
Sensors

0ACS100A.00-1 Accelerometer, nominal sensitivity 100 mV/g, top exit
0ACS100A.90-1 Accelerometer, nominal sensitivity 100 mV/g, side exit

Table 1: X20CM4800X - Order data

2 Module description

The module is intended for vibration measurement on machines and systems as well as for further evaluation of
the data on the controller. The module has 4 input channels, whereby the selected sampling rate per input can
be set between 200 Hz and 50 kHz.
Functions:

• Configuration of inputs
• Vibration measurement
• NetTime timestamp

If a measurement is started, the vibrations are measured with the set sampling and transferred with a configurable
data resolution of 16, 24 or 32 bits.
A NetTime timestamp is generated when the measurement is started. This allows each recorded measured value
to be assigned to a unique time. If the measurement is stopped, an additional NetTime timestamp is generated.

X20CM4800X

2 Data sheet V 1.03

3 Technical data
Model number X20CM4800X
Short description
I/O module X20 4-channel analog input module for vibration measurement of condition monitoring tasks
General information
Isolation voltage between channel and bus 500 Veff

Nominal voltage 24 VDC ±20%
B&R ID code 0xF1C5
Status indicators Run, error, vibration inputs 1 to 4
Diagnostics

Module run/error Yes, using LED status indicator and software
Power consumption

Bus 0.01 W
Internal I/O 1.5 W

Certifications
CE Yes
EAC Yes

Analog inputs
Quantity 4
Input type IEPE sensor: Acceleration
Digital converter resolution 24-bit
Open-circuit detection

Per channel Less than 8 V or greater than 14 V for more than 4 s
Permissible input signal ±10 VAC
Conversion procedure Sigma-delta
Type Vibration input
Sampling frequency Configurable from 200 Hz to 50 kHz
Input high pass cutoff frequency 34 mHz
Input low pass cutoff frequency 23 kHz
Sensor power supply IEPE, 5 mA constant current source (4.9 - 5.5 mA), can be switched off for each channel
Electrical properties
Electrical isolation Channel isolated from bus

Channel not isolated from channel
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 55°C

Derating See section "Derating".
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately.

Order 1x bus module X20BM11 separately.
Pitch 12.5 +0.2 mm

Table 2: X20CM4800X - Technical data

X20CM4800X

Data sheet V 1.03 3

4 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" of the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash Mode RESET
Double flash Mode BOOT (during firmware update)1)

Blinking Mode PREOPERATIONAL

r Green

On Mode RUN
Off Module not supplied with power or everything OK
On Warning, error or reset state
Single flash Open circuit on the active channel

e Red

Double flash Buffer overflow
e + r Red

Green
On
Single flash

Invalid firmware

Off Channel inactive1 - 4 Green
On Channel active

1) Depending on the configuration, a firmware update can take up to several minutes.

5 Pinout

Channel 1-

Channel shielding 1

Channel 1+

Channel 2-

Channel shielding 2

Channel 2+

r
1
3

e
2
4

X2
0

C
M

 4
80

0X

Channel 3-

Channel shielding 3

Channel 3+

Channel 4-

Channel shielding 4

Channel 4+

6 Connection example

Connecting 1-axis sensors

GND
+24 VDC

GND
+24 VDC

CMVibration
measurement

Vibration
measurement

IEPE +

IEPE -

Ground

IEPE +

IEPE -

Ground

IEPE +

IEPE -

Ground

IEPE +

IEPE -

Ground

Se
ns

or
 1

Se
ns

or
 2

Se
ns

or
 3

Se
ns

or
 4

X20CM4800X

4 Data sheet V 1.03

Connecting 1-axis and 3-axis sensors

GND
+24 VDC

GND
+24 VDC

CMVibration
measurement

Vibration
measurement

IEPE +

IEPE -

Ground

IEPE +

IEPE -

Ground

Se
ns

or
 1

Se
ns

or
 4

X
Y
Z

7 Input circuit diagram

AI +

AI -

Shield

IEPE power supply on/off

Raw valueFilter
A/D

converter
24-bit

5 mA current source

Open-circuit monitoring
Open-circuit status

I/O power supply

440k

8 Gain curve

The following diagram shows a typical gain curve for the module.

Frequency in Hz

Fi
lte

r d
am

pi
ng

 in
 d

B

X20CM4800X

Data sheet V 1.03 5

9 Derating

Depending on the maximum ambient temperature, additional dummy modules may need to be installed next to
the module. If the modules are installed with a vertical mounting orientation, the dummy modules must already be
used at a 5°C lower ambient temperature.
Maximum ambient temperature
Up to: horizontal 45°C / vertical 40°C
- No precautions need be taken.
Up to: horizontal 50°C / vertical 45°C
- Depending on the supply voltage used, it may be necessary to install a dummy module.

• 24 V supply voltage: No dummy module necessary
• 28.8 V supply voltage: 1 dummy module required in front of it

Pow
er consum

ption 1.15 W

X20ZFxxxx

X20C
M

4800X

Pow
er consum

ption 1.15 W

Pow
er consum

ption 1.15 W

Pow
er consum

ption 1.15 W

Pow
er consum

ption 1.15 W
Up to: horizontal 55°C / vertical 50°C
- Always install 1 dummy module in front of it (see diagram above).
Up to: horizontal 60°C / vertical 55°C
- 2 dummy modules must always be installed.

Pow
er consum

ption 1.15 W

X20ZFxxxx

X20C
M

4800X

Pow
er consum

ption 1.15 W

X20ZFxxxx

Pow
er consum

ption 1.15 W

Pow
er consum

ption 1.15 W

X20CM4800X

6 Data sheet V 1.03

10 Function description

10.1 Configuration of inputs

There is only a limited number of bytes available for transferring raw data to the X2X Link network that are distributed
among all active channels. In order to make more bytes available on the channels used, unused channels can
be switched off.
In addition, the IEPE sensor power supply can be enabled separately for each channel. If a sensor is connected
to multiple channels, the power supply must be enabled for one channel only.

Information:
Registers are described in section "Channel configuration" on page 10.

10.1.1 Data resolution

The data is scaled by the module according to the set data resolution:
Mode Data format Maximum value +10 V Minimum value -10 V Scaling
16-bit INT 32767 (0x7FFF) -32767 (0x8000) Shifted 8 bits to the right
24-bit DINT 8388607 (0x7FFFFF) -8388608 (0x800000) Internal converter resolution of the module1)

32-bit DINT 2147483392 (0x7FFFFF00) -2147483648 (0x80000000) Shifted 8 bits to the left. Bits 0 to 7 are always 0.

1) The 3 bytes must be transferred from the application in a DINT. For negative values, bits 25 to 31 must be set to 1.

Bit 0Bit 24 Bit 16Bit 31

32-bit

Bit 8

16-bit

Always 0

24-bit Measured value

Measured value

Measured value

10.2 Vibration measurement

Up to 4 vibration sensors can be connected to the module. The raw data of the sensors is recorded with the set
sampling rate and resolution.
However, processing and evaluation of the transferred data must be carried out in the application. For a description
of how to convert raw data into a vibration value, see "Converting raw data to [mg]" on page 7.

Information:
There is no preprocessing of the data within the module.

X20CM4800X

Data sheet V 1.03 7

10.2.1 Converting raw data to [mg]

The following formulas can be used to convert the raw value into a vibration value [mg]:

Information:
The maximum resolution always depends on the sensor used. The module operates in the range of
±10 V. For a 100 mV/g sensor, this corresponds to a maximum value of ±100 g. With a 50 mV/g sensor,
the maximum value is ±200 g.

Example
A 100 mV/g sensor is used; the module provides the value 4608 as a raw value and the data resolution is configured
to 24 bits. This results in the following values for the calculation:

• Raw value = 4608
• MaximumValue_10V_AnalogIn= 10 V (module value, cannot be changed)
• MaximumValue_10V_Digitalin with 24 bits = 8388607 (see "Data resolution" on page 6)
• Sensor resolution = 100 mV/g = 0.1 V/g = 0.0001 V/mg

10.2.2 Flatstream

The data interface for the raw data is based on Flatstream communication. Operation takes place using library
"AsFltGen".

Information:
Each channel has its own Flatstream.

For information about library "AsFltGen", see Automation Help.

The required bytes for transmitting the raw data at the Flatstream depend on the set sampling rate, the set data
resolution and the bus cycle time used.

Information:
If the raw data is not transferred to the controller fast enough, it is buffered in the module per channel.
As soon as the buffer is full, error message BufferOverflow occurs.

Calculation example for required number of bytes
The following settings are made for a measurement evaluation:

• Bus cycle time: 2 ms
• Sampling rate: 2 kHz (one value every 500 µs)
• Data resolution: 16 bits (2 bytes)

In the bus cycle time of 2 ms, this results in 4 values of 2 bytes each – a total of 8 bytes. The Flatstream data
interface must be configured in accordance with this calculation.
If the bus cycle time is reduced from 2 ms to 1 ms, the number of bytes required for the raw data is reduced by
half, i.e. 4 bytes. This means that other channels have more bytes available.
Setting the MTU size
The MTU size to be set for the Flatstream is equal to the calculated data bytes + 1 control byte. Therefore, the
input MTU size must be configured to at least 8 + 1 = 9 bytes, or in the second case, to 4 + 1 = 5 bytes.
Since this is only the ideal value, reserve bytes must still be planned to compensate for any timing tolerances or
communication errors. Otherwise, it could happen that not all data can be transferred in time, causing a buffer
overflow at some point.

X20CM4800X

8 Data sheet V 1.03

10.3 NetTime

If a measurement is started for a channel, a timestamp is automatically determined for the first raw value. The
configured sampling rate can then be used to establish a unique time reference for each raw value.
In addition, a timestamp is automatically determined again even after the measurement has been completed.

Information:
The timestamps for the other raw values must be determined by the application. The module only
provides the start or end timestamp.

Information:
Registers are described in section "NetTime" on page 12.

X20CM4800X

Data sheet V 1.03 9

11 Register description

11.1 Function model 1 - Standard

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Configuration
770 CfO_ChannelConfig01

CfO_ChannelConfig01_rb
UINT

●
●

774 CfO_ChannelConfig02
CfO_ChannelConfig02_rb

UINT
●

●

778 CfO_ChannelConfig03
CfO_ChannelConfig03_rb

UINT
●

●

782 CfO_ChannelConfig04
CfO_ChannelConfig04_rb

UINT
●

●

Communication
Starting/stopping measurements and buffer overflow USINT
Measurement01 Bit 0
... ..
Measurement04 Bit 3
BufferOverflowAck01 Bit 4
... ...

1

BufferOverflowAck04 Bit 7

●

Status of the module UINT
MeasurementState01 Bit 0
... ...
MeasurementState04 Bit 3
BufferOverflow01 Bit 4
... ...
BufferOverflow04 Bit 7
BrokenWire01 Bit 8
... ...

2

BrokenWire04 Bit 11

●

NetTime
788 Nettime_StartMeasCh01 DINT ●
796 Nettime_StartMeasCh02 DINT ●
804 Nettime_StartMeasCh03 DINT ●
812 Nettime_StartMeasCh04 DINT ●
820 Nettime_StopMeasCh01 DINT ●
828 Nettime_StopMeasCh02 DINT ●
836 Nettime_StopMeasCh03 DINT ●
844 Nettime_StopMeasCh04 DINT ●
Flatstream
Channel 1
1281 Ch1_CfO_OutputMTU USINT ●
1283 Ch1_CfO_InputMTU USINT ●
1285 Ch1_CfO_FlatstreamMode USINT ●
1287 Ch1_CfO_Forward USINT ●
1290 Ch1_CfO_ForwardDelay UINT ●
1536 Ch1_CfO_InputSequence USINT ●
1536 + Index Ch1_CfO_RxByteN (index N = 1 to 25) USINT ●
1536 Ch1_CfO_OutputSequence USINT ●
1536 + Index Ch1_CfO_TxByteN (index N = 1 to 3) USINT ●
Channel 2
1297 Ch2_CfO_OutputMTU USINT ●
1299 Ch2_CfO_InputMTU USINT ●
1301 Ch2_CfO_FlatstreamMode USINT ●
1303 Ch2_CfO_Forward USINT ●
1306 Ch2_CfO_ForwardDelay UINT ●
1792 Ch2_CfO_InputSequence USINT ●
1792 + Index Ch2_CfO_RxByteN (index N = 1 to 25) USINT ●
1792 Ch2_CfO_OutputSequence USINT ●
1792 + Index Ch2_CfO_TxByteN (index N = 1 to 3) USINT ●
Channel 3
1313 Ch3_CfO_OutputMTU USINT ●
1315 Ch3_CfO_InputMTU USINT ●
1317 Ch3_CfO_FlatstreamMode USINT ●
1319 Ch3_CfO_Forward USINT ●
1322 Ch3_CfO_ForwardDelay UINT ●
2048 Ch3_CfO_InputSequence USINT ●
2048 + Index Ch3_CfO_RxByteN (index N = 1 to 25) USINT ●
2048 Ch3_CfO_OutputSequence USINT ●
2048 + Index Ch3_CfO_TxByteN (index N = 1 to 3) USINT ●

X20CM4800X

10 Data sheet V 1.03

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Channel 4
1329 Ch4_CfO_OutputMTU USINT ●
1331 Ch4_CfO_InputMTU USINT ●
1333 Ch4_CfO_FlatstreamMode USINT ●
1335 Ch4_CfO_Forward USINT ●
1338 Ch4_CfO_ForwardDelay UINT ●
2304 Ch4_CfO_InputSequence USINT ●
2304 + Index Ch4_CfO_RxByteN (index N = 1 to 25) USINT ●
2304 Ch4_CfO_OutputSequence USINT ●
2304 + Index Ch4_CfO_TxByteN (index N = 1 to 3) USINT ●

11.2 Configuration

11.2.1 Channel configuration

Name:
CfO_ChannelConfig01 to CfO_ChannelConfig04
CfO_ChannelConfig01_rb CfO_ChannelConfig04_rb
These registers can be used to configure the respective channels.
Data type Values
UINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Channel disabled0 Enables/Disables channel
1 Channel enabled
0 Sensor power supply disabled1 Sensor power supply
1 Sensor power supply enabled
0 32-bit
1 24-bit

2 - 3 Data resolution1)

2 16-bit
0 50000 Hz
1 25000 Hz
2 10000 Hz
3 5000 Hz
4 2500 Hz
5 2000 Hz
6 1000 Hz
7 500 Hz

4 - 7 Sampling rate2)

8 200 Hz
8 - 15 Reserved 0

1) The maximum or minimum value of the respective resolution corresponds to ±10 VAC.
2) The sampling rate of an analog signal with respect to 1 second. Specified in [Hz].

Examples:

• Sampling an analog signal once per second corresponds to a sampling rate of 1 Hz.
• Sampling an analog signal once per millisecond corresponds to a sampling rate of 1 kHz.

X20CM4800X

Data sheet V 1.03 11

11.3 Communication

11.3.1 Starting/stopping measurements and buffer overflow

Name:
Measurement01 to Measurement04
BufferOverflowAck01 to BufferOverflowAck04
In this register, the measurements can be started or stopped. In addition, a potential buffer overflow can be ac-
knowledged.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Stop measurement of channel 10 Measurement01
1 Start measurement of channel 1

... ...
0 Stop measurement of channel 43 Measurement04
1 Start measurement of channel 4
0 Do not acknowledge channel 1 buffer overflow4 BufferOverflowAck01
1 Acknowledge channel 1 buffer overflow

... ...
0 Do not acknowledge channel 4 buffer overflow7 BufferOverflowAck04
1 Acknowledge channel 4 buffer overflow

11.3.2 Status of the module

Name:
MeasurementState01 to MeasurementState04
BufferOverflow01 to BufferOverflow04
BrokenWire01 to BrokenWire04
This register specifies the module status.
Data type Values
UINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Measurement of channel 1 stopped0 MeasurementState01
1 Measurement of channel 1 running

... ...
0 Measurement of channel 4 stopped3 MeasurementState04
1 Measurement of channel 4 running
0 No buffer overflow on channel 14 BufferOverflow01
1 Buffer overflow on channel 1

... ...
0 No buffer overflow on channel 47 BufferOverflow04
1 Buffer overflow on channel 4
0 No error on channel 18 BrokenWire01
1 Open circuit - Channel 1

... ...
0 No error on channel 411 BrokenWire04
1 Open circuit - Channel 4

12 - 15 Reserved -

BufferOverflow

Each channel is equipped with an internal buffer of 50 kB. Depending on the set sampling rate, data resolution and
MTU size, a buffer overflow occurs at the earliest after approx. 250 ms if the data is not transferred via Flatstream.
The overflow must be acknowledged by the application using register BufferOverflowAck0x.

X20CM4800X

12 Data sheet V 1.03

11.4 NetTime

11.4.1 Time of first valid scan

Name:
Nettime_StartMeasCh01 to Nettime_StartMeasCh04
The register writes the timestamp of the first valid sample after the measurements are started.
Data type Values Information
DINT -2,147,483,648

to 2,147,483,647
Timestamp in µs

11.4.2 Time of last valid scan

Name:
Nettime_StopMeasCh01 to Nettime_StopMeasCh04
The register writes the timestamp of the last valid sample. The timestamp of the last valid sample of a measurement
is available after measurement has ended.
Data type Values Information
DINT -2,147,483,648

to 2,147,483,647
Timestamp in µs

X20CM4800X

Data sheet V 1.03 13

11.4.3 NetTime Technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual components of
the controller or network (CPU, I/O modules, X2X Link, POWERLINK, etc.).
This allows the moment that events occur to be determined system-wide with microsecond precision. Upcoming
events can also be executed precisely at a specified moment.

11.4.3.1 Time information

Various time information is available in the controller or on the network:

• System time (on the PLC, Automation PC, etc.)
• X2X Link time (for each X2X Link network)
• POWERLINK time (for each POWERLINK network)
• Time data points of I/O modules

The NetTime is based on 32-bit counters, which are increased with microsecond resolution. The sign of the time
information changes after 35 min, 47 s, 483 ms and 648 µs; an overflow occurs after 71 min, 34 s, 967 ms and
296 µs.
The initialization of the times is based on the system time during the startup of the X2X Link, the I/O modules or
the POWERLINK interface.
Current time information in the application can also be determined via library AsIOTime.

11.4.3.1.1 PLC/Controller data points

The NetTime I/O data points of the PLC or the controller are latched to each system clock and made available.

11.4.3.1.2 X2X Link reference moment

X2X Link

Full cycle Half cycle

SI AO AISOAIAOSISOAIAO

Full cycle Full cycleHalf cycle

Task class Task class Task class

System time System time System timeX2X Link
time

X2X Link
time

23000 24000 25000 26000 27000

System cycle time = 2 ms
X2X cycle time = 2 ms

The reference moment on the X2X Link network is always calculated at the half cycle of the X2X Link cycle. This
results in a difference between the system time and the X2X Link reference moment when the reference time is
read out.
In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference moment
are compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link reference
moment returns the value 24000.

X20CM4800X

14 Data sheet V 1.03

11.4.3.1.3 POWERLINK reference moment

Full cycle

PReqSoC

Full cycle Full cycle

Task class Task class Task class

System time System time System time

POWERLINK
NetTime SoC

23000 25000 27000

System cycle time = 2 ms
POWERLINK system cycle time = 2 ms

POWERLINK
NetTime SoC

POWERLINK
NetTime SoC

PRes PReq PReqSoC PRes PReq... ...

The reference moment on the POWERLINK network is always calculated at the start of cycle (SoC) of the POW-
ERLINK network. The SoC starts 20 µs after the system tick. This results in the following difference between the
system time and the POWERLINK reference time:
POWERLINK reference time = System time - POWERLINK cycle time + 20 µs.
In the example above, this means a difference of 1980 µs, i.e. if the system time and POWERLINK reference mo-
ment are compared at time 25000 in the task, then the system time returns the value 25000 and the POWERLINK
reference moment returns the value 23020.

11.4.3.1.4 Synchronization of system time/POWERLINK time and I/O module

Time

X2X Link cycle

(E)

(S)

C
ou

nt
er

 v
al

ue

(1)

(2)
Counter PLC/POWERLINK
Counter I/O module

(E)

(S)

At startup, the internal counters for the PLC/POWERLINK (1) and the I/O module (2) start at different times and
increase the values with microsecond resolution.
At the beginning of each X2X Link cycle, the PLC or the POWERLINK network sends time information to the I/
O module. The I/O module compares this time information with the module's internal time and forms a difference
(green line) between the two times and stores it.
When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored difference
value (brown line). This means that the exact system moment (S) of an event can always be determined, even if
the counters are not absolutely synchronous.
Note
The deviation from the clock signal is strongly exaggerated in the picture as a red line.

X20CM4800X

Data sheet V 1.03 15

11.4.3.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a timestamp
event occurs, the module immediately saves the current NetTime. After the respective data is transferred to the
CPU, including this precise moment, the CPU can then evaluate the data using its own NetTime (or system time),
if necessary.

11.4.3.2.1 Time-based inputs

NetTime Technology can be used to determine the exact moment of a rising edge at an input. The rising and falling
edges can also be detected and the duration between 2 events can be determined.

Information:
The determined moment always lies in the past.

11.4.3.2.2 Time-based outputs

NetTime Technology can be used to specify the exact moment of a rising edge on an output. The rising and falling
edges can also be specified and a pulse pattern generated from them.

Information:
The specified time must always be in the future, and the set X2X Link cycle time must be taken into
account for the definition of the moment.

11.4.3.2.3 Time-based measurements

NetTime Technology can be used to determine the exact moment of a measurement that has taken place. Both
the starting and end moment of the measurement can be transmitted.

X20CM4800X

16 Data sheet V 1.03

11.5 Flatstream communication

11.5.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

X20CM4800X

Data sheet V 1.03 17

11.5.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

X20CM4800X

18 Data sheet V 1.03

11.5.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages once they have been completely transferred.

X20CM4800X

Data sheet V 1.03 19

11.5.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

11.5.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

11.5.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

X20CM4800X

20 Data sheet V 1.03

11.5.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

11.5.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

11.5.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

11.5.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Description Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 of the control byte.

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is to be expected. This information is especially important
when using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

X20CM4800X

Data sheet V 1.03 21

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

11.5.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

X20CM4800X

22 Data sheet V 1.03

11.5.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

X20CM4800X

Data sheet V 1.03 23

11.5.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

X20CM4800X

24 Data sheet V 1.03

11.5.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

X20CM4800X

Data sheet V 1.03 25

11.5.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

X20CM4800X

26 Data sheet V 1.03

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

X20CM4800X

Data sheet V 1.03 27

11.5.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ The OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

X20CM4800X

28 Data sheet V 1.03

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flow chart

SynchronizationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

Copy next sequence to MTU
Increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter?

OutputSequenceAck = 0?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter?

More sequences to be sent?

diff = 0?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flow chart for the output direction

X20CM4800X

Data sheet V 1.03 29

11.5.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data does not change in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

X20CM4800X

30 Data sheet V 1.03

General flow chart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

iz
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1? InputSequenceAck > 0?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1?

MTU_Offset = 0

RemainingSegmentSize = 0?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size - MTU_Offset)?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0?

InputMTU_Size = MTU_Offset?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0?

► InputSequenceAck =
InputSequenceCounter

► Mark frame as complete

InputSyncBit = 1?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

Copy segment data, e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flow chart for the input direction

X20CM4800X

Data sheet V 1.03 31

11.5.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again once the channel has been
resynchronized.

X20CM4800X

32 Data sheet V 1.03

11.5.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Description Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

X20CM4800X

Data sheet V 1.03 33

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

X20CM4800X

34 Data sheet V 1.03

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

X20CM4800X

Data sheet V 1.03 35

11.5.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

X20CM4800X

36 Data sheet V 1.03

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

X20CM4800X

Data sheet V 1.03 37

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

X20CM4800X

38 Data sheet V 1.03

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

X20CM4800X

Data sheet V 1.03 39

11.5.5 Example of Forward functionality on X2X Link

Forward functionality is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

11.5.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array
Adjust SequenceAck

Cyclic matching of
MTU and module buffer

Check SequenceAck

Resource Sender
(task to transmit)

Bus system
(direction 1)

Recipient
(task to receive)

Bus system
(direction 2)

Sender
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

X20CM4800X

40 Data sheet V 1.03

11.5.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

11.5.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

11.5.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in µs. This is the amount of time the module has to
wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle. The
program routine for receiving sequences from a module can therefore be run in a task class whose cycle time is
slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

X20CM4800X

Data sheet V 1.03 41

11.5.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

X20CM4800X

42 Data sheet V 1.03

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

X20CM4800X

Data sheet V 1.03 43

11.5.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

X20CM4800X

44 Data sheet V 1.03

11.6 Required cycle time

The cycle time depends on the sampling rate, data resolution and MTU size. It must be selected such that no buffer
overflow occurs when the measured values are transmitted via the Flatstream.

	X20CM4800X
	1 Order data
	2 Module description
	3 Technical data
	4 LED status indicators
	5 Pinout
	6 Connection example
	7 Input circuit diagram
	8 Gain curve
	9 Derating
	10 Function description
	10.1 Configuration of inputs
	10.1.1 Data resolution

	10.2 Vibration measurement
	10.2.1 Converting raw data to [mg]
	10.2.2 Flatstream

	10.3 NetTime

	11 Register description
	11.1 Function model 1 - Standard
	11.2 Configuration
	11.2.1 Channel configuration

	11.3 Communication
	11.3.1 Starting/stopping measurements and buffer overflow
	11.3.2 Status of the module

	11.4 NetTime
	11.4.1 Time of first valid scan
	11.4.2 Time of last valid scan
	11.4.3 NetTime Technology
	11.4.3.1 Time information
	11.4.3.1.1 PLC/Controller data points
	11.4.3.1.2 X2X Link reference moment
	11.4.3.1.3 POWERLINK reference moment
	11.4.3.1.4 Synchronization of system time/POWERLINK time and I/O module

	11.4.3.2 Timestamp functions
	11.4.3.2.1 Time-based inputs
	11.4.3.2.2 Time-based outputs
	11.4.3.2.3 Time-based measurements

	11.5 Flatstream communication
	11.5.1 Introduction
	11.5.2 Message, segment, sequence, MTU
	11.5.3 The Flatstream principle
	11.5.4 Registers for Flatstream mode
	11.5.4.1 Flatstream configuration
	11.5.4.1.1 Number of enabled Tx and Rx bytes

	11.5.4.2 Flatstream operation
	11.5.4.2.1 Format of input and output bytes
	11.5.4.2.2 Transport of payload data and control bytes
	11.5.4.2.3 Control bytes
	11.5.4.2.4 Communication status of the CPU
	11.5.4.2.5 Communication status of the module
	11.5.4.2.6 Relationship between OutputSequence and InputSequence

	11.5.4.3 Synchronization
	11.5.4.4 Transmitting and receiving
	11.5.4.5 Transmitting data to a module (output)
	11.5.4.6 Receiving data from a module (input)
	11.5.4.7 Details
	11.5.4.8 Flatstream mode
	11.5.4.9 Adjusting the Flatstream

	11.5.5 Example of Forward functionality on X2X Link
	11.5.5.1 Function principle
	11.5.5.2 Configuration
	11.5.5.2.1 Number of unacknowledged sequences
	11.5.5.2.2 Delay time

	11.5.5.3 Transmitting and receiving with Forward
	11.5.5.4 Errors when using Forward

	11.6 Required cycle time

