8B0C0320HC00.000-1

1 General information

- Extensive protective measures

2 Order data

Model number	Short description	Figure
	Cold plate or feed-through mounting	
8B0C0320HC00.000-1	ACOPOSmulti auxiliary supply module $32 \mathrm{~A}, \mathrm{HV}$, cold plate or feed-through mounting	-
	Required accessories	
	Terminal block sets	
8BZOC032000.000-1A	Screw clamp set for ACOPOSmulti 8B0C0xx0Hx00.000-1 modules: $1 \times$ 8TB2106.2010-00	
	Optional accessories	
	Fan modules	
8BXF001.0000-00	ACOPOSmulti fan module, replacement fan for ACOPOSmulti modules (8BxP/8B0C/8BVI/8BVE/8B0K)	
	Terminal blocks	
8TB2106.2010-00	6-pin screw clamp, single row, spacing: 5.08 mm , label 1: numbered serially	
8TB2106.2210-00	Push-in terminal block 6-pin, 1-row, spacing: 5.08 mm , label 1: numbered consecutively	

Table 1: 8B0C0320HC00.000-1 - Order data

3 Technical data

Model number	8B0C0320HC00.000-1
General information	
Cooling and mounting method	Cold plate or feed-through mounting
Certifications	
CE	Yes
KC	Yes
UL	cULus E225616 Power conversion equipment
DC bus connection	
Voltage	
Nominal	750 VDC
Operating range in continuous operation	260 to 800 VDC
Full continuous power	315 to 800 VDC
Continuous power consumption	Max. 880 W
Power dissipation with continuous power ${ }^{1)}$	22 W (0\% continuous power) 35 W (50% continuous power) 80 W (100\% continuous power)
DC bus capacitance	220 nF
Design	ACOPOSmulti backplane
24 VDC output	
Continuous power ${ }^{2)}$	800 W
Output voltage	
DC bus voltage ($\mathrm{U}_{\text {DC }}$): 260 to 315 VDC	25 VDC * ($\left.\mathrm{U}_{\mathrm{DC}} / 315\right)$
DC bus voltage ($\mathrm{U}_{\text {DC }}$): 315 to 800 VDC	24 VDC $\pm 6 \%$
Continuous current	32 ADC
Reduction of continuous power at ambient temperatures starting at $40^{\circ} \mathrm{C}$	No reduction
Reduction of continuous power depending on installation elevation	
Starting at 500 m above sea level	80 W per 1000 m
Reduction of continuous power depending on cooling method	No reduction
Startup delay	Max. 1 s
Startup time	Approx. 5 to 20 ms
Residual ripple	Typ. 50 mV ss

Table 2: 8B0C0320HC00.000-1 - Technical data

8B0C032OHC00.000-1

Table 2: 8B0C0320HC00.000-1 - Technical data

1) Continuous power on the 24 VDC output
2) Valid under the following conditions: 750 VDC DC bus voltage, $55^{\circ} \mathrm{C}$ ambient temperature, installation elevation $<500 \mathrm{~m}$ above sea level, no derating due to cooling type.
3) The output voltage is limited to max. 60 VDC in the event of error
4) Continuous operation at an installation elevation of 500 m to $4,000 \mathrm{~m}$ above sea level is possible taking the specified reduction of continuous power into account. Requirements that go beyond this must be arranged with $B \& R$.
5) These dimensions refer to the actual device dimensions including the respective mounting plate. Make sure to leave additional space above and below the devices for mounting, connections and air circulation.

4 Status indicators

Status indicators are located on the black cover of each module.

Figure 1: Auxiliary supply modules (8B0C0xx0Hx00.000-1) - Status indicator groups

4.1 Auxiliary supply modules - LED status indicators

Status indicator group	Label	Color	Function	Description
Power supply	24 V	Green	24 V OK	The 24 VDC internal system power supply is within the permis- sible tolerance.
Overload	ERR	Red	Overload	The module is not supplied via the DC bus. ${ }^{1)}$ The 24 VDC internal system power supply is outside of the permissible tolerance (overload, overtemperature, short circuit, etc.).

Table 3: 8B0C auxiliary supply modules - LED status indicators

1) The module is enabled via input CR_OK, no electrical contact to the backplane module - check the lower mounting screw.

5 Dimension diagram and installation dimensions

5.1 Cold plate

Figure 2: Cold plate - Dimension diagram and installation dimensions

1) n... Number of width units on the mounting plate
2) For sufficient air circulation, a clearance of at least 60 mm must be provided above the mounting plate and below the module.
3) nnnn indicates the number of slots (e.g. 0160 refers to 16 slots).

Information:

When mounting ACOPOSmulti modules for cold-plate or feed-through mounting, be sure not to scratch the backplane. This can impair thermal dissipation to the mounting plate.

Do not set down ACOPOSmulti modules for cold-plate or feed-through mounting on their bottom side. Doing so could break the clips that hold the unit is fan. Broken clips make it more difficult to replace the fans later on.

5.2 Feed-through mounting

Figure 3: Feed-through mounting - Dimension diagram and installation dimensions

1) n... Number of width units on the mounting plate
2) For sufficient air circulation, a clearance of at least 60 mm must be provided above the mounting plate and below the module.
3) nnnn indicates the number of slots (e.g. 0160 refers to 16 slots).
4) For sufficient air circulation, a clearance of at least 100 mm must be provided around the fan module.

Information:

When mounting ACOPOSmulti modules for cold-plate or feed-through mounting, be sure not to scratch the backplane. This can impair thermal dissipation to the mounting plate.
Do not set down ACOPOSmulti modules for cold-plate or feed-through mounting on their bottom side. Doing so could break the clips that hold the unit is fan. Broken clips make it more difficult to replace the fans later on.

6 Wiring

6.1 8B0C0160Hx00.000-1, 8B0C0320Hx00.000-1 - Pinout overview

Figure 4: 8B0C0160Hx00.000-1, 8B0C0320Hx00.000-1 - Pinout overview

6.2 Connector X1 - Pinout

X1			Pin	Description	Function
			1	---	---
		0	2	---	---
			3	COM (5, 6)	DC bus ready 0 V
		θ	4	COM (5, 6)	DC bus ready 0 V
		θ	5	CR_OK	DC bus ready
		(1)	6	CR_OK	DC bus ready

Table 4: Connector X1 - Pinout

6.3 Input/Output circuit diagram

Figure 5: $8 \mathrm{~B} 0 \mathrm{C} 0160 \mathrm{Hx} \times 0.000-1,8 \mathrm{~B} 0 \mathrm{C} 0320 \mathrm{H} \times 00.000-1$ - Input/Output circuit diagram

