
X20DS1828

Data sheet V1.20 1

X20DS1828

1 General information

The module is equipped with 1 HIPERFACE encoder interface. This module can be used to evaluate encoders
installed in motors from other manufacturers as well as encoders for external axes (encoders that sample any
machine movement). The input signals are monitored. This makes it possible to detect open or shorted lines as
well as encoder supply failures.

• HIPERFACE encoder interface
• Encoder input monitoring
• 11 VDC and GND for encoder supply
• NetTime function: Timestamp for position

HIPERFACE
HIPERFACE is a standard developed by Max Stegmann GmbH (www.stegmann.de), which like EnDat incorporates
the advantages of absolute and incremental position measurement while also offering a read/write parameter
memory in the encoder. With absolute position measurement (the absolute position is sampled serially), a homing
procedure for referencing is usually not required. Where necessary, a multi-turn encoder should be installed. To
reduce costs, a single-turn encoder and a reference switch can also be used. In this case, a homing procedure
must be carried out.
The incremental process allows the short deceleration periods necessary for position measurement when using
drives with highly dynamic characteristics. With the sinusoidal incremental signal and the fine resolution in the
HIPERFACE module, a very high positioning resolution is achieved in spite of the moderate signal frequencies
used.
NetTime position timestamp
Highly dynamic positioning tasks require not only the position value, but also the exact time at which the position
was determined. The module has a NetTime function for this, which adds a timestamp to the recorded position
with microsecond accuracy.
The module provides the PLC with the position value and timestamp as absolute time value. The NetTime mech-
anisms ensure that the PLC NetTime clock and the local NetTime clock on the module have exactly the same
absolute time at all times.

2 Order data
Model number Short description Figure

Digital signal processing and preparation
X20DS1828 X20 digital signal module, 1 HIPERFACE interface, NetTime

function
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-

ternal I/O supply continuous
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20DS1828 - Order data

http://www.stegmann.de

X20DS1828

2 Data sheet V1.20

3 Technical data
Model number X20DS1828
Short description
I/O module 1x HIPERFACE interface
General information
B&R ID code 0xAEC7
Status indicators Counting direction, operating status, module status
Diagnostics

Module run/error Yes, using status LED and software
Counting direction Yes, using status LED

Power consumption
Bus 0.01 W
Internal I/O 1.3 W

Additional power dissipation caused by actuators
(resistive) [W]

-

Type of signal lines Shielded cables must be used for all signal lines
Certifications

CE Yes
KC Yes
EAC Yes
UL cULus E115267

Industrial control equipment
HazLoc cCSAus 244665

Process control equipment
for hazardous locations

Class I, Division 2, Groups ABCD, T5
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

Encoder inputs
Angular position resolution 13-bit, with a 1 VSS signal
Encoder monitoring Yes
Max. encoder cable length 10 m
Sine/Cosine inputs

Signal transmission Differential signals, symmetrical
Signal frequency DC up to 200 kHz
Differential voltage 1 VSS

Common-mode voltage Max. ±10 V
Terminating resistor 120 Ω

Encoder power supply
Output voltage 11 V
Load capacity 150 mA
Protective measures

Overload protection Yes
Short-circuit proof Yes

Parameter channel (RS485)
Signal transmission 5 VDC differential signal, EiA RS-485 standard
Transmission status See HIPERFACE specification
Electrical properties
Electrical isolation Channel isolated from bus

Channel not isolated from channel
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitations
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating See section "Derating"
Storage -40 to 85°C
Transport -40 to 85°C

Table 2: X20DS1828 - Technical data

X20DS1828

Data sheet V1.20 3

Model number X20DS1828
Relative humidity

Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x X20TB12 terminal block separately

Order 1x X20BM11 bus module separately
Spacing 12.5+0.2 mm

Table 2: X20DS1828 - Technical data

4 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" of the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash RESET mode
Double flash BOOT mode (during firmware update)1)

Blinking PREOPERATIONAL mode

r Green

On RUN mode
Off No power to module or everything OK
On Error or reset state. Possible cause:

• Encoder supply error
Single flash I/O error - Possible causes:

• Sine/Cosine relative position error (open line)
• Sine/Cosine absolute position error (reference)

Double flash System error. Possible causes:
• HIPERFACE communication error

Triple flash I/O error and system error
Single flash, inverted Error or reset state and I/O error
Double flash, inverted Error or reset state and system error

e Red

Triple flash, inverted Error or reset state, I/O error and system error
UP Green On The "UP/DN" LEDs are lit depending on the rotational direction and the

speed of the connected encoder.
The "UP" LED indicates when the encoder position changes in the pos-
itive direction.

 
 

DN Green On The "DN" LED indicates when the encoder position changes in the neg-
ative direction.

1) Depending on the configuration, a firmware update can take up to several minutes.

5 Pinout

Shielded cables must be used for all signal lines.

r e
UP
DN

Encoder 11 V +

X2
0

D
S

18
28 r e

GND

SIN

COS

REF SIN

D\ D

UP
DN

REF COS

X20DS1828

4 Data sheet V1.20

6 Connection example

HIPERFACE encoder

Process data channel

Parameter channel

GND
+24 VDC

GND
+24 VDC

DS

SIN
REF SIN
COS
REF COS

D\
D

7 Input circuit diagram

7.1 Diagram for the process data channel (sine-cosine track)

A/D
converter

A/D
converter

Input value

Input value

SIN

COS

REF SIN

REF COS

7.2 Circuit diagram for the parameter channel (RS485 interface)

RS485
Drivers

D In

D Out

D

D\

X20DS1828

Data sheet V1.20 5

7.3 Circuit diagram for the encoder supply and LEDs

Encoder 11 V

LED (green)

LED (green)

UP

DN

24 V

GND

GND

DC
DC

8 Derating

There is no derating when operated below 55°C.
During operation over 55°C, the power dissipation of the modules to the left and right of this module is not permitted
to exceed 1.15 W!
For an example of calculating the power dissipation of I/O modules, see section "Mechanical and electrical config-
uration - Power dissipation of I/O modules" in the X20 user's manual.

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

Th
is

 m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

X20DS1828

6 Data sheet V1.20

9 Register description

9.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" of the X20 system user's
manual.

9.2 Register overview - Function model 0 (standard)

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Module configuration
513 CfO_SIframeGenID USINT ●

Basic functions
683 SDCLifeCount SINT ●

1236 PositionHW UDINT ●
PositionLW UDINT1244
Position DINT

●

1228 PosTime (32-bit) DINT ●
1230 PosTime (16-bit) INT ●
1219 PosCycle SINT ●

Error management
387 ErrorEnableID_0F08 USINT ●

ErrorInfo USINT
EncoderSupplyError Bit 0
VssCheckError Bit 2
PositionError Bit 3
HfComError Bit 4

259

HfRefWarning Bit 5

●

AckErrorInfo USINT
AckEncoderSupplyError Bit 0
AckVssCheckError Bit 2
AckPositionError Bit 3
AckHfComError Bit 4

323

AckHfRefWarning Bit 5

●

2116 HfErrorCode UDINT ●
Sin/Cos - Configuration

1025 SinCosEnable USINT ●
1027 SinCosRefSource USINT ●
1034 SinCosVssMin UINT ●
1038 SinCosVssMax UINT ●
1044 SinCosQuitTime UDINT ●

HIPERFACE - Configuration
2049 HfMode USINT ●
2053 HfParity USINT ●
2055 HfCharTimeout USINT ●
2060 HfBaud UDINT ●
2068 HfRepressErrTime UDINT ●
2073 HfRefAdr USINT ●
2075 HfRefWidth USINT ●

HIPERFACE - Identification
2561 HfAdrIdent USINT ●
2563 HfSelectionIdent USINT ●
2631 HfIdentOk USINT ●
2688 HfRs485Settings USINT ●
2689 HfEncoderType USINT ●
2690 HfEepromSize USINT ●
2691 HfOptionFlags USINT ●
2692 HfFreeMemory USINT ●
2693 HfDataFields USINT ●

2693 + N HfExtByte0N (index N = 1 to 10) USINT ●
HIPERFACE - Additional positions

2817 AddPosAdr01 USINT ●
AddPosOk (byte) USINT
AddPosOk01 Bit 0

2887

AddPosOk02 Bit 1

●

2956 AddPosition01 DINT ●
2958 AddPosition01 INT ●
2948 AddPosTime01 DINT ●
2950 AddPosTime01 INT ●
2825 AddPosAdr02 USINT ●

X20DS1828

Data sheet V1.20 7

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

2972 AddPosition02 DINT ●
2974 AddPosition02 INT ●
2964 AddPosTime02 DINT ●
2966 AddPosTime02 INT ●

HIPERFACE - Additional analog values
3065 + N * 8 AnalogAdrCh0N (index N = 1 to 4) USINT ●
3067 + N * 8 AnalogCh0N (index N = 1 to 4) USINT ●

AnalogChOk (byte) USINT
AnalogChOk01 Bit 0
... ...

3143

AnalogChOk04 Bit 3

●

3194 + N * 16 AnalogChValue0N (index N = 1 to 4) (U)INT ●
3188 + N * 16 AnalogChTime0N (index N = 1 to 4) (32-bit) DINT ●
3190 + N * 16 AnalogChTime0N (index N = 1 to 4) (16-bit) INT ●
Flatstream mode

2305 OutputMTU USINT ●
2307 InputMTU USINT ●
2309 FlatStreamMode USINT ●
2311 Forward USINT ●
2316 ForwardDelay UINT ●
2368 InputSequence USINT ●

2368 + N RxByteN (index N = 1 to 15) USINT ●
2400 OutputSequence USINT ●

2400 + N TxByteN (index N = 1 to 15) USINT ●

X20DS1828

8 Data sheet V1.20

9.3 Register overview - Function model 254 (bus controller)

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

Module configuration
513 - CfO_SIframeGenID USINT ●

Basic functions
1236 0 PositionHW UDINT ●
1244 4 PositionLW UDINT ●
1219 15 PosCycle SINT ●

Error management
387 - ErrorEnableID_0F08 USINT ●

ErrorInfo USINT
EncoderSupplyError Bit 0
VssCheckError Bit 2
PositionError Bit 3
HfComError Bit 4

259 14

HfRefWarning Bit 5

●

AckErrorInfo USINT
AckEncoderSupplyError Bit 0
AckVssCheckError Bit 2
AckPositionError Bit 3
AckHfComError Bit 4

323 6

AckHfRefWarning Bit 5

●

2116 - HfErrorCode UDINT ●
Sin/Cos - Configuration

1025 - SinCosEnable USINT ●
1027 - SinCosRefSource USINT ●
1034 - SinCosVssMin UINT ●
1038 - SinCosVssMax UINT ●
1044 - SinCosQuitTime UDINT ●

HIPERFACE - Configuration
2049 - HfMode USINT ●
2053 - HfParity USINT ●
2055 - HfCharTimeout USINT ●
2060 - HfBaud UDINT ●
2068 - HfRepressErrTime UDINT ●
2073 - HfRefAdr USINT ●
2075 - HfRefWidth USINT ●

HIPERFACE - Identification
2561 - HfAdrIdent USINT ●
2563 - HfSelectionIdent USINT ●
2631 - HfIdentOk USINT ●
2688 - HfRs485Settings USINT ●
2689 - HfEncoderType USINT ●
2690 - HfEepromSize USINT ●
2691 - HfOptionFlags USINT ●
2692 - HfFreeMemory USINT ●
2693 - HfDataFields USINT ●

2693 + N - HfExtByte0N (index N = 1 to 10) USINT ●
HIPERFACE - Additional positions

2817 - AddPosAdr01 USINT ●
AddPosOk (byte) USINT
AddPosOk01 Bit 0

2887 -

AddPosOk02 Bit 1

●

2956 - AddPosition01 DINT ●
2958 - AddPosition01 INT ●
2825 - AddPosAdr02 USINT ●
2972 - AddPosition02 DINT ●
2974 - AddPosition02 INT ●

HIPERFACE - Additional analog values
3065 + N * 8 - AnalogAdrCh0N (index N = 1 to 4) USINT ●
3067 + N * 8 - AnalogCh0N (index N = 1 to 4) USINT ●

AnalogChOk (byte) USINT
AnalogChOk01 Bit 0
... ...

3143 -

AnalogChOk04 Bit 3

●

3194 + N * 16 - AnalogChValue0N (index N = 1 to 4) (U)INT ●
Flatstream mode

2305 - OutputMTU USINT ●
2307 - InputMTU USINT ●
2309 - FlatStreamMode USINT ●
2311 - Forward USINT ●
2316 - ForwardDelay UINT ●

X20DS1828

Data sheet V1.20 9

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

2368 8 InputSequence USINT ●
2368 + N 9 to 13 RxByteN (index N = 1 to 5) USINT ●

2400 0 OutputSequence USINT ●
2400 + N 1 to 5 TxByteN (index N = 1 to 5) USINT ●

1) The offset specifies the position of the register within the CAN object.

9.3.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use additional registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" of the X20
user's manual (version 3.50 or later).

9.3.2 CAN I/O bus controller

The module occupies 2 analog logical slots on CAN I/O.

9.4 Module configuration

The following configuration register can be used to configure different module settings. They can be used, for
example, to modify the module's behavior on an X2X Link network.

9.4.1 Data query

Name:
CfO_SIframeGenID
This register can be used to define when the synchronous/cyclic input data is generated. "X2X cycle optimized"
should be set for jitter-free data acquisition. "Fast reaction" can be set for the best performance.
Data type Value Information

9 Fast reactionUSINT
14 X2X cycle optimized;

Bus controller default

9.5 Basic functions

This module can import a position when used together with a HIPERFACE encoder. The received position data is
prepared in 2 different formats and given a timestamp. 6 registers are available for further processing. This allows
the user to choose which format is best suited for individual application.

9.5.1 SDC counter register

Name:
SDCLifeCount
The 8-bit counter register is needed for the SDC software package. It is incremented with the system clock to allow
the SDC to check the validity of the data frame.
Data type Value
SINT -128 to 127

9.5.2 Absolute position values

Name:
PositionHW
PositionLW
The absolute position of the encoder is defined using 64-bit resolution. The position value is stored in the Position-
HW and PositionLW registers. The upper 32 bits are stored the PositionHW register, while the lower 32 bits are
stored in the PositionLW register.
For SinCos signal evaluation, see "Format of the SinCos signal" on page 14 for information regarding the data
format.
Data type Value
2x UDINT 0 to 4,294,967,295

X20DS1828

10 Data sheet V1.20

9.5.3 SDC position value

Name:
Position
The SDC library requires a signed 32-bit position value. The position's low word can be accessed separately for
this. The value can also be used as default position value, however.
For SinCos signal evaluation, see "Format of the SinCos signal" on page 14 for information regarding the data
format.
Data type Value
DINT -2,147,483,648 to 2,147,483,647

9.5.4 NetTime of the position values

Name:
PosTime
The current NetTime value is assigned to each determined position in this register. The NetTime is recorded with
µs accuracy.
The SDC library requires a 16 bit value. The NetTime value is therefore also prepared in this format.
For more information about NetTime and timestamps, see "NetTime technology" on page 60.
Data type Value Information
DINT -2,147,483,648

to 2,147,483,647
INT -32,768 to 32,767

NetTime in µs

9.5.5 Counter for position values

Name:
PosCycle
PosCycle is an integer counter that is incremented as soon as the module has saved a new valid position value.
Data type Value
SINT -128 to 127

X20DS1828

Data sheet V1.20 11

9.6 Error management

This module can be used to diagnose error states. There are 2 ways this module performs error diagnostics:

• "Module-based diagnostics" on page 11
• "HIPERFACE-based diagnostics" on page 13

9.6.1 Module-based diagnostics

Like most B&R modules, this module is also able to detect errors on its own. It diagnoses 5 different errors or
warnings. The error bits can be retrieved individually or grouped together.

9.6.1.1 Enabling/disabling error messages

Name:
ErrorEnableID_0F08
The implemented diagnostic algorithms can be enabled or disabled in this register.
Data type Value Bus controller default
USINT See bit structure. 255

Bit structure:
Bit Name Value Information

0 Error detection disabled0 Encoder supply
1 Error detection enabled (bus controller default setting)

1 Reserved -
0 Error detection disabled2 Vss Sin/Cos
1 Error detection enabled (bus controller default setting)
0 Error detection disabled3 Position error
1 Error detection enabled (bus controller default setting)
0 Error detection disabled4 HIPERFACE communication
1 Error detection enabled (bus controller default setting)
0 Warning disabled5 HIPERFACE reference warning
1 Warning enabled (bus controller default setting)

6 - 7 Reserved -

Encoder supply

The encoder voltage supply is below the permitted limit.

Vss Sin/Cos

The voltage value for the Sin/Cos track violates the configured limit values.
→ See register "SinCosVssMin" on page 15 or "SinCosVssMax" on page 15

Position error

The position value determined violates internal requirements.

HIPERFACE communication

Communication error on the HIPERFACE interface (RS485)
→ See register "HfErrorCode" on page 13

HIPERFACE reference warning

The digital interface provides an absolute position value that can be used to accurately describe the axis position.
The position value is homed to this absolute value at the beginning of a measurement. The analog interface can be
used to incrementally sample changes that occur very rapidly. This enables the module to continue sampling the
position value at a high resolution. Both the analog and the digital signal are sampled cyclically. If the value read
incrementally deviates from the absolute value during operation, then the warning is generated and the position
must be homed again.

X20DS1828

12 Data sheet V1.20

9.6.1.2 Show error messages

Name:
ErrorInfo
EncoderSupplyError
VssCheckError
PositionError
HfComError
HfRefWarning
This register indicates any errors or warnings that have not yet been acknowledged. For the meaning of individual
error messages, see register "Enabling/disabling error messages" on page 11.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No error0 EncoderSupplyError
1 Encoder supply error

1 Reserved -
0 No error2 VssCheckError
1 Vss error on the Sin/Cos track
0 No error3 PositionError
1 Position error
0 No error4 HfComError
1 HIPERFACE communication error
0 No warning5 HfRefWarning
1 HIPERFACE reference warning

6 - 7 Reserved -

9.6.1.3 Acknowledge error messages

Name:
AckErrorInfo
AckEncoderSupplyError
AckVssCheckError
AckPositionError
AckHfComError
AckHfRefWarning
This register is used to acknowledge an error or warning message that occurred in the "Show error messages"
on page 12 register. For the meaning of individual error messages, see register "Enabling/disabling error mes-
sages" on page 11.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No error acknowledgment0 AckEncoderSupplyError
1 Error acknowledgment

1 Reserved -
0 No error acknowledgment2 AckVssCheckError
1 Error acknowledgment
0 No error acknowledgment3 AckPositionError
1 Error acknowledgment
0 No error acknowledgment4 AckHfComError
1 Error acknowledgment
0 No acknowledgment5 AckHfRefWarning
1 Acknowledgment

6 - 7 Reserved -

X20DS1828

Data sheet V1.20 13

9.6.2 HIPERFACE-based diagnostics

Memory areas are provided in the HIPERFACE standard for error diagnostics. Error management has been ad-
justed in order to use error detection in accordance with the HIPERFACE standard. An additional register has
been implemented in the module to provide this area in the encoder's memory. This error memory is mirrored in
the module's registers and can be interpreted by the user. Detailed information regarding the errors that can be
detected in this way can be found in the encoder's manual.

9.6.2.1 HfErrorCode

Name:
HfErrorCode
This register is used to store the error code that identifies the current problem with the HIPERFACE interface.
Data type Value
UDINT See bit structure.

Internally, the register consists of 4 pieces of information.
Bit structure:

Bit Name Information
00 - 07 Error ID See below
08 - 15 Last command Command that caused the error on the slave
16 - 23 Station address Address of the faulty HIPERFACE slave
24 - 31 Error counter Counts the number of errors that have occurred

Bit 00-07 (error ID)
These 8 bits of this register specify the error that has occurred. The error ID is not a standard value, however,
and must be looked up in the manual for the HIPERFACE slave. The module also diagnoses a timeout on the
HIPERFACE interface. This triggers error ID 255.

X20DS1828

14 Data sheet V1.20

9.7 Sin/Cos - Analog interface configuration

In addition to the digital HIPERFACE interface, this module is also equipped with an analog interface for sampling
a differential sine-cosine signal. To increase the resolution, the EnDat standard supports cooperation between
the analog and digital data. This enables a highly dynamic representation of the position while maintaining high
resolution.

9.7.1 Format of the SinCos signal

The SinCos signal is represented as a position value in the "Absolute position values" on page 9 and "SDC position
value" on page 10 registers. The following relationships apply:

• PositionLW and Position are identical in the function.
• PositionHW extends the integer range of PositionLW by adding multi-turn functionality.

64-bit register PositionHW
(unsigned)

PositionLW
(unsigned)

32-bit register - Position (signed)
Format Integer extension

(to 48-bit)
Integer
(16-bit)

Decimal places:
(with 13-bit resolution)

Information A full sine wave corresponds
to an increment of the integer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x x x x x x x x x x x x x 0 0 0

Important: The lower 3 bits always contain the value 0.
Word/DWord DWord Word 1 Word 0

Relationship between sine curve (red) and decimal places:

0x0000,0000 0x0000,4000 0x0000,8000 0x0000,C000 0x0000,0000

9.7.2 Enabling SinCos

Name:
SinCosEnable
This register must always have the value 1 for configuration reasons.
Data type Value Information
USINT 1 Bus controller default: 1

9.7.3 SinCosRefSource

Name:
SinCosRefSource
This register must always have the value 3 for configuration reasons.
Data type Value Information
USINT 3 Bus controller default: 3

X20DS1828

Data sheet V1.20 15

9.7.4 Configuring the lower Vss value

Name:
SinCosVssMin
This register specifies the lower limit value for the peak-to-peak voltage of the sine/cosine track. The incoming
signal is monitored in this way. If the incoming value falls below this specified limit, then the module reports the
corresponding error.
Data type Value Information
UINT 0 to 1500 Values in mV

Bus controller default: 800

9.7.5 Configuring the upper Vss value

Name:
SinCosVssMax
This register specifies the upper limit value for the peak-to-peak voltage of the sine/cosine track. The incoming
signal is monitored in this way. If the incoming value exceeds this specified limit, then the module reports the
corresponding error.
Data type Value Information
UINT 0 to 1500 Values in mV

Bus controller default: 1200

9.7.6 Configuring the delay time after errors

Name:
SinCosQuitTime
If an error is detected on the analog interface, the last correctly read values remain valid. An interval can be defined
in this register at which the module begins receiving correct values again after the error state without processing
them further internally. Only then will newly sampled correct analog values be recognized as valid.
Data type Value Information
UDINT 0 to 20000000 Values in µs

Bus controller default: 100000

X20DS1828

16 Data sheet V1.20

9.8 HIPERFACE

9.8.1 HIPERFACE - Digital interface configuration

HIPERFACE builds upon the RS-485 (EIA-485) specification and permits communication with multiple HIPER-
FACE slaves.
There are 2 methods available to use the slave data in a PLC program. One is to store the necessary slave values
temporarily in the module, where they can then be provided to the CPU. The other is to use the module's FlatStream
mode, which supports the full range of commands defined in the HIPERFACE specification.
Additional information regarding the HIPERFACE specification is provided in the "Description of HIPERFACE"
document.

9.8.1.1 HfMode

Name:
HfMode
This register is used to enable the HIPERFACE interface and must always be set to the value 1 for configuration
reasons.
Data type Value Information
USINT 1 Bus controller default: 1

9.8.1.2 HfParity

Name:
HfParity
This register configures the parity bit for the interface.
Data type Values Information

69 E → even parity bit
Bus controller default setting

78 N → no parity bit

USINT

79 O → odd parity bit

9.8.1.3 HfCharTimeout

Name:
HfCharTimeout
This register configures the time that the module waits after receiving the last data block to add additional data to
the current data packet (frame). When this time expires, the data received thus far is saved in a frame. The transfer
is complete and the data can be evaluated.

Information:
Time is specified as a char value in order to ensure identical behavior regardless of the baud rate
setting.

Data type Values Information
USINT 1 to 255 Char

Bus controller default setting: 55

X20DS1828

Data sheet V1.20 17

9.8.1.4 HfBaud

Name:
HfBaud
This register configures the baud rate (transfer rate) of the interface.
The module does not allow a transfer rate of 600 baud.
Data type Values Information
UDINT 1200, 2400, 4800,

9600, 19200, 38400
Baud
Bus controller default setting: 9600

9.8.1.5 HfRepressErrTime

Name:
HfRepressErrTime
This register configures the minimum time that an error code remains in the "HfErrorCode" register. This makes it
possible to ensure that the CPU registers every error that occurs.
Data type Value Information
UDINT 1 to 20000000 Time in µs;

Bus controller default: 100000

9.8.1.6 HfRefAdr

Name:
HfRefAdr
This module can manage up to 32 HIPERFACE slaves via its digital interface. High-resolution position sampling,
however, requires information from both the digital and analog interfaces. The HIPERFACE address of the station
whose sine/cosine track is being read by the module is entered in this register. If there is only one slave on the
network, the broadcast address (255) can also be used.
Data type Values Information

0 Operation without sine/cosine track
64 to 95 Open address range for max. 32 HIPERFACE slaves.

Bus controller default setting: 64

USINT

255 Broadcast address

9.8.1.7 HfRefWidth

Name:
HfRefWidth
This register is used to set the absolute width for the sampled position. The number of bits must be taken from the
data provided by the encoder manufacturer and usually consists of three values:

• 5-bit: Resolution of the digital absolute position
• 2y-bit: Number of sine/cosine periods per revolution
• x-bit: HIPERFACE data format, number of bits per revolution

The sum of the sampled values results in the HfRefWidth (i.e. 5+x+y).
Data type Values Information
USINT 8 to 32 Bus controller default setting: 32

Example:
The position width of the reference station must be 21 when using the 80MPH4.600S111-02 motor. This is because
the HIPERFACE encoder being used measures the absolute position with 21-bit data width (the x = 12 most
significant bits encode the multi-turn information, the next y = 4 bits count the sin/cos period within a mechanical
revolution and the z = 5 least significant bits encode the absolute position within a sin/cos period). If a value > 21
is set (e.g. 32), then the module firmware detects a supposed jump in the absolute position on each zero crossing
of the absolute position (i.e. overflow of 21-bit position value of from 0x00000000 to 0x0001FFFF, or vice versa).

X20DS1828

18 Data sheet V1.20

9.8.2 HIPERFACE - Read ID

The digital interface provides the option of assigning a HIPERFACE slave a specific ID. Its parameter data can
be queried when booting the PLC, for example. Any deviations from the previous hardware constellation can then
be handled accordingly in the program.

Configuration

The parameter to be read is specified by 2 registers. One of the registers contains the address of the desired
HIPERFACE slave; the other contains a code for the value to be read.

9.8.2.1 HfAdrIdent

Name:
HfAdrIdent
This register is used to set the HIPERFACE address of the slave with parameters that are to be processed in
the module.
Data type Values Information

0 Identification deactivated
Bus controller default setting

64 to 95 Open address range for max. 32 HIPERFACE slaves

USINT

255 Broadcast address (when operating with one slave)

9.8.2.2 HfSelectionIdent

Name:
HfSelectionIdent
This register defines the parameters that should be provided in the slave response and buffered in the module's
"HfExtByte" on page 20 register.
Data type Values Values

0 Serial number
Bus controller default setting

1 Firmware date
2 High part of firmware version

USINT

3 Low part of firmware version

Call

After being configured correctly, the selected parameter is transmitted cyclically to the module. There are 8 registers
that serve as temporary storage. The module confirms successful receipt by setting the HfIdentOkByte.

9.8.2.3 HfIdentOk

Name:
HfIdentOk
This register's bits provide information about the validity of the latest ID values in temporary storage.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Parameter 01 invalid0 HfIdentOk01
1 Parameter 01 valid

1 - 7 Reserved -

X20DS1828

Data sheet V1.20 19

9.8.2.4 HfRs485Settings

Name:
HfRs485Settings
This register is used to temporarily store the current network configuration expected by the slave. The register
value is specifically structured for HIPERFACE.
Data type Value
USINT See bit structure.

Bit structure:
Bit Name Value Information

001 1200 baud
010 2400 baud
011 4800 baud
100 9600 baud
101 19200 baud

0 - 2 Speed code

110 38400 baud
3 Reserved -

0 No parity bit4 Number of parity bits
1 1 parity bit
0 Even5 Type of parity bit
1 Odd
0 Timeout 11/baudrate6 Behavior if a timeout occurs
1 Timeout 4*11/baud rate
0 Bus7 Network behavior
1 Direct connection

9.8.2.5 HfEncoderType

Name:
HfEncoderType
This register is used to temporarily store the ID of the current encoder. The register value is structured specifically
for each slave and must be looked up in the encoder's data sheet.
Data type Values
USINT 0 to 255

9.8.2.6 HfEepromSize

Name:
HfEepromSize
This register is used to store the size of the EEPROM being used. The number of 16-byte blocks is specified.
Data type Values Values
USINT 0 to 255 16-byte blocks

9.8.2.7 HfOptionFlags

Name:
HfOptionFlags
This register is used to store slave-specific hardware and software settings.
Data type Values
USINT 0 to 255

X20DS1828

20 Data sheet V1.20

9.8.2.8 HfFreeMemory

Name:
HfFreeMemory
This register is used to indicate the number of free 16-byte blocks remaining on the HIPERFACE slave.
Data type Values Information
USINT 0 to 255 16-byte blocks

9.8.2.9 HfDataFields

Name:
HfDataFields
This register is used to indicate the number of data fields that have been written thus far.
Data type Values
USINT 0 to 255

9.8.2.10 HfExtByte

Name:
HfExtByte01 to HfExtByte10
These registers provide the respective parameters according to how the "HfSelectionIdent" on page 18 register
is configured.
Data type Values
USINT 0 to 255

X20DS1828

Data sheet V1.20 21

9.8.3 HIPERFACE - Reading additional encoder positions

This module can read up to 2 additional position values via the HIPERFACE interface and provide them to the
PLC. Each position value is accompanied by a timestamp.

Configuration

The address must be specified in order to read the position value from the respective HIPERFACE interface. One
address register is provided for each position value.

9.8.3.1 AddPosAdr

Name:
AddPosAdr01 to AddPosAdr02
These registers are used to set the addresses of the HIPERFACE slaves with position values that should be
processed in the module.
Data type Values Information

0 Additional encoder position disabled
Bus controller default setting

64 to 95 Open address range for max. 32 HIPERFACE slaves

USINT

255 Broadcast address (when operating with one slave)

Call

After being configured correctly, the position value is transferred cyclically to the module. Each slave has five reg-
isters that serve as temporary storage. The module automatically generates the timestamp and confirms success-
ful transmission by setting the corresponding AddPosOk0x bit. The HIPERFACE specification does not specify in
which format the parameters must be received. The module therefore provides the position value and time in two
variants. Which of the position registers should be used for further processing depends on the HIPERFACE slave.
The user is free to define the format of the timestamp.

9.8.3.2 AddPosOk (byte)

Name:
AddPosOk01 to AddPosOk02
This register's bits provide information about the validity of the last position values in temporary storage.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Position value 01 invalid0 AddPosOk01
1 Position value 01 valid
0 Position value 02 invalid1 AddPosOk02
1 Position value 02 valid

2 - 7 Reserved -

X20DS1828

22 Data sheet V1.20

9.8.3.3 AddPosition

Name:
AddPosition01 to AddPosition02
These registers provide the current position values, depending on the register address, as signed 2-byte or 4-
byte values.
Data type Values
DINT -2,147,483,648 to 2,147,483,647
INT -32768 to 32767

9.8.3.4 AddPosTime

Name:
AddPosTime01 to AddPosTime02
These registers provide the timestamp of the most recently received position values, depending on the register
address, as signed 2-byte or 4-byte values.
For more information about NetTime and timestamps, see "NetTime technology" on page 60.
Data type Values Information
DINT -2,147,483,648

to 2,147,483,647
INT -32768 to 32767

NetTime in µs

X20DS1828

Data sheet V1.20 23

9.8.4 HIPERFACE - Reading additional analog values

This module can read up to 4 analog values (16-bit) via the HIPERFACE interface and provide them to the PLC.
Each analog value is accompanied by a timestamp.

Configuration

The analog value to be read is specified by 2 registers. One of them contains the address of the desired station,
and the other the channel of the parameter to be read. An overview of analog values that can be read is provided
in the data sheet for the respective slave.

9.8.4.1 AnalogAdrCh

Name:
AnalogAdrCh01 to AnalogAdrCh04
These registers are use to set the addresses of the HIPERFACE slaves with analog values that should be
processed in the module. To query multiple values from one HIPERFACE slave, it may make sense to write the
same address to different AnalogAdrCh registers.
Data type Values Information

0 Additional analog values disabled
Bus controller default setting

64 to 95 Open address range for max. 32 HIPERFACE slaves

USINT

255 Broadcast address (when operating with one slave)

9.8.4.2 AnalogCh

Name:
AnalogCh01 to AnalogCh04
These registers define the channel to be read that is written by the bus station to the module's temporary storage.
Data type Values Information
USINT See encoder data sheet Bus controller default setting: 0

Call

After being configured correctly, the analog value is transferred cyclically to the module. There are 5 registers
that serve as temporary storage. The module automatically generates the timestamp and confirms successful
transmission by setting the corresponding AnalogChOk0x bit. The HIPERFACE specification does not specify in
which format the parameters must be received. The module therefore provides the value and time in two variants.
Which of the value registers should be used for further processing depends on the peripheral equipment. The user
is free to define the format of the timestamp.

X20DS1828

24 Data sheet V1.20

9.8.4.3 AnalogChOk (byte)

Name:
AnalogChOk01 to AnalogChOk04
This register's bits provide information about the validity of the values in temporary storage.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Analog value 01 invalid0 AnalogChOk01
1 Analog value 01 valid

... ...
0 Analog value 04 invalid3 AnalogChOk04
1 Analog value 04 valid

4 - 7 Reserved -

9.8.4.4 AnalogChValue

Name:
AnalogChValue01 to AnalogChValue04
These registers provide the current analog values, depending on the register address, as signed or unsigned 2-
byte values.
Data type Values
UINT 0 to 65535
INT -32768 to 32767

9.8.4.5 AnalogChTime

Name:
AnalogChTime01 to AnalogChTime04
These registers provide the timestamp of the most recently received analog values, depending on the register
address, as signed 2-byte or 4-byte values.
For more information about NetTime and timestamps, see "NetTime technology" on page 60.
Data type Values Information
DINT -2,147,483,648

to 2,147,483,647
INT -32768 to 32767

NetTime in µs

X20DS1828

Data sheet V1.20 25

9.9 Flatstream communication

9.9.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

X20DS1828

26 Data sheet V1.20

9.9.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

X20DS1828

Data sheet V1.20 27

9.9.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages once they have been completely transferred.

X20DS1828

28 Data sheet V1.20

9.9.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

9.9.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

9.9.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

X20DS1828

Data sheet V1.20 29

9.9.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

9.9.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

9.9.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

9.9.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Description Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 of the control byte.

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is to be expected. This information is especially important
when using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.

X20DS1828

30 Data sheet V1.20

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

9.9.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

X20DS1828

Data sheet V1.20 31

9.9.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

X20DS1828

32 Data sheet V1.20

9.9.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

X20DS1828

Data sheet V1.20 33

9.9.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

X20DS1828

34 Data sheet V1.20

9.9.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

X20DS1828

Data sheet V1.20 35

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

X20DS1828

36 Data sheet V1.20

9.9.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ The OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

X20DS1828

Data sheet V1.20 37

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flow chart

SynchronizationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

Copy next sequence to MTU
Increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter?

OutputSequenceAck = 0?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter?

More sequences to be sent?

diff = 0?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flow chart for the output direction

X20DS1828

38 Data sheet V1.20

9.9.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data does not change in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

X20DS1828

Data sheet V1.20 39

General flow chart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

iz
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1? InputSequenceAck > 0?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1?

MTU_Offset = 0

RemainingSegmentSize = 0?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size - MTU_Offset)?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0?

InputMTU_Size = MTU_Offset?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0?

► InputSequenceAck =
InputSequenceCounter

► Mark frame as complete

InputSyncBit = 1?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

Copy segment data, e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flow chart for the input direction

X20DS1828

40 Data sheet V1.20

9.9.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again once the channel has been
resynchronized.

X20DS1828

Data sheet V1.20 41

9.9.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Description Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

X20DS1828

42 Data sheet V1.20

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

X20DS1828

Data sheet V1.20 43

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

X20DS1828

44 Data sheet V1.20

9.9.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

X20DS1828

Data sheet V1.20 45

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

X20DS1828

46 Data sheet V1.20

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

X20DS1828

Data sheet V1.20 47

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

X20DS1828

48 Data sheet V1.20

9.9.5 Example of Forward functionality on X2X Link

Forward functionality is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

9.9.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array
Adjust SequenceAck

Cyclic matching of
MTU and module buffer

Check SequenceAck

Resource Sender
(task to transmit)

Bus system
(direction 1)

Recipient
(task to receive)

Bus system
(direction 2)

Sender
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

X20DS1828

Data sheet V1.20 49

9.9.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

9.9.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

9.9.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in µs. This is the amount of time the module has to
wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle. The
program routine for receiving sequences from a module can therefore be run in a task class whose cycle time is
slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

X20DS1828

50 Data sheet V1.20

9.9.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

X20DS1828

Data sheet V1.20 51

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

X20DS1828

52 Data sheet V1.20

9.9.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

X20DS1828

Data sheet V1.20 53

9.10 HIPERFACE with FlatStream

HIPERFACE is an asynchronous interface capable of half-duplex communication. Various features have been
included to ensure that signals are transmitted without errors.

• The user can choose to have a parity bit added when transmitting a data block.
• A checksum is sent together with a signal and evaluated by the receiver.
• The command to which the encoder is responding is repeated at the start of a response.

In FlatStream mode, the module acts as a bridge between the CPU and the HIPERFACE slave. HIPERFACE-spe-
cific algorithms have been implemented to monitor timeouts and handle checksums. During normal operation, the
user does not have access to these details.
Additional information is provided in the "Description of HIPERFACE" document.

9.10.1 Overview of conventional HIPERFACE commands for FlatStream mode

Command byte [hex] Command Code0
0x42 Read position
0x43 Set position ●
0x44 Read analog value
0x46 Read counter
0x47 Increment counter
0x49 Delete counter ●
0x4A Read data
0x4B Save data
0x4C Read status of a data field
0x4D Create data field
0x4E Read available memory area
0x4F Change access key
0x50 Read encoder status
0x52 Read nameplate
0x53 Reset encoder
0x55 Allocate encoder address ●
0x56 Read serial number and program version
0x57 Configure serial interface ●

Code0 is a byte that was added to the transfer protocol for safety reasons. It protects important system parameters
from being overwritten by mistake (default: Code0 = 0x55).

9.10.2 Read position (0x42)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x42 Command byte (read position)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x42

Repeated address and command byte (safety)

3 Pos_HH
4 Pos_HL
5 Pos_LH
6 Pos_LL

Response (data bytes)

Master

X20DS1828

54 Data sheet V1.20

9.10.3 Set position (0x43)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x43 Command byte (set position)
3 Pos_HH
4 Pos_HL
5 Pos_LH
6 Pos_LL

New position (data bytes)

7 Code0 Safety byte in accordance with the HIPERFACE specification
Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x43

Repeated address and command byte (safety)

Master

9.10.4 Read analog value (0x44)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x44 Command byte (read analog value)
3 channel Channel byte (selects desired analog value)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x44
3 channel

Repeated address, command byte and channel byte (safety)

4 Value_H
5 Value_L

Value read

Master

9.10.5 Read counter (0x46)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x46 Command byte (read counter)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x46

Repeated address and command byte (safety)

3 Ctr_H
4 Ctr_M
5 Ctr_L

Counter value

Master

X20DS1828

Data sheet V1.20 55

9.10.6 Increment counter (0x47)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x47 Command byte (increment counter)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x47

Repeated address and command byte (safety)

Master

9.10.7 Clear counter (0x49)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x49 Command byte (clear counter)
3 Code0 Safety byte in accordance with the HIPERFACE specification

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x49

Repeated address and command byte (safety)

Master

9.10.8 Read data (0x4A)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4A Command byte (read data)
3 Data field
4 Byte address
5 Count

ID of data to be read:
Number of the data field, start byte within the data field and number of bytes to be read

6 Access code Access code in accordance with the HIPERFACE specification
Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4A
3 Data field
4 Byte address
5 Count

Repeated address, command byte and ID of data to be read (safety)

6...n Data1...n Data to be read
Master

X20DS1828

56 Data sheet V1.20

9.10.9 Save data (0x4B)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4B Command byte (save data)
3 Data field
4 Byte address
5 Count

ID of data to be saved:
Number of the data field, start byte within the data field and number of bytes to be read

6 Access code Access code in accordance with the HIPERFACE specification
7...x Data1...n Data to be saved

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4B
3 Data field
4 Byte address
5 Count

Repeated address, command byte and ID of data to be saved (safety)

Master

9.10.10 Read status of a data field (0x4C)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4C Command byte (determine status of a data field)
3 Data field Number of the data field

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4C
3 Data field

Repeated address, command byte and number of the data field (safety)

4 Status Access mode for queried data field
Master

X20DS1828

Data sheet V1.20 57

9.10.11 Create data field (0x4D)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4D Command byte (create data field)
3 Data field Number of the data field
4 Status Access mode for the data field
5 Access code Access code in accordance with the HIPERFACE specification

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4D
3 Data field
4 Status

Repeated address, command byte, number of the data field and access mode of the data field (safety)

Master

9.10.12 Read available memory area (0x4E)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4E Command byte (read available memory area)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4E

Repeated address and command byte (safety)

3 Free memory Number of available 16-byte blocks
4 Number of

data fields
Number of data fields

Master

9.10.13 Change access key (0x4F)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x4F Command byte (change access key)
3 Code number
4 Old code
5 New code

Safety code from the slave manufacturer

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x4F
3 Code number

Repeated address, command byte and code number (safety)

Master

X20DS1828

58 Data sheet V1.20

9.10.14 Read encoder status (0x50)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x50 Command byte (read encoder status)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x50

Repeated address and command byte (safety)

3 Encoder
status

Status byte as specified by the slave manufacturer

Master

9.10.15 Read nameplate (0x52)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x52 Command byte (read nameplate)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x52

Repeated address and command byte (safety)

3 RS485
settings

4 Encoder type
5 Size of

EEPROM
6 Options

Nameplate in accordance with HIPERFACE specification:
HIPERFACE configuration, type of encoder, size of memory and other options

Master

9.10.16 Encoder reset (0x53)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x53 Command byte (encoder reset)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
- - No response

Master

X20DS1828

Data sheet V1.20 59

9.10.17 Allocate encoder address (0x55)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x55 Command byte (allocate encoder address)
3 New address New HIPERFACE address
4 Code0 Safety byte in accordance with the HIPERFACE specification

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x55

Repeated address and command byte (safety)

Master

9.10.18 Read serial number and program version (0x56)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x56 Command byte (read serial number and program version)

Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x56

Repeated address and command byte (safety)

3...11 Serial number 9 characters
12...n Firmware

version
Max. 20 characters

...n+8 Firmware date 8 characters (format: DD.MM.YY)
Master

9.10.19 Configure serial interface (0x57)

Master command
Protocol bytes

No. Name
Information

Master
1 Address Address of the HIPERFACE slave
2 0x57 Command byte (configure serial interface)
3 RS485

settings
New baud rate in accordance with the HIPERFACE specification

4 Code0 Safety byte in accordance with the HIPERFACE specification
Slave

Slave response
Protocol bytes

No. Name
Information

Slave
1 Address
2 0x57
3 RS485

settings

Repeated address, command byte and new baud rate (safety)

Master

X20DS1828

60 Data sheet V1.20

9.11 NetTime technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual components of
the controller or network (CPU, I/O modules, X2X Link, POWERLINK, etc.).
This allows the time that events occur to be determined system-wide with microsecond precision. Upcoming events
can also be executed precisely at a given time.

9.11.1 Time information

Various time information is available in the controller or on the network:

• System time (on the PLC, Automation PC, etc.)
• X2X Link time (for each X2X Link network)
• POWERLINK time (for each POWERLINK network)
• Time data points of I/O modules

The NetTime is based on 32-bit counters, which are increased with µs timing. The sign of the time information
changes after 35 min, 47 s, 483 ms and 648 µs; an overflow occurs after 71 min, 34 s, 967 ms and 296 µs.
The initialization of the times is based on the system time during the startup of the X2X Link, the I/O modules or
the POWERLINK interface.
Current time information in the application can also be determined via library AsIOTime.

9.11.1.1 PLC/Controller data points

The NetTime I/O data points of the PLC or the controller are latched to each system clock and made available.

9.11.1.2 X2X Link reference time

X2X Link

Full cycle Half cycle

SI AO AISOAIAOSISOAIAO

Full cycle Full cycleHalf cycle

Task class Task class Task class

System time System time System timeX2X Link
time

X2X Link
time

23000 24000 25000 26000 27000

System cycle time = 2 ms
X2X cycle time = 2 ms

The reference time on the X2X Link network is always formed at the half cycle of the X2X Link cycle. This results
in a difference between the system time and the X2X Link reference time when the reference time is read out.
In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference time are
compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link reference
time returns the value 24000.

X20DS1828

Data sheet V1.20 61

9.11.1.3 POWERLINK reference time

Full cycle

PReqSoC

Full cycle Full cycle

Task class Task class Task class

System time System time System time

POWERLINK
NetTime SoC

23000 25000 27000

System cycle time = 2 ms
POWERLINK system cycle time = 2 ms

POWERLINK
NetTime SoC

POWERLINK
NetTime SoC

PRes PReq PReqSoC PRes PReq... ...

The reference time at POWERLINK is always formed at the SoC (Start of Cycle) of the POWERLINK network.
The SoC starts 20 µs after the system tick. This results in the following difference between the system time and
the POWERLINK reference time:
POWERLINK reference time = System time - POWERLINK cycle time + 20 µs.
In the example above, this means a difference of 1980 µs, i.e. if the system time and POWERLINK reference
time are compared at time 25000 in the task, then the system time returns the value 25000 and the POWERLINK
reference time returns the value 23020.

9.11.1.4 Synchronization of system time/POWERLINK time and I/O module

Time

X2X Link cycle

(E)

(S)

C
ou

nt
er

 v
al

ue

(1)

(2)
Counter PLC/POWERLINK
Counter I/O module

(E)

(S)

At startup, the internal counters for the PLC/POWERLINK (1) and the I/O module (2) start at different times and
increase the values at µs intervals.
At the beginning of each X2X Link cycle, the PLC or the POWERLINK network sends time information to the I/
O module. The I/O module compares this time information with the module's internal time and forms a difference
(green line) between the two times and stores it.
When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored difference
value (brown line). This means that the exact system time (S) of an event can always be determined, even if the
counters are not absolutely synchronous.
Note
The deviation from the clock signal is strongly exaggerated in the picture as a red line.

X20DS1828

62 Data sheet V1.20

9.11.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a timestamp
event occurs, the module immediately saves the current NetTime. After the respective data is transferred to the
CPU, including this precise time, the CPU can then evaluate the data using its own NetTime (or system time), if
necessary.

9.11.2.1 Time-based inputs

NetTime Technology can be used to determine the exact time of a rising edge at an input. The rising and falling
edges can also be detected and the duration between 2 events can be determined.

Information:
The determined time always lies in the past.

9.11.2.2 Time-based outputs

NetTime Technology can be used to specify the exact time of a rising edge at an output. The rising and falling
edges can also be specified and a pulse pattern generated from them.

Information:
The specified time must always be in the future and the set X2X Link cycle time must be taken into
account for the definition of the time.

9.11.2.3 Time-based measurements

NetTime Technology can be used to determine the exact time of a measurement that has taken place. Both the
start and the end time of the measurement can be transmitted.

9.12 Minimum I/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update to
take place in each cycle.

Minimum I/O update time
100 µs

9.13 Minimum cycle time

The minimum cycle time specifies the time up to which the bus cycle can be reduced without communication
errors occurring. It is important to note that very fast cycles reduce the idle time available for handling monitoring,
diagnostics and acyclic commands.

Minimum cycle time
100 μs

	X20DS1828
	1 General information
	2 Order data
	3 Technical data
	4 LED status indicators
	5 Pinout
	6 Connection example
	7 Input circuit diagram
	7.1 Diagram for the process data channel (sine-cosine track)
	7.2 Circuit diagram for the parameter channel (RS485 interface)
	7.3 Circuit diagram for the encoder supply and LEDs

	8 Derating
	9 Register description
	9.1 General data points
	9.2 Register overview - Function model 0 (standard)
	9.3 Register overview - Function model 254 (bus controller)
	9.3.1 Using the module on the bus controller
	9.3.2 CAN I/O bus controller

	9.4 Module configuration
	9.4.1 Data query

	9.5 Basic functions
	9.5.1 SDC counter register
	9.5.2 Absolute position values
	9.5.3 SDC position value
	9.5.4 NetTime of the position values
	9.5.5 Counter for position values

	9.6 Error management
	9.6.1 Module-based diagnostics
	9.6.1.1 Enabling/disabling error messages
	9.6.1.2 Show error messages
	9.6.1.3 Acknowledge error messages

	9.6.2 HIPERFACE-based diagnostics
	9.6.2.1 HfErrorCode

	9.7 Sin/Cos - Analog interface configuration
	9.7.1 Format of the SinCos signal
	9.7.2 Enabling SinCos
	9.7.3 SinCosRefSource
	9.7.4 Configuring the lower Vss value
	9.7.5 Configuring the upper Vss value
	9.7.6 Configuring the delay time after errors

	9.8 HIPERFACE
	9.8.1 HIPERFACE - Digital interface configuration
	9.8.1.1 HfMode
	9.8.1.2 HfParity
	9.8.1.3 HfCharTimeout
	9.8.1.4 HfBaud
	9.8.1.5 HfRepressErrTime
	9.8.1.6 HfRefAdr
	9.8.1.7 HfRefWidth

	9.8.2 HIPERFACE - Read ID
	9.8.2.1 HfAdrIdent
	9.8.2.2 HfSelectionIdent
	9.8.2.3 HfIdentOk
	9.8.2.4 HfRs485Settings
	9.8.2.5 HfEncoderType
	9.8.2.6 HfEepromSize
	9.8.2.7 HfOptionFlags
	9.8.2.8 HfFreeMemory
	9.8.2.9 HfDataFields
	9.8.2.10 HfExtByte

	9.8.3 HIPERFACE - Reading additional encoder positions
	9.8.3.1 AddPosAdr
	9.8.3.2 AddPosOk (byte)
	9.8.3.3 AddPosition
	9.8.3.4 AddPosTime

	9.8.4 HIPERFACE - Reading additional analog values
	9.8.4.1 AnalogAdrCh
	9.8.4.2 AnalogCh
	9.8.4.3 AnalogChOk (byte)
	9.8.4.4 AnalogChValue
	9.8.4.5 AnalogChTime

	9.9 Flatstream communication
	9.9.1 Introduction
	9.9.2 Message, segment, sequence, MTU
	9.9.3 The Flatstream principle
	9.9.4 Registers for Flatstream mode
	9.9.4.1 Flatstream configuration
	9.9.4.1.1 Number of enabled Tx and Rx bytes

	9.9.4.2 Flatstream operation
	9.9.4.2.1 Format of input and output bytes
	9.9.4.2.2 Transport of payload data and control bytes
	9.9.4.2.3 Control bytes
	9.9.4.2.4 Communication status of the CPU
	9.9.4.2.5 Communication status of the module
	9.9.4.2.6 Relationship between OutputSequence and InputSequence

	9.9.4.3 Synchronization
	9.9.4.4 Transmitting and receiving
	9.9.4.5 Transmitting data to a module (output)
	9.9.4.6 Receiving data from a module (input)
	9.9.4.7 Details
	9.9.4.8 Flatstream mode
	9.9.4.9 Adjusting the Flatstream

	9.9.5 Example of Forward functionality on X2X Link
	9.9.5.1 Function principle
	9.9.5.2 Configuration
	9.9.5.2.1 Number of unacknowledged sequences
	9.9.5.2.2 Delay time

	9.9.5.3 Transmitting and receiving with Forward
	9.9.5.4 Errors when using Forward

	9.10 HIPERFACE with FlatStream
	9.10.1 Overview of conventional HIPERFACE commands for FlatStream mode
	9.10.2 Read position (0x42)
	9.10.3 Set position (0x43)
	9.10.4 Read analog value (0x44)
	9.10.5 Read counter (0x46)
	9.10.6 Increment counter (0x47)
	9.10.7 Clear counter (0x49)
	9.10.8 Read data (0x4A)
	9.10.9 Save data (0x4B)
	9.10.10 Read status of a data field (0x4C)
	9.10.11 Create data field (0x4D)
	9.10.12 Read available memory area (0x4E)
	9.10.13 Change access key (0x4F)
	9.10.14 Read encoder status (0x50)
	9.10.15 Read nameplate (0x52)
	9.10.16 Encoder reset (0x53)
	9.10.17 Allocate encoder address (0x55)
	9.10.18 Read serial number and program version (0x56)
	9.10.19 Configure serial interface (0x57)

	9.11 NetTime technology
	9.11.1 Time information
	9.11.1.1 PLC/Controller data points
	9.11.1.2 X2X Link reference time
	9.11.1.3 POWERLINK reference time
	9.11.1.4 Synchronization of system time/POWERLINK time and I/O module

	9.11.2 Timestamp functions
	9.11.2.1 Time-based inputs
	9.11.2.2 Time-based outputs
	9.11.2.3 Time-based measurements

	9.12 Minimum I/O update time
	9.13 Minimum cycle time

