X20DS1828

X20DS1828

1 General information

The module is equipped with 1 HIPERFACE encoder interface. This module can be used to evaluate encoders
installed in motors from other manufacturers as well as encoders for external axes (encoders that sample any
machine movement). The input signals are monitored. This makes it possible to detect open or shorted lines as
well as encoder supply failures.

» HIPERFACE encoder interface

» Encoder input monitoring

* 11 VDC and GND for encoder supply

* NetTime function: Timestamp for position

HIPERFACE

HIPERFACE is a standard developed by Max Stegmann GmbH (www.stegmann.de), which like EnDat incorporates
the advantages of absolute and incremental position measurement while also offering a read/write parameter
memory in the encoder. With absolute position measurement (the absolute position is sampled serially), a homing
procedure for referencing is usually not required. Where necessary, a multi-turn encoder should be installed. To
reduce costs, a single-turn encoder and a reference switch can also be used. In this case, a homing procedure
must be carried out.

The incremental process allows the short deceleration periods necessary for position measurement when using
drives with highly dynamic characteristics. With the sinusoidal incremental signal and the fine resolution in the
HIPERFACE module, a very high positioning resolution is achieved in spite of the moderate signal frequencies
used.

NetTime position timestamp

Highly dynamic positioning tasks require not only the position value, but also the exact time at which the position
was determined. The module has a NetTime function for this, which adds a timestamp to the recorded position
with microsecond accuracy.

The module provides the PLC with the position value and timestamp as absolute time value. The NetTime mech-
anisms ensure that the PLC NetTime clock and the local NetTime clock on the module have exactly the same
absolute time at all times.

2 Order data

Model number Short description Figure
Digital signal processing and preparation

X20DS1828 X20 digital signal module, 1 HIPERFACE interface, NetTime
function
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal /O supply continuous

X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-
ternal I/O supply continuous
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20DS1828 - Order data

Data sheet V1.20 1

http://www.stegmann.de

X20DS1828

3 Technical data

Model number X20DS1828

Short description

1/0 module 1x HIPERFACE interface

General information

B&R ID code OxAEC7

Status indicators Counting direction, operating status, module status
Diagnostics

Module run/error
Counting direction

Yes, using status LED and software
Yes, using status LED

Power consumption
Bus
Internal 1/0

0.01 W
1.3W

Additional power dissipation caused by actuators
(resistive) [W]

Type of signal lines

Shielded cables must be used for all signal lines

Certifications
CE
KC
EAC
uL

HazLoc

ATEX

Yes
Yes
Yes
cULus E115267
Industrial control equipment
cCSAus 244665
Process control equipment
for hazardous locations
Class I, Division 2, Groups ABCD, T5
Zone 2, Il 3GExnANnCIIAT5 Ge
IP20, Ta (see X20 user's manual)
FTZU 09 ATEX 0083X

Encoder inputs

Angular position resolution

13-bit, with a 1 Vs signal

Encoder monitoring

Yes

Max. encoder cable length

10 m

Sine/Cosine inputs
Signal transmission
Signal frequency

Differential signals, symmetrical
DC up to 200 kHz

Differential voltage 1 Vss
Common-mode voltage Max. £10 V
Terminating resistor 120 Q
Encoder power supply
Output voltage 11V
Load capacity 150 mA
Protective measures
Overload protection Yes
Short-circuit proof Yes

Parameter channel (RS485)

Signal transmission

5 VDC differential signal, EiA RS-485 standard

Transmission status

See HIPERFACE specification

Electrical properties

Electrical isolation

Channel isolated from bus
Channel not isolated from channel

Operating conditions

Mounting orientation

Horizontal Yes
Vertical Yes
Installation elevation above sea level
0 to 2000 m No limitations
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 1P20
Ambient conditions
Temperature
Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C
Derating See section "Derating"
Storage -40 to 85°C
Transport -40 to 85°C

Table 2: X20DS1828 - Technical data

Data sheet V1.20

X20DS1828

Model number

X20DS1828

Relative humidity

Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties

Note Order 1x X20TB12 terminal block separately
Order 1x X20BM11 bus module separately

Spacing

12.5*02 mm

Table 2: X20DS1828 - Technical data

4 LED status indicators

For a description of the various operating modes, see section
X20 system user's manual.

"Additional information - Diagnostic LEDs" of the

Figure LED Color Status Description
r Green Off No power to module
Single flash RESET mode
Double flash BOOT mode (during firmware update)”
Blinking PREOPERATIONAL mode
On RUN mode
e Red Off No power to module or everything OK
On Error or reset state. Possible cause:
* Encoder supply error
Single flash 1/0 error - Possible causes:
« Sine/Cosine relative position error (open line)
« Sine/Cosine absolute position error (reference)
Double flash System error. Possible causes:
» HIPERFACE communication error
Triple flash 1/0 error and system error

Single flash, inverted

Error or reset state and 1/O error

Double flash, inverted

Error or reset state and system error

Triple flash, inverted

Error or reset state, 1/0O error and system error

uprP Green On The "UP/DN" LEDs are lit depending on the rotational direction and the
speed of the connected encoder.
The "UP" LED indicates when the encoder position changes in the pos-
itive direction.

DN Green On The "DN" LED indicates when the encoder position changes in the neg-

ative direction.

1) Depending on the configuration, a firmware update can take up to several minutes.

5 Pinout

Shielded cables must be used for all signal lines.

§
2
o
8

SIN

Cos

D\

Encoder 11V +

REF SIN

REF COS

GND

Data sheet V1.20

X20DS1828

6 Connection example

+24 VDC

HIPERFACE encoder

{ SIN

| REF

i cos

SIN |

!

|
! Process data channel |
' i
| !

1<

A A

GND

vy
+
N}
£
<
|w)
O

7 Input circuit diagram

7.1 Diagram for the process data channel (sine-cosine track)

SIN o =
i
3 3 I T D | co:vlgrter
REF SIN E,OJ —1 1
I
ol —
Cos 3 o 3 1 l
3 : I T D | co:vlgrter
REF COS o — 1
I

Input value

Input value

RS485
Drivers

Din

D Out

Data sheet V1.20

X20DS1828

7.3 Circuit diagram for the encoder supply and LEDs

o 24V uP
i
i
i

i
i i LED (green) :,
i

LED (green) ::

8 Derating

There is no derating when operated below 55°C.

During operation over 55°C, the power dissipation of the modules to the left and right of this module is not permitted
to exceed 1.15 W!

For an example of calculating the power dissipation of I/O modules, see section "Mechanical and electrical config-
uration - Power dissipation of I/O modules" in the X20 user's manual.

X20 module
Power dissipation > 1.15 W
Neighboring X20 module
Power dissipation < 1.15 W
This module
Neighboring X20 module
Power dissipation < 1.15 W
X20 module
Power dissipation > 1.15 W

Data sheet V1.20 5

X20DS1828
9 Register description

9.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" of the X20 system user's
manual.

9.2 Register overview - Function model 0 (standard)

Register Name Data type Read Write
Cyclic | Acyclic Cyclic | Acyclic
Module configuration
513 CfO_SlframeGenID USINT | | .
Basic functions
683 SDCLifeCount SINT °
1236 PositionHW UDINT .
1244 PositionLW UDINT .
Position DINT
1228 PosTime (32-bit) DINT .
1230 PosTime (16-bit) INT .
1219 PosCycle SINT .
Error management
387 ErrorEnablelD_0F08 USINT .
259 Errorinfo USINT .
EncoderSupplyError Bit 0
VssCheckError Bit 2
PositionError Bit 3
HfComError Bit 4
HfRefWarning Bit 5
323 AckErrorinfo USINT .
AckEncoderSupplyError Bit 0
AckVssCheckError Bit 2
AckPositionError Bit 3
AckHfComError Bit 4
AckHfRefWarning Bit 5
2116 HfErrorCode UDINT .
Sin/Cos - Configuration
1025 SinCosEnable USINT .
1027 SinCosRefSource USINT .
1034 SinCosVssMin UINT .
1038 SinCosVssMax UINT .
1044 SinCosQuitTime UDINT °
HIPERFACE - Configuration
2049 HfMode USINT .
2053 HfParity USINT .
2055 HfCharTimeout USINT .
2060 HfBaud UDINT .
2068 HfRepressErrTime UDINT .
2073 HfRefAdr USINT .
2075 HfRefWidth USINT °
HIPERFACE - Identification
2561 HfAdrldent USINT .
2563 HfSelectionldent USINT .
2631 HfldentOk USINT .
2688 HfRs485Settings USINT .
2689 HfEncoderType USINT .
2690 HfEepromSize USINT .
2691 HfOptionFlags USINT .
2692 HfFreeMemory USINT .
2693 HfDataFields USINT .
2693 + N HfExtByteON (index N = 1 to 10) USINT .
HIPERFACE - Additional positions
2817 AddPosAdr01 USINT .
2887 AddPosOk (byte) USINT °
AddPosOk01 Bit 0
AddPosOk02 Bit 1
2956 AddPosition01 DINT .
2958 AddPosition01 INT .
2948 AddPosTime01 DINT .
2950 AddPosTime01 INT .
2825 AddPosAdr02 USINT .

6 Data sheet V1.20

X20DS1828

Register | Name Data type Read Write
Cyclic Acyclic Cyclic Acyclic
2972 AddPosition02 DINT .
2974 AddPosition02 INT °
2964 AddPosTime02 DINT .
2966 AddPosTime02 INT .
HIPERFACE - Additional analog values
3065 + N * 8 | AnalogAdrChON (index N = 1 to 4) USINT .
3067 + N * 8 | AnalogChON (index N =1 to 4) USINT .
3143 AnalogChOk (byte) USINT .
AnalogChOkO01 Bit 0
AnalogChOk04 Bit 3
3194 + N * 16 | AnalogChValueON (index N = 1 to 4) (U)INT .
3188 + N * 16 | AnalogChTimeON (index N = 1 to 4) (32-bit) DINT .
3190 + N * 16 | AnalogChTimeON (index N = 1 to 4) (16-bit) INT .
Flatstream mode
2305 OutputMTU USINT .
2307 InputMTU USINT .
2309 FlatStreamMode USINT)
2311 Forward USINT .
2316 ForwardDelay UINT .
2368 InputSequence USINT .
2368 + N RxByteN (index N = 1 to 15) USINT .
2400 OutputSequence USINT
2400 + N | TxByteN (index N = 1 to 15) USINT

Data sheet V1.20

X20DS1828

9.3 Register overview - Function model 254 (bus controller)

Register Offset? Name Data type Read Write
Cyclic | Acyclic Cyclic | Acyclic
Module configuration
513 | - CfO_SlframeGenID USINT | | .
Basic functions
1236 0 PositionHW UDINT .
1244 4 PositionLW UDINT .
1219 15 PosCycle SINT .
Error management
387 - ErrorEnablelD_0F08 USINT .
259 14 Errorinfo USINT .
EncoderSupplyError Bit 0
VssCheckError Bit 2
PositionError Bit 3
HfComError Bit 4
HfRefWarning Bit 5
323 6 AckErrorinfo USINT .
AckEncoderSupplyError Bit 0
AckVssCheckError Bit 2
AckPositionError Bit 3
AckHfComError Bit 4
AckHfRefWarning Bit 5
2116 - HfErrorCode UDINT .
Sin/Cos - Configuration
1025 - SinCosEnable USINT .
1027 - SinCosRefSource USINT .
1034 - SinCosVssMin UINT .
1038 - SinCosVssMax UINT .
1044 - SinCosQuitTime UDINT °
HIPERFACE - Configuration
2049 - HfMode USINT .
2053 - HfParity USINT .
2055 - HfCharTimeout USINT .
2060 - HfBaud UDINT .
2068 - HfRepressErrTime UDINT .
2073 - HfRefAdr USINT .
2075 - HfRefWidth USINT °
HIPERFACE - Identification
2561 - HfAdrldent USINT .
2563 - HfSelectionldent USINT
2631 - HfldentOk USINT °
2688 - HfRs485Settings USINT .
2689 - HfEncoderType USINT .
2690 - HfEepromSize USINT .
2691 - HfOptionFlags USINT .
2692 - HfFreeMemory USINT .
2693 - HfDataFields USINT .
2693 + N - HfExtByteON (index N = 1 to 10) USINT .
HIPERFACE - Additional positions
2817 - AddPosAdr01 USINT .
2887 - AddPosOk (byte) USINT .
AddPosOk01 Bit 0
AddPosOk02 Bit 1
2956 - AddPosition01 DINT °
2958 - AddPosition01 INT .
2825 - AddPosAdr02 USINT .
2972 - AddPosition02 DINT .
2974 - AddPosition02 INT .
HIPERFACE - Additional analog values
3065 +N *8 - AnalogAdrChON (index N = 1 to 4) USINT .
3067 +N*8 - AnalogChON (index N = 1 to 4) USINT .
3143 - AnalogChOk (byte) USINT .
AnalogChOkO01 Bit 0
AnalogChOk04 Bit 3
3194 + N* 16 - AnalogChValueON (index N = 1 to 4) (U)INT .
Flatstream mode
2305 - OutputMTU USINT .
2307 - InputMTU USINT °
2309 - FlatStreamMode USINT .
2311 - Forward USINT .
2316 - ForwardDelay UINT .

8 Data sheet V1.20

X20DS1828

Register Offset" Name Data type Read Write
Cyclic Acyclic Cyclic Acyclic
2368 8 InputSequence USINT .
2368 + N 91013 RxByteN (index N = 1 to 5) USINT .
2400 0 OutputSequence USINT
2400 + N 1t05 TxByteN (index N = 1 to 5) USINT
1) The offset specifies the position of the register within the CAN object.

9.3.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use additional registers and functions depending on the fieldbus used.

For detailed information, see section "Additional information - Using I/O modules on the bus controller" of the X20
user's manual (version 3.50 or later).

9.3.2 CAN 1/O bus controller
The module occupies 2 analog logical slots on CAN 1/0.
9.4 Module configuration

The following configuration register can be used to configure different module settings. They can be used, for
example, to modify the module's behavior on an X2X Link network.

9.4.1 Data query

Name:
CfO_SlframeGenlID

This register can be used to define when the synchronous/cyclic input data is generated. "X2X cycle optimized"
should be set for jitter-free data acquisition. "Fast reaction" can be set for the best performance.

Data type Value Information
USINT 9 Fast reaction
14 X2X cycle optimized;
Bus controller default

9.5 Basic functions

This module can import a position when used together with a HIPERFACE encoder. The received position data is
prepared in 2 different formats and given a timestamp. 6 registers are available for further processing. This allows
the user to choose which format is best suited for individual application.

9.5.1 SDC counter register
Name:

SDCLifeCount

The 8-bit counter register is needed for the SDC software package. It is incremented with the system clock to allow
the SDC to check the validity of the data frame.

Data type Value
SINT -128 to 127

9.5.2 Absolute position values

Name:
PositionHW
PositionLW

The absolute position of the encoder is defined using 64-bit resolution. The position value is stored in the Position-
HW and PositionLW registers. The upper 32 bits are stored the PositionHW register, while the lower 32 bits are
stored in the PositionLW register.

For SinCos signal evaluation, see "Format of the SinCos signal" on page 14 for information regarding the data
format.

Data type Value
2x UDINT 0 to 4,294,967,295

Data sheet V1.20 9

X20DS1828
9.5.3 SDC position value

Name:
Position

The SDC library requires a signed 32-bit position value. The position's low word can be accessed separately for
this. The value can also be used as default position value, however.

For SinCos signal evaluation, see "Format of the SinCos signal" on page 14 for information regarding the data
format.

Data type Value
DINT -2,147,483,648 to 2,147,483,647

9.5.4 NetTime of the position values
Name:

PosTime

The current NetTime value is assigned to each determined position in this register. The NetTime is recorded with
Js accuracy.

The SDC library requires a 16 bit value. The NetTime value is therefore also prepared in this format.
For more information about NetTime and timestamps, see "NetTime technology" on page 60.

Data type Value Information

DINT -2,147,483,648 NetTime in ps
to 2,147,483,647

INT -32,768 to 32,767

9.5.5 Counter for position values

Name:

PosCycle

PosCycle is an integer counter that is incremented as soon as the module has saved a new valid position value.
Data type Value

SINT -128 to 127

10 Data sheet V1.20

X20DS1828
9.6 Error management

This module can be used to diagnose error states. There are 2 ways this module performs error diagnostics:

* "Module-based diagnostics" on page 11
+ "HIPERFACE-based diagnostics" on page 13

9.6.1 Module-based diagnostics

Like most B&R modules, this module is also able to detect errors on its own. It diagnoses 5 different errors or
warnings. The error bits can be retrieved individually or grouped together.

9.6.1.1 Enabling/disabling error messages

Name:
ErrorEnablelD_0OF08

The implemented diagnostic algorithms can be enabled or disabled in this register.

Data type Value Bus controller default
USINT See bit structure. 255
Bit structure:
Bit Name Value Information
0 Encoder supply 0 Error detection disabled
1 Error detection enabled (bus controller default setting)
1 Reserved -
2 Vss Sin/Cos 0 Error detection disabled
1 Error detection enabled (bus controller default setting)
3 Position error 0 Error detection disabled
1 Error detection enabled (bus controller default setting)
4 HIPERFACE communication 0 Error detection disabled
1 Error detection enabled (bus controller default setting)
5 HIPERFACE reference warning 0 Warning disabled
1 Warning enabled (bus controller default setting)
6-7 Reserved -
Encoder supply

The encoder voltage supply is below the permitted limit.

Vss Sin/Cos

The voltage value for the Sin/Cos track violates the configured limit values.
— See register "SinCosVssMin" on page 15 or "SinCosVssMax" on page 15
Position error

The position value determined violates internal requirements.

HIPERFACE communication

Communication error on the HIPERFACE interface (RS485)
— See register "HfErrorCode" on page 13

HIPERFACE reference warning

The digital interface provides an absolute position value that can be used to accurately describe the axis position.
The position value is homed to this absolute value at the beginning of a measurement. The analog interface can be
used to incrementally sample changes that occur very rapidly. This enables the module to continue sampling the
position value at a high resolution. Both the analog and the digital signal are sampled cyclically. If the value read
incrementally deviates from the absolute value during operation, then the warning is generated and the position
must be homed again.

Data sheet V1.20 11

X20DS1828
9.6.1.2 Show error messages

Name:

Errorinfo
EncoderSupplyError
VssCheckError
PositionError
HfComError
HfRefWarning

This register indicates any errors or warnings that have not yet been acknowledged. For the meaning of individual
error messages, see register "Enabling/disabling error messages" on page 11.

Data type Values

USINT See the bit structure.

Bit structure:

Bit Name Value Information
0 EncoderSupplyError 0 No error
1 Encoder supply error
1 Reserved -
2 VssCheckError 0 No error
1 Vss error on the Sin/Cos track
3 PositionError 0 No error
1 Position error
4 HfComError 0 No error
1 HIPERFACE communication error
5 HfRefWarning 0 No warning
1 HIPERFACE reference warning
6-7 Reserved -

9.6.1.3 Acknowledge error messages

Name:

AckErrorinfo
AckEncoderSupplyError
AckVssCheckError
AckPositionError
AckHfComError
AckHfRefWarning

This register is used to acknowledge an error or warning message that occurred in the "Show error messages"
on page 12 register. For the meaning of individual error messages, see register "Enabling/disabling error mes-

sages" on page 11.

Data type Values
USINT See the bit structure.
Bit structure:
Bit Name Value Information
0 AckEncoderSupplyError 0 No error acknowledgment
1 Error acknowledgment
1 Reserved -
2 AckVssCheckError 0 No error acknowledgment
1 Error acknowledgment
3 AckPositionError 0 No error acknowledgment
1 Error acknowledgment
4 AckHfComError 0 No error acknowledgment
1 Error acknowledgment
5 AckHfRefWarning 0 No acknowledgment
1 Acknowledgment
6-7 Reserved -

12

Data sheet V1.20

X20DS1828
9.6.2 HIPERFACE-based diagnostics

Memory areas are provided in the HIPERFACE standard for error diagnostics. Error management has been ad-
justed in order to use error detection in accordance with the HIPERFACE standard. An additional register has
been implemented in the module to provide this area in the encoder's memory. This error memory is mirrored in
the module's registers and can be interpreted by the user. Detailed information regarding the errors that can be
detected in this way can be found in the encoder's manual.

9.6.2.1 HfErrorCode

Name:

HfErrorCode

This register is used to store the error code that identifies the current problem with the HIPERFACE interface.
Data type Value

UDINT See bit structure.

Internally, the register consists of 4 pieces of information.

Bit structure:

Bit Name Information
00-07 Error ID See below
08 -15 Last command Command that caused the error on the slave
16 - 23 Station address Address of the faulty HIPERFACE slave
24 -31 Error counter Counts the number of errors that have occurred

Bit 00-07 (error ID)

These 8 bits of this register specify the error that has occurred. The error ID is not a standard value, however,
and must be looked up in the manual for the HIPERFACE slave. The module also diagnoses a timeout on the
HIPERFACE interface. This triggers error ID 255.

Data sheet V1.20 13

X20DS1828
9.7 Sin/Cos - Analog interface configuration

In addition to the digital HIPERFACE interface, this module is also equipped with an analog interface for sampling
a differential sine-cosine signal. To increase the resolution, the EnDat standard supports cooperation between
the analog and digital data. This enables a highly dynamic representation of the position while maintaining high
resolution.

9.7.1 Format of the SinCos signal

The SinCos signal is represented as a position value in the "Absolute position values" on page 9 and "SDC position
value" on page 10 registers. The following relationships apply:

+ PositionLW and Position are identical in the function.
» PositionHW extends the integer range of PositionLW by adding multi-turn functionality.

64-bit register PositionHW PositionLW
(unsigned) (unsigned)
32-bit register - Position (signed)
Format Integer extension Integer Decimal places:
(to 48-bit) (16-bit) (with 13-bit resolution)
Information A full sine wave corresponds |[15(14|13(12|/11(10|/ 9 |8 (716|543 (2|1 |0

to anincrement of the integer. || 3 [x | x | x | x | x | x | x | x| x| x| x|0l0|o0

Important: The lower 3 bits always contain the value 0.
Word/DWord DWord Word 1 Word 0

Relationship between sine curve (red) and decimal places:

0x0000,0000 0x0000,4000 0x0000,8000 0x0000,C000 0x0000,0000

9.7.2 Enabling SinCos

Name:

SinCosEnable

This register must always have the value 1 for configuration reasons.
Data type Value Information

USINT 1 Bus controller default: 1

9.7.3 SinCosRefSource

Name:
SinCosRefSource

This register must always have the value 3 for configuration reasons.

Data type Value Information
USINT 3 Bus controller default: 3

14 Data sheet V1.20

X20DS1828

9.7.4 Configuring the lower Vss value

Name:
SinCosVssMin

This register specifies the lower limit value for the peak-to-peak voltage of the sine/cosine track. The incoming
signal is monitored in this way. If the incoming value falls below this specified limit, then the module reports the
corresponding error.

Data type Value Information
UINT 0 to 1500 Values in mV
Bus controller default: 800

9.7.5 Configuring the upper Vss value

Name:
SinCosVssMax

This register specifies the upper limit value for the peak-to-peak voltage of the sine/cosine track. The incoming
signal is monitored in this way. If the incoming value exceeds this specified limit, then the module reports the
corresponding error.

Data type Value Information
UINT 0 to 1500 Values in mV
Bus controller default: 1200

9.7.6 Configuring the delay time after errors

Name:
SinCosQuitTime

If an error is detected on the analog interface, the last correctly read values remain valid. An interval can be defined
in this register at which the module begins receiving correct values again after the error state without processing
them further internally. Only then will newly sampled correct analog values be recognized as valid.

Data type Value Information
UDINT 0 to 20000000 Values in us
Bus controller default: 100000

Data sheet V1.20 15

X20DS1828
9.8 HIPERFACE
9.8.1 HIPERFACE - Digital interface configuration

HIPERFACE builds upon the RS-485 (EIA-485) specification and permits communication with multiple HIPER-
FACE slaves.

There are 2 methods available to use the slave data in a PLC program. One is to store the necessary slave values
temporarily in the module, where they can then be provided to the CPU. The other is to use the module's FlatStream
mode, which supports the full range of commands defined in the HIPERFACE specification.

Additional information regarding the HIPERFACE specification is provided in the "Description of HIPERFACE"
document.

9.8.1.1 HfMode

Name:
HfMode

This register is used to enable the HIPERFACE interface and must always be set to the value 1 for configuration
reasons.

Data type Value Information
USINT 1 Bus controller default: 1

9.8.1.2 HfParity

Name:
HfParity
This register configures the parity bit for the interface.
Data type Values Information
USINT 69 E — even parity bit
Bus controller default setting
78 N — no parity bit
79 O — odd parity bit

9.8.1.3 HfCharTimeout

Name:
HfCharTimeout

This register configures the time that the module waits after receiving the last data block to add additional data to
the current data packet (frame). When this time expires, the data received thus far is saved in a frame. The transfer
is complete and the data can be evaluated.

Information:

Time is specified as a char value in order to ensure identical behavior regardless of the baud rate
setting.

Data type Values Information
USINT 1to 255 Char
Bus controller default setting: 55

16 Data sheet V1.20

X20DS1828
9.8.1.4 HfBaud

Name:
HfBaud

This register configures the baud rate (transfer rate) of the interface.
The module does not allow a transfer rate of 600 baud.

Data type Values Information
UDINT 1200, 2400, 4800, Baud
9600, 19200, 38400 Bus controller default setting: 9600

9.8.1.5 HfRepressErrTime
Name:
HfRepressErrTime

This register configures the minimum time that an error code remains in the "HfErrorCode" register. This makes it
possible to ensure that the CPU registers every error that occurs.

Data type Value Information

UDINT 1 to 20000000 Time in ps;
Bus controller default: 100000

9.8.1.6 HfRefAdr

Name:
HfRefAdr

This module can manage up to 32 HIPERFACE slaves via its digital interface. High-resolution position sampling,
however, requires information from both the digital and analog interfaces. The HIPERFACE address of the station
whose sine/cosine track is being read by the module is entered in this register. If there is only one slave on the
network, the broadcast address (255) can also be used.

Data type Values Information
USINT 0 Operation without sine/cosine track
64 to 95 Open address range for max. 32 HIPERFACE slaves.
Bus controller default setting: 64
255 Broadcast address

9.8.1.7 HfRefWidth
Name:
HfRefWidth

This register is used to set the absolute width for the sampled position. The number of bits must be taken from the
data provided by the encoder manufacturer and usually consists of three values:

» 5-bit: Resolution of the digital absolute position
+ 2v-bit: Number of sine/cosine periods per revolution
* x-bit: HIPERFACE data format, number of bits per revolution

The sum of the sampled values results in the HfRefWidth (i.e. 5+x+y).

Data type Values Information
USINT 8 to 32 Bus controller default setting: 32
Example:

The position width of the reference station must be 21 when using the 80MPH4.6005111-02 motor. This is because
the HIPERFACE encoder being used measures the absolute position with 21-bit data width (the x = 12 most
significant bits encode the multi-turn information, the next y = 4 bits count the sin/cos period within a mechanical
revolution and the z = 5 least significant bits encode the absolute position within a sin/cos period). If a value > 21
is set (e.g. 32), then the module firmware detects a supposed jump in the absolute position on each zero crossing
of the absolute position (i.e. overflow of 21-bit position value of from 0x00000000 to 0x0001FFFF, or vice versa).

Data sheet V1.20 17

X20DS1828
9.8.2 HIPERFACE - Read ID

The digital interface provides the option of assigning a HIPERFACE slave a specific ID. Its parameter data can
be queried when booting the PLC, for example. Any deviations from the previous hardware constellation can then
be handled accordingly in the program.

Configuration

The parameter to be read is specified by 2 registers. One of the registers contains the address of the desired
HIPERFACE slave; the other contains a code for the value to be read.

9.8.2.1 HfAdrldent

Name:
HfAdrldent

This register is used to set the HIPERFACE address of the slave with parameters that are to be processed in
the module.

Data type Values Information
USINT 0 Identification deactivated
Bus controller default setting
64 to 95 Open address range for max. 32 HIPERFACE slaves
255 Broadcast address (when operating with one slave)

9.8.2.2 HfSelectionldent

Name:
HfSelectionldent

This register defines the parameters that should be provided in the slave response and buffered in the module's
"HfExtByte" on page 20 register.

Data type Values Values
USINT 0 Serial number
Bus controller default setting
1 Firmware date
2 High part of firmware version
3 Low part of firmware version
Call

After being configured correctly, the selected parameter is transmitted cyclically to the module. There are 8 registers
that serve as temporary storage. The module confirms successful receipt by setting the HfldentOkByte.

9.8.2.3 HfldentOk

Name:

HfldentOk

This register's bits provide information about the validity of the latest ID values in temporary storage.
Data type Values

USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 HfldentOk01 0 Parameter 01 invalid
1 Parameter 01 valid
1-7 Reserved

18 Data sheet V1.20

X20DS1828
9.8.2.4 HfRs485Settings

Name:
HfRs485Settings

This register is used to temporarily store the current network configuration expected by the slave. The register
value is specifically structured for HIPERFACE.

Data type Value
USINT See bit structure.
Bit structure:
Bit Name Value Information
0-2 Speed code 001 1200 baud
010 2400 baud
011 4800 baud
100 9600 baud
101 19200 baud
110 38400 baud
3 Reserved -
4 Number of parity bits 0 No parity bit
1 1 parity bit
5 Type of parity bit 0 Even
1 Odd
6 Behavior if a timeout occurs 0 Timeout 11/baudrate
1 Timeout 4*11/baud rate
7 Network behavior 0 Bus
1 Direct connection

9.8.2.5 HfEncoderType
Name:
HfEncoderType

This register is used to temporarily store the ID of the current encoder. The register value is structured specifically
for each slave and must be looked up in the encoder's data sheet.

Data type Values
USINT 0 to 255

9.8.2.6 HfEepromSize

Name:

HfEepromSize

This register is used to store the size of the EEPROM being used. The number of 16-byte blocks is specified.
Data type Values Values

USINT 0 to 255 16-byte blocks

9.8.2.7 HfOptionFlags

Name:

HfOptionFlags

This register is used to store slave-specific hardware and software settings.
Data type Values

USINT 0 to 255

Data sheet V1.20 19

X20DS1828
9.8.2.8 HfFreeMemory

Name:

HfFreeMemory

This register is used to indicate the number of free 16-byte blocks remaining on the HIPERFACE slave.
Data type Values Information

USINT 0 to 255 16-byte blocks

9.8.2.9 HfDataFields

Name:

HfDataFields

This register is used to indicate the number of data fields that have been written thus far.
Data type Values

USINT 0 to 255

9.8.2.10 HfExtByte

Name:
HfExtByte01 to HfExtByte10

These registers provide the respective parameters according to how the "HfSelectionldent" on page 18 register
is configured.

Data type Values
USINT 0 to 255

20 Data sheet V1.20

X20DS1828
9.8.3 HIPERFACE - Reading additional encoder positions

This module can read up to 2 additional position values via the HIPERFACE interface and provide them to the
PLC. Each position value is accompanied by a timestamp.
Configuration

The address must be specified in order to read the position value from the respective HIPERFACE interface. One
address register is provided for each position value.

9.8.3.1 AddPosAdr

Name:
AddPosAdrO01 to AddPosAdr02

These registers are used to set the addresses of the HIPERFACE slaves with position values that should be
processed in the module.

Data type Values Information
USINT 0 Additional encoder position disabled
Bus controller default setting
64 to 95 Open address range for max. 32 HIPERFACE slaves
255 Broadcast address (when operating with one slave)
Call

After being configured correctly, the position value is transferred cyclically to the module. Each slave has five reg-
isters that serve as temporary storage. The module automatically generates the timestamp and confirms success-
ful transmission by setting the corresponding AddPosOkOx bit. The HIPERFACE specification does not specify in
which format the parameters must be received. The module therefore provides the position value and time in two
variants. Which of the position registers should be used for further processing depends on the HIPERFACE slave.
The user is free to define the format of the timestamp.

9.8.3.2 AddPosOk (byte)

Name:
AddPosOk01 to AddPosOk02

This register's bits provide information about the validity of the last position values in temporary storage.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information

0 AddPosOk01 0 Position value 01 invalid
Position value 01 valid
Position value 02 invalid
Position value 02 valid

1 AddPosOk02

Vo=

2-7 Reserved

Data sheet V1.20 21

X20DS1828
9.8.3.3 AddPosition

Name:
AddPosition01 to AddPosition02

These registers provide the current position values, depending on the register address, as signed 2-byte or 4-
byte values.

Data type Values
DINT -2,147,483,648 to 2,147,483,647
INT -32768 to 32767

9.8.3.4 AddPosTime

Name:
AddPosTime01 to AddPosTime02

These registers provide the timestamp of the most recently received position values, depending on the register
address, as signed 2-byte or 4-byte values.

For more information about NetTime and timestamps, see "NetTime technology” on page 60.

Data type Values Information

DINT -2,147,483,648 NetTime in ps
to 2,147,483,647

INT -32768 to 32767

Data sheet V1.20

X20DS1828
9.8.4 HIPERFACE - Reading additional analog values

This module can read up to 4 analog values (16-bit) via the HIPERFACE interface and provide them to the PLC.
Each analog value is accompanied by a timestamp.

Configuration

The analog value to be read is specified by 2 registers. One of them contains the address of the desired station,
and the other the channel of the parameter to be read. An overview of analog values that can be read is provided
in the data sheet for the respective slave.

9.8.4.1 AnalogAdrCh
Name:

AnalogAdrCh01 to AnalogAdrCh04

These registers are use to set the addresses of the HIPERFACE slaves with analog values that should be
processed in the module. To query multiple values from one HIPERFACE slave, it may make sense to write the
same address to different AnalogAdrCh registers.

Data type Values Information
USINT 0 Additional analog values disabled
Bus controller default setting
64 to 95 Open address range for max. 32 HIPERFACE slaves
255 Broadcast address (when operating with one slave)
9.8.4.2 AnalogCh
Name:

AnalogCh01 to AnalogCh04

These registers define the channel to be read that is written by the bus station to the module's temporary storage.

Data type Values Information
USINT See encoder data sheet Bus controller default setting: 0
Call

After being configured correctly, the analog value is transferred cyclically to the module. There are 5 registers
that serve as temporary storage. The module automatically generates the timestamp and confirms successful
transmission by setting the corresponding AnalogChOkOx bit. The HIPERFACE specification does not specify in
which format the parameters must be received. The module therefore provides the value and time in two variants.
Which of the value registers should be used for further processing depends on the peripheral equipment. The user
is free to define the format of the timestamp.

Data sheet V1.20 23

X20DS1828
9.8.4.3 AnalogChOk (byte)

Name:
AnalogChOkO01 to AnalogChOk04

This register's bits provide information about the validity of the values in temporary storage.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0 AnalogChOk01 0 Analog value 01 invalid
1 Analog value 01 valid
3 AnalogChOk04 0 Analog value 04 invalid
1 Analog value 04 valid
4-7 Reserved

9.8.4.4 AnalogChValue

Name:
AnalogChValue01 to AnalogChValue04

These registers provide the current analog values, depending on the register address, as signed or unsigned 2-
byte values.

Data type Values
UINT 0 to 65535
INT -32768 to 32767

9.8.4.5 AnalogChTime
Name:
AnalogChTime01 to AnalogChTime04

These registers provide the timestamp of the most recently received analog values, depending on the register
address, as signed 2-byte or 4-byte values.

For more information about NetTime and timestamps, see "NetTime technology” on page 60.

Data type Values Information

DINT -2,147,483,648 NetTime in ps
to 2,147,483,647

INT -32768 to 32767

24 Data sheet V1.20

9.9 Flatstream communication

9.9.1 Introduction

X20DS1828

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capabile, it still allows data transfer to be handled more efficiently than with standard cyclic

polling.

Field-device
X2X language
Cyclic call
using 1/0 mapping " "
Cyclic call Cyclic

of cache values

communication

Acyclic call
using
library functions

¢

Acyclic call
of cache values

Cyclic
communication

Flatstream

N

X2X-compatible
device command

I

Device command

e

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

Data sheet V1.20

25

X20DS1828
9.9.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.

Message

A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.

Segment (logical division of a message):

A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.

Sequence (how a segment must be arranged physically):

The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.

With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.

MTU (Maximum Transmission Unit) - Physical transport:

MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.

Properties

Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence” or "OutputSequence”.

Behavior in the event of an error (brief summary)

The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.

In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.

If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

26 Data sheet V1.20

X20DS1828
9.9.3 The Flatstream principle

Requirement

Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.

Communication

If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

PLC / Bus controller ! Module
: Module-internal Module-internal
Transmit array OutputMTU i receive buffer receive array
Type: USINT Type: USINT i Type: USINT Type: USINT
25
“data 01] ———=> [TxBytes @ *RxBytes| ———> [_data 01
data_02
= = If OutputMTU The transmit buffer If counter OutputSequence _data_02
_data_03 is enabled: of the module is is increased: _data_03
adapted cyclically
_data_04 | cpusils to OutputMTU Module adds the transmit buffer _data_04
OutputMTU via X2X to the internal array
_data_05 | tie o : _data_05
sequence of the i If successful:

transmit counter

M transmit array i InputSequenceAck is c
_data_xx H adapted to the _data_xx

H Module-internal Module-internal
Receive array InputMTU H transmit buffer transmit array
Type: USINT Type: USINT i Type: USINT Type: USINT
o
data 01| <(——= | RxBytes @ *TxBytes | <—— | _data O1
_data_02 _data_02
If counter InputMTU is If permitted:
_data_03 InputSequence adapted cyclically to the Module fills the internal _data_03
is increased: receive buffer transmit buffer with the
—data—04 via X2X next sequence of the —data—04
data 05 InputMTU must be H transmit array data 05
— — added at the end of the i — —
receive array E Module increases the

— (increase InputSequenceAck H InputSequence counter
_data_xx to end correctly) H _data_xx

Figure 2: Flatstream communication
Procedure

The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.

If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.

If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.

If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages once they have been completely transferred.

Data sheet V1.20 27

X20DS1828
9.9.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:

The CPU communicates directly with the field device via registers "OutputSequence"” and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

9.9.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.

The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

9.9.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU

These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:

In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

28 Data sheet V1.20

X20DS1828
9.9.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.

Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

9.9.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio

On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

» Packed: Data is transferred as an array.
» Byte-by-byte: Data is transferred as individual bytes.

9.9.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN

(The value the number N is different depending on the bus controller model used.)

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.

In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

o "T"-"Transmit" —CPU transmits data to the module.
+ "R"-"Receive" —CPU receives data from the module.

Data type Values
USINT 0 to 255

9.9.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.

Bit structure of a control byte

Bit Description Value Information
0-5 SegmentLength 0-63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)
6 nextCBPos 0 Next control byte at the beginning of the next MTU
1 Next control byte directly after the end of the current segment
7 MessageEndBit 0 Message continues after the subsequent segment
1 Message ended by the subsequent segment

SegmentlLength

The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 of the control byte.

Information:

The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos

This bit indicates the position where the next control byte is to be expected. This information is especially important
when using option "MultiSegmentMTU".

When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

Data sheet V1.20 29

X20DS1828

MessageEndBit

"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:

In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.

The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

Message [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with CB |Control byte
ME) ME |MessageEndBit

9.9.4.2.4 Communication status of the CPU
Name:
OutputSequence

Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.

Data type Values
USINT See the bit structure.

Bit structure:

Bit Description Value Information
0-2 OutputSequenceCounter 0-7 Counter for the sequences issued in the output direction
3 OutputSyncBit 0 Output direction disabled
1 Output direction enabled
4-6 InputSequenceAck 0-7 Mirrors InputSequenceCounter
7 InputSyncAck 0 Input direction not ready (disabled)
1 Input direction ready (enabled)

OutputSequenceCounter

The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).

OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.

InputSequenceAck

InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck

The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

30 Data sheet V1.20

X20DS1828

9.9.4.2.5 Communication status of the module
Name:
InputSequence

Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.

Data type Values
USINT See the bit structure.
Bit structure:
Bit Description Value Information
0-2 InputSequenceCounter 0-7 Counter for sequences issued in the input direction
3 InputSyncBit 0 Not ready (disabled)
1 Ready (enabled)
4-6 OutputSequenceAck 0-7 Mirrors OutputSequenceCounter
7 OutputSyncAck 0 Not ready (disabled)
1 Ready (enabled)
InputSequenceCounter

The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).

InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck

OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck

The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

Data sheet V1.20 31

X20DS1828

9.9.4.2.6 Relationship between OutputSequence and InputSequence

Output sequence Input sequence
Communication status of the CPU Communication status of the module
0-2 OutputSequenceCounter 0-2 InputSequenceCounter
3 OutputSyncBit Intersecting 3 InputSyncBit
4-6 InputSequenceAck Handshakes 4-6 OutputSequenceAck
7 InputSyncAck 7 OutputSyncAck

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.

SyncBit and SyncAck

If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.

SequenceCounter and SequenceAck

The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:

If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

32 Data sheet V1.20

X20DS1828

9.9.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.

Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically

be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.

Algorithm

1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.

The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).

The module does not accept the current contents of InputMTU since the channel is not yet synchronized.

The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.

2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.

The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.

The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.

3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.

The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-

fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.

Algorithm

The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.

1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.

If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.

2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.

If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.

3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also

"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

Data sheet V1.20 33

X20DS1828

9.9.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.

The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.

Flatstream formula for calculating the position of the next control byte:

|Position (of the next control byte) = Current position + 1 + Segment length

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1l A2 A3 A4 A5 A6 A7

Message 2:

B1 B2

Message 3:

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

D9

C1

C2

C3

C4

C5

Co

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Default

Al A2 A3 A4 A5 A6

AT - - -

B1 B2 - - -

D1 D2 D3 D4 D5 D6

D7 D8

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

Figure 4: Transmit/Receive array (default)

34

Data sheet V1.20

X20DS1828

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.

MTU = 7 bytes — Max. segment length = 6 bytes
* Message 1 (7 bytes)

= First segment = Control byte + 6 bytes of data
= Second segment = Control byte + 1 data byte

* Message 2 (2 bytes)
= First segment = Control byte + 2 bytes of data
* Message 3 (9 bytes)

= First segment = Control byte + 6 bytes of data
= Second segment = Control byte + 3 data bytes

* No more messages
= CO control byte

A unique control byte must be generated for each segment. In addition, the CO control byte is generated to keep
communication on standby.

CO (control byte 0) C1 (control byte 1) C2 (control byte 2)

- SegmentLength (0) = 0| - SegmentLength (6) = 6 | - SegmentLength (1) = 1
- nextCBPos (0) = 0| - nextCBPos (0) = 0| - nextCBPos (0) = 0
- MessageEndBit (0) = 0 | - MessageEndBit (0) = 0 |- MessageEndBit (1) = 128
Control byte 3 0 | Control byte > 6 | Control byte b3 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)

- SegmentLength (2) = 2 |- SegmentLength (6) = 6 | - SegmentLength (3) = 3
- nextCBPos (0) = 0| - nextCBPos (0) = 0 |- nextCBPos (0) = 0
- MessageEndBit (1) = 128 | - MessageEndBit (0) = 0| - MessageEndBit (1) = 128
Control byte > 130 | Control byte z 6 | Control byte > 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

Data sheet V1.20 35

X20DS1828
9.9.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:

Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

PLC / Bus controller : Module
E Module-internal Module-internal
Transmit array OutputMTU i receive buffer receive array
Type: USINT Type: USINT i Type: USINT Type: USINT
25
“data 01| ——=> [TxBytes @ *RxBytes| ———> [_data_01
data_02
= = If OutputMTU The transmit buffer If counter OutputSequence _d ata_oz
_data_03 is enabled: of the module is is increased: _data_03
adapted cyclically
_data_04 CPU fills to OutputMTU Module adds the transmit buffer _data_04
_data_05 OutputMTU with via X2X to the internal array data 05
the next 1 = =
sequence of the i If successful: .
transmit array i InputSequenceAck is
H adapted to the _d ata_xx
H transmit counter

Figure 5: Flatstream communication (output)

The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.

Algorithm

Cyclic status query:

- The module monitors OutputSequenceCounter.

0) Cyclic checks:

- The CPU must check OutputSyncAck.

— If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.

- The CPU must check whether OutputMTU is enabled.

— If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):

- The CPU must split up the message into valid segments and create the necessary control bytes.

- The CPU must add the segments and control bytes to the transmit array.

2) Transmit:

- The CPU transfers the current element of the transmit array to OutputMTU.

— The OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.

- The CPU must increase OutputSequenceCounter.

Reaction:

- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.

- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.

3) Completion:

- The CPU must monitor OutputSequenceAck.

— A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:

To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.

(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)

- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

36 Data sheet V1.20

X20DS1828

Message larger than OutputMTU

The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer

algorithm remains the same and is repeated starting at the point Cyclic checks.

General flow chart

—(Start)

s
A 4
» diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
> limit = (OutputSequenceCounter -
LastValidAck) AND 7

LastValidAck =
OutputSequenceCounter?

No

(diff < limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

No OutputSequenceAck =
OutputSequenceCounter?

l Yes No

A 4

Y

OutputSequenceAck

| LastValidAck = |

LastValidAck =
OutputSequenceAck

A 4

OutputSequenceCounter =0
LastValidAck = 0

OutputSyncBit = 1 |

OutputSequenceCounter =1 |

Copy next sequence to MTU
Increase OutputSequenceCounter

- J W, J

L Synchronization)

Sequence handling |

Figure 6: Flow chart for the output direction

Data sheet V1.20

X20DS1828
9.9.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data does not change in this regard.

PLC / Bus controller : Module
E Module-internal Module-internal
Receive array InputMTU transmit buffer transmit array
Type: USINT Type: USINT H Type: USINT Type: USINT
o~
_data 01] <——— [RxBytes @ TxBytes | <——1 [_data 01
data_02
= = If counter InputMTU is If permitted: _data_02
_data_03 InputSequence adapted cyclically to the Module fills the internal _data_03
is increased: receive buffer transmit buffer with the
_data_04 via X2X next sequence of the _data_04
InputMTU must be H transmit array
—data_05 added at the end of the H _data 05
. receive array i Module increases the .
(increase InputSequenceAck H InputSequence counter
_data_xx to end correctly) i _data_xx

Figure 7: Flatstream communication (input)

Algorithm

0) Cyclic status query:

- The CPU must monitor InputSequenceCounter.

Cyclic checks:

- The module checks InputSyncAck.

- The module checks InputSequenceAck.

Preparation:

- The module forms the segments and control bytes and creates the transmit array.

Action:

- The module transfers the current element of the internal transmit array to the internal transmit buffer.

- The module increases InputSequenceCounter.

1) Receiving (as soon as InputSequenceCounter is increased):

- The CPU must apply data from InputMTU and append it to the end of the receive array.

- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:

- The module monitors InputSequenceAck.

— A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

38 Data sheet V1.20

X20DS1828

General flow chart

(¥)
> InputSequenceAck = InputSequenceCounter (e
InputSyncBit = 1? > RemainingSegmentSize = 0 — 9
> SegmentFlags = 0 -
Q)
N
S
InputSequenceAck > 0? —
O
o
c
>
MTU_Offset = 0 InputSyncAck = 1 |—/ ()
L J
4)
4 Y
) 4
(InputSequenceCounter — No)
InputSequenceAck)
AND 0x07 = 1?
> RemainingSegmentSize =
Yes MTU_Data[MTU_Offset] AND 0b0011 1111
RemainingSegmentSize = 0? > SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
> MTU_Offset = MTU_Offset + 1
RemainingSegmentSize >
(InputMTU_Size - MTU_Offset)?
(@)
C
> DataSize = InputMTU_Size — MTU_Offset » DataSize = RemainingSegmentSize -8
{) o
Y c
> Copy segment data, e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize) _,(E
» MTU_Offset = MTU_Offset + DataSize ©
> RemainingSegmentSize = RemainingSegmentSize - DataSize ©
J e
C
GE)
emainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0? * Mark frame as complete %
emainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0?
INpUtMTU_Size = MTU_Offset? » InputSequenceAck =
InputSequenceCounter
\
\ J

Figure 8: Flow chart for the input direction

Data sheet V1.20

39

X20DS1828
9.9.4.7 Details

It is recommended to store transferred messages in separate receive arrays.

After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:

When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.
Note: This situation is very unlikely when operating without "Forward" functionality.

In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.

Acknowledgments must be checked for validity.

If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again once the channel has been
resynchronized.

40 Data sheet V1.20

X20DS1828
9.9.4.8 Flatstream mode

Name:
FlatstreamMode

In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:

All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:

Bit Description Value Information
0 MultiSegmentMTU 0 Not allowed (default)
1 Permitted
1 Large segments 0 Not allowed (default)
1 Permitted
2-7 Reserved
Standard

By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1 Bus cycle 2 Bus cycle 3
C C) _ C)
MEO ME1 ME1
Segment 1 Segment 2 Segment 3

Eo Control byte with MessageEndBit = 0

el Control byte with MessageEndBit = 1

Figure 9: Message arrangement in the MTU (default)

Data sheet V1.20 41

X20DS1828

MultiSegmentMTUs allowed

With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1 Bus cycle 2 Bus cycle 3
C C C C B)
MEO ME1 MEO ME1
Segment 1 Segment 2 Segment 4

Control byte with MessageEndBit = 0

Control byte with MessageEndBit = 1

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:

When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:

It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1 Bus cycle 2 Bus cycle 3
C)) _ C)
ME1 ME1
Segment 1 Segment 2 Segment 3

Control byte with MessageEndBit = 0

Control byte with MessageEndBit = 1

Figure 11: Arrangement of messages in the MTU (large segments)

42 Data sheet V1.20

X20DS1828
Using both options

Using both options at the same time is also permitted.

Bus cycle 1 Bus cycle 2 Bus cycle 3

C
ME1

-
ME1
C

Control byte with MessageEndBit = 0

Control byte with MessageEndBit = 1

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

Data sheet V1.20 43

X20DS1828
9.9.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.

MultiSegmentMTU

If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1: Transmit/Receive array
With 7 USINT elements according to
A1 A2 A3 A4 A5 A6 A7 the configurable MTU size

Message 2: MultiSegmentMTU

c1t A1 A2 A3 A4 A5 A6 Sequence for bus cycle 1

B1 B2

c2 A7 C3 B1 B2 C4 D1 Sequence for bus cycle 2

Message 3:

Cs5 D2 D3 D4 D5 D6 D7 Sequence for bus cycle 3
D1 D2 D3 D4 D5 D6 D7 D8 D9

C6 D8 D9 Cco - - - Sequence for bus cycle 4
No more data to transmit co - - - R R - Sequence for bus cydle 5
- - - (010] - - - - - - Sequence for bus cycle 6

Figure 13: Transmit/receive array (MultiSegmentMTUs)

44 Data sheet V1.20

X20DS1828

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control

byte.

MTU = 7 bytes — Max. segment length = 6 bytes

* Message 1 (7 bytes)

= First segment = Control byte + 6 bytes of data (MTU full)
= Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

* Message 2 (2 bytes)

= First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

* Message 3 (9 bytes)

= First segment = Control byte + 1 byte of data (MTU full)
= Second segment = Control byte + 6 bytes of data (MTU full)
= Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

* No more messages

= CO0 control byte

A unique control byte must be generated for each segment. In addition, the CO control byte is generated to keep

communication on standby.

C1 (control byte 1)

C2 (control byte 2)

C3 (control byte 3)

- SegmentLength (6)

(o2}

- SegmentLength (1)

-

- SegmentLength (2)

- nextCBPos (1) = 64 | - nextCBPos (1) = 64 | - nextCBPos (1) = 64
- MessageEndBit (0) = 0 |- MessageEndBit (1) = 128 | - MessageEndBit (1) = 128
Control byte z 70 | Control byte z 193 | Control byte z 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!

The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program

must include enough receive arrays to handle this situation.

C4 (control byte 4)

C5 (control byte 5)

C6 (control byte 6)

- SegmentLength (1) = 1|- SegmentLength (6) = 6 | - SegmentLength (2) = 2
- nextCBPos (6) = 6 | - nextCBPos (1) = 64 | - nextCBPos (1) = 64
- MessageEndBit (0) = 0 |- MessageEndBit (1) = 0 |- MessageEndBit (1) = 128
Control byte z 7 | Control byte z 70 | Control byte z 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

Data sheet V1.20

45

X20DS1828

Large segments

Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:

It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1: Transmit/Receive array
With 7 USINT elements according to
A1 A2 A3 Ad A5 A6 A7 the configurable MTU size
Message 2: Large segments

C1 A1 A2 A3 A4 A5 A6 Sequence for bus cycle 1
B1 B2

A7 - - - - - - Sequence for bus cycle 2

Message 3:
Cc2 B1 B2 - - - - Sequence for bus cycle 3

D1 D2 D3 D4 D5 D6 D7 D8 D9
c3 D1 D2 D3 D4 D5 D6 Sequence for bus cycle 4

No more data to transmit D7 D8 D9 - - - - Sequence for bus cycle 5

- - - (010] - - - - - - Sequence for bus cycle 6

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.

Large segments allowed — Max. segment length = 63 bytes

* Message 1 (7 bytes)

= First segment = Control byte + 7 bytes of data
* Message 2 (2 bytes)

= First segment = Control byte + 2 bytes of data
» Message 3 (9 bytes)

= First segment = Control byte + 9 bytes of data
* No more messages

= CO control byte

A unique control byte must be generated for each segment. In addition, the CO control byte is generated to keep
communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)

- SegmentLength (7) 7 | - SegmentLength (2) 2 |- SegmentLength (9)
- nextCBPos (0) 0| - nextCBPos (0) - nextCBPos (0)

- MessageEndBit (1) 128 | - MessageEndBit (1) 128 | - MessageEndBit (1)
Control byte 135 | Control byte 130 | Control byte

o

128
137

M|
M|
Ml

Table 7: Flatstream determination of the control bytes for the large segment example

46 Data sheet V1.20

X20DS1828

Large segments and MultiSegmentMTU

Example

3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1: Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Al A2 A3 A4 A5 A6 A7

Message 2: Both options

Cl A1 A2 A3 A4 A5 A6 Sequence for bus cycle 1
B1 B2

A7 C2 B1 B2 C3 D1 D2 Sequence for bus cycle 2
Message 3:

D3 D4 D5 D6 D7 D8 D9 Sequence for bus cycle 3

D1 D2 D3 D4 D5 D6 D7 D8 D9
(0{0] - - - - - - Sequence for bus cycle 4

No more data to transmit Co

- - - - Sequence for bus cycle 5

- - CO0 - - - - - - Sequence for bus cycle 6

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.

The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".

Large segments allowed — Max. segment length = 63 bytes

* Message 1 (7 bytes)

= First segment = Control byte + 7 bytes of data
* Message 2 (2 bytes)

= First segment = Control byte + 2 bytes of data
* Message 3 (9 bytes)

= First segment = Control byte + 9 bytes of data
+ No more messages

= CO0 control byte

A unique control byte must be generated for each segment. In addition, the CO control byte is generated to keep
communication on standby.

C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)

- SegmentLength (7) = 7 | - SegmentLength (2) = 2 |- SegmentlLength (9) = 9
- nextCBPos (0) = 0| - nextCBPos (0) = 0 |- nextCBPos (0) = 0
- MessageEndBit (1) = 128 | - MessageEndBit (1) = 128 | - MessageEndBit (1) = 128
Control byte > 135 | Control byte z 130 | Control byte z 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

Data sheet V1.20 47

X20DS1828
9.9.5 Example of Forward functionality on X2X Link

Forward functionality is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

9.9.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step | Step Il Step lll Step IV Step V
Actions Transfer sequence from | Cyclic matching of MTU and | Append sequence to re-|Cyclic matching of Check SequenceAck
transmit array, module buffer ceive array MTU and module buffer
increase SequenceCounter Adjust SequenceAck
Resource Sender Bus system Recipient Bus system Sender
(task to transmit) (direction 1) (task to receive) (direction 2) (task for Ack checking)
Sequence 1 Step | Step Il - Step IV Step V i
Sequence 2 Step | Step Il Step IV Step V
Sequence 3 i

Bus cycle 1 Bus cycle 2 | Bus cycle 3 | Bus cycle 4 | Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 | Bus cycle 10

-

>
Time

Sequence 1 Step | Step Il Step IV | Step V

Sequence 2 Step | Step Il Step IV Step V

Sequence 3 Step | Step Il Step IV Step V

Bus cycle 1 Bus cycle 2 | Bus cycle 3 | Bus cycle 4 | Bus cycle 5 | Bus cycle 6 | Bus cycle 7 | Bus cycle 8 | Bus cycle 9 | Bus cycle 10

-

. ~
Time

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.

With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.

In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

48 Data sheet V1.20

X20DS1828
9.9.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

9.9.5.2.1 Number of unacknowledged sequences

Name:
Forward

With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:

X2X Link: Max. 5

POWERLINK: Max. 7

Data type Values

USINT 1to 7
Default: 1

9.9.5.2.2 Delay time

Name:
ForwardDelay

Register "ForwardDelay" is used to specify the delay time in ys. This is the amount of time the module has to
wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle. The
program routine for receiving sequences from a module can therefore be run in a task class whose cycle time is
slower than the bus cycle.

Data type Values
UINT 0 to 65535 [ps]
Default: 0
Sequence 1 Step | Step Il Step IV | Step V
Sequence 2 Step | Step Il Step IV Step V
Sequence 3 Step | Step Il Step IV Step V.

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 | Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 | Bus cycle 10

A

>
Time

Sequence 1 Step | Step Il Step IV Step V

Sequence 2 Step | Step Il Step IV Step V

Sequence 3 Step | Step Il Step IV Step V

| Bus cycle 1 | Bus cycle 2 | Bus cycle 3 | Bus cycle 4 | Bus cycle 5 | Bus cycle 6 Bus cycle 7 | Bus cycle 8 | Bus cycle 9 | Bus cycle 10

-

Time

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

Data sheet V1.20 49

X20DS1828
9.9.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.

Algorithm for transmitting

Cyclic status query:

- The module monitors OutputSequenceCounter.

0) Cyclic checks:

- The CPU must check OutputSyncAck.

— If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.

- The CPU must check whether OutputMTU is enabled.

— If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):

- The CPU must split up the message into valid segments and create the necessary control bytes.

- The CPU must add the segments and control bytes to the transmit array.

2) Transmit:

- The CPU must transfer the current part of the transmit array to OutputMTU.

- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.

- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.

The module responds since OutputSequenceCounter > OutputSequenceAck:

- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.

- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.

3) Completion (acknowledgment):

- The CPU must check OutputSequenceAck cyclically.

— A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:

To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving

0) Cyclic status query:

- The CPU must monitor InputSequenceCounter.

Cyclic checks:

- The module checks InputSyncAck.

- The module checks if InputMTU for enabling.

— Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward

Preparation:

- The module forms the control bytes / segments and creates the transmit array.

Action:

- The module transfers the current part of the transmit array to the receive buffer.

- The module increases InputSequenceCounter.

- The module waits for a new bus cycle after time from ForwardDelay has expired.

- The module repeats the action if InputMTU is enabled.

1) Receiving (InputSequenceCounter > InputSequenceAck):

- The CPU must apply data from InputMTU and append it to the end of the receive array.

- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:

- The module monitors InputSequenceAck.

— A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

50 Data sheet V1.20

X20DS1828

Details/Background

1.

llegal SequenceCounter size (counter offset)

Error situation: MTU not enabled

If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

. Checking an acknowledgment

After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:

In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.

An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

Data sheet V1.20 51

X20DS1828
9.9.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.

Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/0O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.

Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.

Loss of acknowledgment (SequenceAck)

If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).

Loss of transmission (SequenceCounter, MTU):

If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.

The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.

If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1 Step | Step Il Step IV | Step V
Sequence 2 Step | Step Il Step IV Step V
Sequence 3 Step | Step Il Step IV Step V
Sequence 4 Step | Step Il Step IV Step V
Bus cycle 1 Bus cycle 2 I Bus cycle 3 I Bus cycle 4 I Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 | Bus cycle 10

.

Time

Sequence 1 Step | Step Il

Sequence 2 Step | Step Il Step IV Step V
Sequence 3 Step | Step Il Step | Step Il

Sequence 4 Step | Step Il Step | Step Il

Bus cycle 1 Bus cycle 2 I Bus cycle 3 I m I Bus cycle 5 I Bus cycle 6 I Bus cycle 7 I Bus cycle 8 Bus cycle 9 I Bus cycle 10 I

-

. ~
Time

Figure 18: Effect of a lost bus cycle
Loss of acknowledgment

In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.

Loss of transmission

In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.

The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.

5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

52 Data sheet V1.20

X20DS1828
9.10 HIPERFACE with FlatStream
HIPERFACE is an asynchronous interface capable of half-duplex communication. Various features have been
included to ensure that signals are transmitted without errors.

» The user can choose to have a parity bit added when transmitting a data block.
» A checksum is sent together with a signal and evaluated by the receiver.
» The command to which the encoder is responding is repeated at the start of a response.
In FlatStream mode, the module acts as a bridge between the CPU and the HIPERFACE slave. HIPERFACE-spe-

cific algorithms have been implemented to monitor timeouts and handle checksums. During normal operation, the
user does not have access to these details.

Additional information is provided in the "Description of HIPERFACE" document.

9.10.1 Overview of conventional HIPERFACE commands for FlatStream mode

Command byte [hex] Command Code0
0x42 Read position
0x43 Set position .
0x44 Read analog value
0x46 Read counter
0x47 Increment counter
0x49 Delete counter .
O0x4A Read data
0x4B Save data
0x4C Read status of a data field
0x4D Create data field
Ox4E Read available memory area
Ox4F Change access key
0x50 Read encoder status
0x52 Read nameplate
0x53 Reset encoder
0x55 Allocate encoder address .
0x56 Read serial number and program version
0x57 Configure serial interface .

Code0 is a byte that was added to the transfer protocol for safety reasons. It protects important system parameters
from being overwritten by mistake (default: Code0 = 0x55).

9.10.2 Read position (0x42)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x42 Command byte (read position)

Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x42
3 Pos_HH Response (data bytes)
4 Pos_HL
5 Pos_LH
6 Pos_LL
Master

Data sheet V1.20 53

X20DS1828

9.10.3 Set position (0x43)

Master command

Protocol bytes Information
No. | Name

Master

1 Address Address of the HIPERFACE slave

2 0x43 Command byte (set position)

3 Pos_HH New position (data bytes)

4 Pos_HL

5 Pos_LH

6 Pos_LL

7 Code0 Safety byte in accordance with the HIPERFACE specification
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x43
Master

9.10.4 Read analog value (0x44)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x44 Command byte (read analog value)
3 channel Channel byte (selects desired analog value)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte and channel byte (safety)
2 0x44
3 channel
4 Value_H Value read
5 Value_L
Master

9.10.5 Read counter (0x46)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x46 Command byte (read counter)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x46
3 Ctr_H Counter value
4 Ctr_M
5 Ctr_L
Master

54

Data sheet V1.20

9.10.6 Increment counter (0x47)

Master command

X20DS1828

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x47 Command byte (increment counter)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x47
Master

9.10.7 Clear counter (0x49)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x49 Command byte (clear counter)
3 Code0 Safety byte in accordance with the HIPERFACE specification

Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x49
Master

9.10.8 Read data (0x4A)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x4A Command byte (read data)
3 Data field ID of data to be read:
4 Byte address Number of the data field, start byte within the data field and number of bytes to be read
5 Count
6 Access code |Access code in accordance with the HIPERFACE specification
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte and ID of data to be read (safety)
2 Ox4A
3 Data field
4 Byte address
5 Count
6..n Datal...n Data to be read
Master

Data sheet V1.20

55

X20DS1828

9.10.9 Save data (0x4B)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x4B Command byte (save data)
3 Data field ID of data to be saved:
4 Byte address Number of the data field, start byte within the data field and number of bytes to be read
5 Count
6 Access code |Access code in accordance with the HIPERFACE specification
7..x Data1...n Data to be saved
Slave

Slave response

Protocol bytes

Information

No. | Name

Slave

Address

Repeated address, command byte and ID of data to be saved (safety)

0x4B

Data field

Byte address

G| (W|N|—=

Count

Master

9.10.10 Read status of a data field (0x4C)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x4C Command byte (determine status of a data field)
3 Data field Number of the data field

Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte and number of the data field (safety)
2 0x4C
3 Data field
4 Status Access mode for queried data field
Master

56

Data sheet V1.20

9.10.11 Create data field (0x4D)

Master command

X20DS1828

Protocol bytes Information
No. | Name

Master

1 Address Address of the HIPERFACE slave

2 0x4D Command byte (create data field)

3 Data field Number of the data field

4 Status Access mode for the data field

5 Access code |Access code in accordance with the HIPERFACE specification
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte, number of the data field and access mode of the data field (safety)
2 0x4D
3 Data field
4 Status
Master

9.10.12 Read available memory area (0x4E)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 Ox4E Command byte (read available memory area)

Slave

Slave response

Protocol bytes Information
No. | Name

Slave

1 Address Repeated address and command byte (safety)

2 Ox4E

3 Free memory | Number of available 16-byte blocks

4 Number of | Number of data fields

data fields

Master

9.10.13 Change access key (0x4F)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 Ox4F Command byte (change access key)
3 Code number | Safety code from the slave manufacturer
4 Old code
5 New code
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte and code number (safety)
2 Ox4F
3 Code number
Master

Data sheet V1.20

57

X20DS1828

9.10.14 Read encoder status (0x50)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x50 Command byte (read encoder status)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x50
3 Encoder Status byte as specified by the slave manufacturer
status
Master

9.10.15 Read nameplate (0x52)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x52 Command byte (read nameplate)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x52
3 RS485 Nameplate in accordance with HIPERFACE specification:
settings HIPERFACE configuration, type of encoder, size of memory and other options
4 Encoder type
5 Size of
EEPROM
6 Options
Master

9.10.16 Encoder reset (0x53)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x53 Command byte (encoder reset)
Slave

Slave response

Protocol bytes

Information

No. | Name

Slave

No response

Master

58

Data sheet V1.20

9.10.17 Allocate encoder address (0x55)

Master command

X20DS1828

Protocol bytes Information
No. | Name

Master

1 Address Address of the HIPERFACE slave

2 0x55 Command byte (allocate encoder address)

3 New address | New HIPERFACE address

4 Code0 Safety byte in accordance with the HIPERFACE specification
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x55
Master

9.10.18 Read serial number and program version (0x56)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x56 Command byte (read serial number and program version)
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address and command byte (safety)
2 0x56
3.1 Serial number |9 characters
12..n Firmware Max. 20 characters
version
...n+8 Firmware date | 8 characters (format: DD.MM.YY)
Master

9.10.19 Configure serial interface (0x57)

Master command

Protocol bytes Information
No. | Name
Master
1 Address Address of the HIPERFACE slave
2 0x57 Command byte (configure serial interface)
3 RS485 New baud rate in accordance with the HIPERFACE specification
settings
4 Code0 Safety byte in accordance with the HIPERFACE specification
Slave

Slave response

Protocol bytes Information
No. | Name
Slave
1 Address Repeated address, command byte and new baud rate (safety)
2 0x57
3 RS485
settings
Master

Data sheet V1.20

59

X20DS1828
9.11 NetTime technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual components of
the controller or network (CPU, I/O modules, X2X Link, POWERLINK, etc.).

This allows the time that events occur to be determined system-wide with microsecond precision. Upcoming events
can also be executed precisely at a given time.

NetTimed

TECHNOLOGY

9.11.1 Time information

Various time information is available in the controller or on the network:

+ System time (on the PLC, Automation PC, etc.)

» X2X Link time (for each X2X Link network)

* POWERLINK time (for each POWERLINK network)
» Time data points of /O modules

The NetTime is based on 32-bit counters, which are increased with ps timing. The sign of the time information
changes after 35 min, 47 s, 483 ms and 648 us; an overflow occurs after 71 min, 34 s, 967 ms and 296 ps.

The initialization of the times is based on the system time during the startup of the X2X Link, the I/O modules or
the POWERLINK interface.

Current time information in the application can also be determined via library AslOTime.
9.11.1.1 PLC/Controller data points
The NetTime I/O data points of the PLC or the controller are latched to each system clock and made available.

9.11.1.2 X2X Link reference time

Full cycle Half cycle Full cycle Half cycle Full cycle
|System time | sz Link | |System time | sz Link | System time
time time
X2X Link Al SO Si Al SO Sl Al
Task class Task class Task class
23000 24000 25000 26000 27000
System cycle time =2 ms
X2X cycle time =2 ms

The reference time on the X2X Link network is always formed at the half cycle of the X2X Link cycle. This results
in a difference between the system time and the X2X Link reference time when the reference time is read out.

In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference time are
compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link reference
time returns the value 24000.

60 Data sheet V1.20

9.11.1.3 POWERLINK reference time

X20DS1828

System time

POWERLINK
NetTime SoC

ETHERNET IS wa mmg

POWERLINK

Full cycle

System time

POWERLINK
NetTime SoC

Full cycle

System time

POWERLINK
NetTime SoC

SoC| PReq | PRes | PReq |

SoC| PReq | PRes | PReq |

Full cycle

Task class

Task class

Task class

23000 25000 27000

System cycle time =2 ms
POWERLINK system cycle time = 2 ms

The reference time at POWERLINK is always formed at the SoC (Start of Cycle) of the POWERLINK network.
The SoC starts 20 ps after the system tick. This results in the following difference between the system time and
the POWERLINK reference time:

POWERLINK reference time = System time - POWERLINK cycle time + 20 ps.

In the example above, this means a difference of 1980 ys, i.e. if the system time and POWERLINK reference
time are compared at time 25000 in the task, then the system time returns the value 25000 and the POWERLINK
reference time returns the value 23020.

9.11.1.4 Synchronization of system time/POWERLINK time and I/O module

X2X Link cycle

Counter value

—— Counter PLC/POWERLINK
—— Counter I/O module

Time

At startup, the internal counters for the PLC/POWERLINK (1) and the 1/O module (2) start at different times and
increase the values at s intervals.

At the beginning of each X2X Link cycle, the PLC or the POWERLINK network sends time information to the I/
O module. The I/O module compares this time information with the module's internal time and forms a difference
(green line) between the two times and stores it.

When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored difference
value (brown line). This means that the exact system time (S) of an event can always be determined, even if the
counters are not absolutely synchronous.

Note

The deviation from the clock signal is strongly exaggerated in the picture as a red line.

Data sheet V1.20 61

X20DS1828
9.11.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a timestamp
event occurs, the module immediately saves the current NetTime. After the respective data is transferred to the
CPU, including this precise time, the CPU can then evaluate the data using its own NetTime (or system time), if
necessary.

9.11.2.1 Time-based inputs

NetTime Technology can be used to determine the exact time of a rising edge at an input. The rising and falling
edges can also be detected and the duration between 2 events can be determined.

Information:

The determined time always lies in the past.

9.11.2.2 Time-based outputs

NetTime Technology can be used to specify the exact time of a rising edge at an output. The rising and falling
edges can also be specified and a pulse pattern generated from them.

Information:

The specified time must always be in the future and the set X2X Link cycle time must be taken into
account for the definition of the time.

9.11.2.3 Time-based measurements

NetTime Technology can be used to determine the exact time of a measurement that has taken place. Both the
start and the end time of the measurement can be transmitted.

9.12 Minimum 1/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update to
take place in each cycle.

Minimum I/O update time
100 ps

9.13 Minimum cycle time

The minimum cycle time specifies the time up to which the bus cycle can be reduced without communication
errors occurring. It is important to note that very fast cycles reduce the idle time available for handling monitoring,
diagnostics and acyclic commands.

Minimum cycle time
100 ps

62 Data sheet V1.20

	X20DS1828
	1 General information
	2 Order data
	3 Technical data
	4 LED status indicators
	5 Pinout
	6 Connection example
	7 Input circuit diagram
	7.1 Diagram for the process data channel (sine-cosine track)
	7.2 Circuit diagram for the parameter channel (RS485 interface)
	7.3 Circuit diagram for the encoder supply and LEDs

	8 Derating
	9 Register description
	9.1 General data points
	9.2 Register overview - Function model 0 (standard)
	9.3 Register overview - Function model 254 (bus controller)
	9.3.1 Using the module on the bus controller
	9.3.2 CAN I/O bus controller

	9.4 Module configuration
	9.4.1 Data query

	9.5 Basic functions
	9.5.1 SDC counter register
	9.5.2 Absolute position values
	9.5.3 SDC position value
	9.5.4 NetTime of the position values
	9.5.5 Counter for position values

	9.6 Error management
	9.6.1 Module-based diagnostics
	9.6.1.1 Enabling/disabling error messages
	9.6.1.2 Show error messages
	9.6.1.3 Acknowledge error messages

	9.6.2 HIPERFACE-based diagnostics
	9.6.2.1 HfErrorCode

	9.7 Sin/Cos - Analog interface configuration
	9.7.1 Format of the SinCos signal
	9.7.2 Enabling SinCos
	9.7.3 SinCosRefSource
	9.7.4 Configuring the lower Vss value
	9.7.5 Configuring the upper Vss value
	9.7.6 Configuring the delay time after errors

	9.8 HIPERFACE
	9.8.1 HIPERFACE - Digital interface configuration
	9.8.1.1 HfMode
	9.8.1.2 HfParity
	9.8.1.3 HfCharTimeout
	9.8.1.4 HfBaud
	9.8.1.5 HfRepressErrTime
	9.8.1.6 HfRefAdr
	9.8.1.7 HfRefWidth

	9.8.2 HIPERFACE - Read ID
	9.8.2.1 HfAdrIdent
	9.8.2.2 HfSelectionIdent
	9.8.2.3 HfIdentOk
	9.8.2.4 HfRs485Settings
	9.8.2.5 HfEncoderType
	9.8.2.6 HfEepromSize
	9.8.2.7 HfOptionFlags
	9.8.2.8 HfFreeMemory
	9.8.2.9 HfDataFields
	9.8.2.10 HfExtByte

	9.8.3 HIPERFACE - Reading additional encoder positions
	9.8.3.1 AddPosAdr
	9.8.3.2 AddPosOk (byte)
	9.8.3.3 AddPosition
	9.8.3.4 AddPosTime

	9.8.4 HIPERFACE - Reading additional analog values
	9.8.4.1 AnalogAdrCh
	9.8.4.2 AnalogCh
	9.8.4.3 AnalogChOk (byte)
	9.8.4.4 AnalogChValue
	9.8.4.5 AnalogChTime

	9.9 Flatstream communication
	9.9.1 Introduction
	9.9.2 Message, segment, sequence, MTU
	9.9.3 The Flatstream principle
	9.9.4 Registers for Flatstream mode
	9.9.4.1 Flatstream configuration
	9.9.4.1.1 Number of enabled Tx and Rx bytes

	9.9.4.2 Flatstream operation
	9.9.4.2.1 Format of input and output bytes
	9.9.4.2.2 Transport of payload data and control bytes
	9.9.4.2.3 Control bytes
	9.9.4.2.4 Communication status of the CPU
	9.9.4.2.5 Communication status of the module
	9.9.4.2.6 Relationship between OutputSequence and InputSequence

	9.9.4.3 Synchronization
	9.9.4.4 Transmitting and receiving
	9.9.4.5 Transmitting data to a module (output)
	9.9.4.6 Receiving data from a module (input)
	9.9.4.7 Details
	9.9.4.8 Flatstream mode
	9.9.4.9 Adjusting the Flatstream

	9.9.5 Example of Forward functionality on X2X Link
	9.9.5.1 Function principle
	9.9.5.2 Configuration
	9.9.5.2.1 Number of unacknowledged sequences
	9.9.5.2.2 Delay time

	9.9.5.3 Transmitting and receiving with Forward
	9.9.5.4 Errors when using Forward

	9.10 HIPERFACE with FlatStream
	9.10.1 Overview of conventional HIPERFACE commands for FlatStream mode
	9.10.2 Read position (0x42)
	9.10.3 Set position (0x43)
	9.10.4 Read analog value (0x44)
	9.10.5 Read counter (0x46)
	9.10.6 Increment counter (0x47)
	9.10.7 Clear counter (0x49)
	9.10.8 Read data (0x4A)
	9.10.9 Save data (0x4B)
	9.10.10 Read status of a data field (0x4C)
	9.10.11 Create data field (0x4D)
	9.10.12 Read available memory area (0x4E)
	9.10.13 Change access key (0x4F)
	9.10.14 Read encoder status (0x50)
	9.10.15 Read nameplate (0x52)
	9.10.16 Encoder reset (0x53)
	9.10.17 Allocate encoder address (0x55)
	9.10.18 Read serial number and program version (0x56)
	9.10.19 Configure serial interface (0x57)

	9.11 NetTime technology
	9.11.1 Time information
	9.11.1.1 PLC/Controller data points
	9.11.1.2 X2X Link reference time
	9.11.1.3 POWERLINK reference time
	9.11.1.4 Synchronization of system time/POWERLINK time and I/O module

	9.11.2 Timestamp functions
	9.11.2.1 Time-based inputs
	9.11.2.2 Time-based outputs
	9.11.2.3 Time-based measurements

	9.12 Minimum I/O update time
	9.13 Minimum cycle time

