PROFIBUS DP BC service channel

Version: **1.10 (April 2013)** Model no.:

All information contained in this manual is current as of its creation/publication. B&R reserves the right to change the contents of this manual without notice. The information contained herein is believed to be accurate as of the date of publication; however, Bernecker + Rainer Industrie-Elektronik Ges.m.b.H. makes no warranty, expressed or implied, with regard to the products or documentation contained within this manual. In addition, Bernecker + Rainer Industrie-Elektronik Ges and utility, Bernecker + Rainer Industrie-Elektronik Ges.m.b.H. shall not be liable for any incidental or consequential damages in connection with or arising from the furnishing, performance or use of the product(s) in this documentation. Software names, hardware names and trademarks are registered by their respective companies.

PROFIBUS DP	BC service channel 1.10	

Chapter 1 Introduction..... Chapter 2 Overview of commands......6 Chapter 3 Command 6 - System information......7 4 Examples......10 Chapter 4 Command 7 - Asynchronous register access to I/O modules.....11 3 Sent data......11 Chapter 5 Error messages......16

Chapter 1 • Introduction

The BC service channel can be used to access module data directly. This may include system information such as the serial number or firmware version or acyclic register data on I/O modules. Read and write access to acyclic I/O registers can be used to modify module parameters during program execution.

In order to perform this acyclic communication, the BC service channel reserves a number of bytes in the cyclic I/ O data. The required number can be defined in the PROFIBUS DP master development environment by inserting virtual modules as placeholders in the I/O module configuration.

The size of the BC service channel can be adapted to accommodate the amount of data that needs to be transferred. This is done by combining as many virtual modules as necessary.

Information:

BC service channel modules must always be inserted after the last I/O module in the configuration!

GSD file entries for two types of virtual BC service channel modules:

General Device X20BC0063	1	Station address	1		ОК		
Description B&R ProfibusD	P Slave			,		Cancel	
 Activate device in actual co Enable watchdog control 	GSD file B&R BC20.GSD			Parameter Data			
Max. length of in-/output data Max. length of input data Max. length of output data	488 Byte 244 Byte 244 Byte	Length of in	n-/output data nput data output data	0	Byte Byte Byte	DPV1 Settings Assigned master Station address 0	
Max. number of modules	64	Number of	modules	0	-	Master0	
	64 Inputs	Number of Outputs	modules Identifier	0	^		-
		Outputs		0	_^		•
Module	Inputs 7 Word	Outputs	Identifier	0	^	07X20IF1061	-
Module 7XX436.50-1-C02:	Inputs 7 Word 12 Word	Outputs 5 Word	Identifier 0xC2, 0xC4,	0	^		•
Module 7XX436.50-1-C02: 7XX436.50-1-C12: All	Inputs 7 Word 12 Word	Outputs 5 Word 10 Word	Identifier 0xC2, 0xC4, 0xC2, 0xC9,	0		0 / X20IF1061	•
7XX436.50-1-C02: 7XX436.50-1-C12: All	Inputs 7 Word 12 Word	Outputs 5 Word 10 Word 11 Word	Identifier OxC2, OxC4, OxC2, OxC9, OxC2, OxC9,	0		0 / X20IF1061	-

Figure 1: Inserting virtual service channel modules as placeholders

Example

11 bytes are required for acyclic access to an I/O register. The BC service channel should be configured so that it is able to transfer this number within one bus cycle.

Inserting 3 virtual modules with the type "BC Service Channel 2" gives us 3 * 4 = 12 bytes for the transfer. One byte goes unused.

Information:

The bus controller can only handle requests individually. It is therefore not possible to configure the BC service channel to allow multiple requests per cycle.

1 BC service channel numbers

There are two BC service channels with the numbers 1 and 2. They have the following differences:

BC Service Channel 1	BC Service Channel 2
Should not be used in the application	Can be used in the application as often as needed
Used to transfer larger volumes of data	Used to access acyclic data
Smallest possible size: 34 bytes	Smallest possible size: 4 bytes
Poor utilization of the available bandwidth (many unused bytes)	Good utilization of the available bandwidth (no more than 3 unused bytes)

Generally, BC Service Channel 2 should be preferred.

Information:

BC service channels 1 and 2 must not be used together in the same application!

Chapter 2 • Overview of commands

The BC service channel protocol supports various commands for register access.

- Two commands for reading system information. (See Chapter 3 "Command 6 System information" on page 7)
- One command for accessing the acyclic I/O module register. (See Chapter 4 "Command 7 Asynchronous register access to I/O modules" on page 11)

Information:

All other command codes are reserved by the system for internal use and must not be used for register access.

1 Communication process

For an example of the communication process, see 4 "Examples" on page 10.

The first byte of the protocol frame is the command (C) that defines the frame's function.

Once the master system has been initialized, all output data is set to 0x00 by default. The first byte of the service request is the same as the first byte output on the BC service channel. As long as this byte is 0x00, the bus controller (PROFIBUS DP slave) returns received data (= BC service channel output data) back to the master (= BC service channel input data).

After the command (C), the second byte is the service cycle counter (SCC). (See 2 "Service cycle counter" on page 6)

When a new request is sent, the application needs to check the master system to see whether the sent data and received data are identical. This can be accomplished using the "memcmp" command, for example. As soon as this is confirmed, the first byte of output data (request frame) can be set to the respective command.

If the request sent was valid (e.g. Command 6), but the first byte of the response frame is 0x00, this means that another request is still being processed. Once the other request is finished processing, the first byte will be something other than 0x00. The application on the master system is responsible for verifying the received data by comparing the "Service cycle counter" values.

2 Service cycle counter

The service cycle counter (SCC) is always the second byte of the received data and is responsible for checking the validity of the received data.

Data can be considered valid and consistent when the following two conditions are met:

- 1 The command byte is not 0x00
- 2 The SCC is at least 1 higher than the SCC of the request

[DP Master Service request C SCC Data n ++ C = 7 Communication with I/O Co	
	C SCC Data Service response	

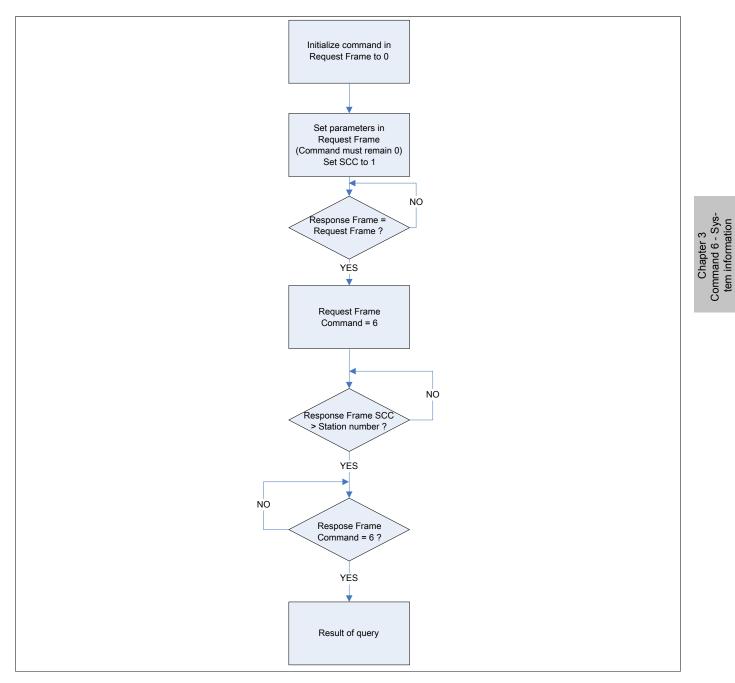
Chapter 3 • Command 6 - System information

Used to read system information from the bus controller or connected I/O modules.

1 Request frame

Byte offset	Description					
0	Command (0x06)					
1	I/O station numbe	r (decimal 0	to 63 or 0x00 to 0x3F)			
	0 The IP67 bus controller's integrated I/O module or the power supply module (X20PS94xx) on the If controller (X20BC0063)					
	1	First I/O m	odule after power supply module or IP67 bus controller			
	2	Second I/C	D module after power supply module or IP67 bus controller			
	3					
2, 3	1. Read system in	formation fro	high byte, 3 = low byte) om the bus controller. rs are used, the I/O station number (byte offset 1) is ignored.			
	Dec.	Hex	Description			
	0	0x0	Current value of the node number switch (PROFIBUS station number)			
	1 - 20	0x1 - 0x14	Reserved			
	21	0x15	Active firmware version (see 4 "Examples" on page 10)			
	22	0x16	Boot block (flash block of active firmware)			
	23	0x17	Firmware version of boot block 0 (default firmware)			
	24	0x18	Firmware version of boot block 1 (update firmware)			
	25	0x19	Version of FPGA0 in flash memory			
	26	0x1A	Version of FPGA1 in flash memory			
	27	0x1B	Serial number (low word) (firmware V.1.28 and higher)			
	28	0x1C	Serial number (high word) (firmware V.1.28 and higher)			
	29	0x1D	Version of the active FPGA (firmware V.1.29 and higher)			
	30	0x1E	Hardware version (firmware V.1.40 and higher)			
	2. Read paramete					
	When these parar		rs are used, the desired module is determined by the I/O station number (byte offset 1).			
	Dec.	Hex	Description			
	8000	0x1F 40	Operating mode (see 2 "Response frame" on page 8)			
	8001	0x1F 41	Hardware ID			
	8002	0x1F 42	Serial number (low word)			
	8003	0x1F 43	Serial number (high word)			
	8004	0x1F 44	I/O module firmware version			
	8500	0x21 34	Module info string (> 2 bytes of data)			

2 Response frame


Byte offset	Description
0 Command (0x00, 0x06 or 0x63)	
	0x00 Waiting/Busy
	0x06 Request completed successfully
1	Service cycle counter (see 2 "Service cycle counter" on page 6)
2, 3	Parameter value (Offset 2 = high byte, 3 = low byte)

Possible response parameter values for the I/O module request "operating mode"

Value	Description
0x00 '0'	No X2X Link station found for this slot
0x42 'B'	Boot process (The boot loader tests whether the firmware/OS can be loaded)
0x43 'C'	Module being configured
0x44 'D'	Firmware download active
0x4E 'N'	X2X station found, but the I/O module can't be started
	Cause: No I/O module power supply, or the module is not connected to the X2X ASIC module
0x50 'P'	Preoperational (module ready for "Run mode")
0x52 'R'	Run mode (Operational)
0x55 'U'	Boot process (uploading IDs)
0x70 'P'	Preoperational (module ready for "Run mode")
0xE0	Error: Module firmware missing
0xE1	Error: Module firmware invalid
0xE2	Error: Configuration problem (module can't be activated) or possible configuration error (invalid function model, etc.)
0xE3	Error: Configuration problem (register can't be mapped, possible configuration error, etc.)
0xE4	Error: Module won't boot (internal error)
0xE5	Error: Module won't boot (X2X frame too small. Solution: increase X2X cycle time if necessary)
0xE6	Error: Module won't boot (incorrect module type configured for slot)

Command 6 - System information • Flow chart - System information query

3 Flow chart - System information query

4 Examples

Reading the firmware version of the bus controller

Steps	Schedule	Request / Response	Byte offset 0 (Command)	Byte offset 1	Byte offset 2	Byte offset 3
1		Request	0x00	XX ¹⁾	0	0x15
2		Response	0x00	n ²⁾	0	0x15
3	Request \rightarrow Response	Request	0x06	XX ¹⁾	0	0x15
4	Response SCC ³⁾ <> n ²⁾	Response	0x06	n++ ⁴⁾	0	YY ⁵⁾

1) Any byte (ignored)

2) Current value of the service cycle counter

3) Service cycle counter

4) Service cycle counter value increased by 1

5) Firmware version of the bus controller (e.g. $0x83 = dec. 131 \rightarrow V1.31$)

Reading the Hardware ID of I/O Module 5

Module 5 is the fifth module after the power supply for the IP20 bus controller X20BC0063. With the IP67 version it is the fifth module after the bus controller. In this case, Module 0 is the I/O module integrated in the bus controller itself.

Parameter number 8001 (Hardware ID) is 0x1F41.

Steps	Schedule	Request / Response	Byte offset 0 (Command)	Byte offset 1	Byte offset 2	Byte offset 3
1		Request	0x00	0x05	0x1F	0x41
2		Response	0x00	n ¹⁾	0x1F	0x41
3	$Request \rightarrow Response$	Request	0x06	0x05	0x1F	0x41
4	Response SCC ²⁾ <> n ¹⁾	Response	0x06	n++ ³⁾	0	ZZ ⁴⁾

1) Current value of the service cycle counter

2) Service cycle counter

3) Service cycle counter value increased by 1

4) Hardware ID of Module 5 (e.g. 0x1B45 = dec. 7077)

As part of the serial number, the Hardware ID is printed on the electronic module. The Hardware ID is the first four digits of the serial number.

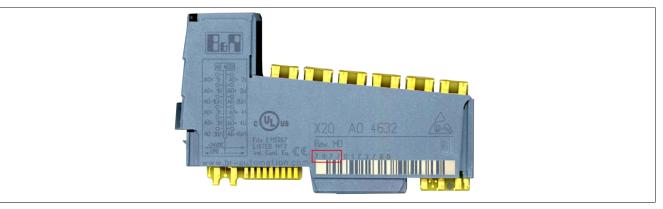


Figure 2: Example of module label

Information:

IDs higher than 9999 are shown as hexadecimal numbers.

Chapter 4 • Command 7 - Asynchronous register access to I/O modules

This command is used to send and receive asynchronous I/O registers in the application.

1 Request frame

Byte offset	Description					
0	Command (0x07)					
1	0x01 = Wait for RX data (always TRUE)					
2	I/O station number (decimal 0 to 63 or 0x00 to 0x3F)					
	0 The IP67 bus controller's integrated I/O module or the power supply module (X20PS94xx) on the IP20 bus controller (X20BC0063)					
	1 First module after power supply or IP67 bus controller					
	2 Second module after power supply or IP67 bus controller					
	3					
3	Channel = 0x20 (number of the asynchronous X2X channel)					
4	Transfer size = 0x06 (2 bytes for the register address and 4 bytes for the value. See 3 "Sent data" on page 11)					
5 - x	Transfer data (see 3 "Sent data" on page 11)					

2 Response frame

Byte offset	Description					
0	Command (0x00, 0x07 or 0x63)					
	0x00 Waiting/Busy					
	0x07 Request completed successfully					
	0x63 An error has occurred (see Chapter 5 "Error messages" on page 16)					
1	ervice cycle counter (see 2 "Service cycle counter" on page 6)					
2	I/O station number (decimal 0 to 63 or 0x00 to 0x3F)					
	0 The IP67 bus controller's integrated I/O module or the power supply module (X20PS94xx) on the IP20 bus controller (X20BC0063)					
	1 First module after power supply or IP67 bus controller					
	2 Second module after power supply or IP67 bus controller					
	3					
3	Channel (see 4 "Received data " on page 12 for values other than 0x20)					
4	Received size					
5 - x	Received data (see 4 "Received data " on page 12)					

3 Sent data

Byte offset	Descrip	Description								
5	Register address high byte and and "access bit" (Bit 6 = TRUE for write access, FALSE for read access)									
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
		Reserved	Access bit	Address bit 13	Address bit 12	Address bit 11	Address bit 10	Address bit 9	Address bit 8	
6	Registe	r address low	byte							
7	Configu	Configuration value of LBLW (low byte, low word)								
8	Configu	ration value o	of HBLW (high	byte, low word	l)					
9	Configu	Configuration value of LBHW (low byte, high word)								
10	Configu	ration value o	of HBHW (high	byte, high wo	rd)					

For write access to acyclic I/O registers, the access bit (Bit 6) of Byte 5 must be set to "1".

Example

The channel type of theX20AI4622 module in Register 18 (0x0012) should be addressed for write access.

Byte 5 = 0x40 (instead of 0x00) Byte 6 = 0x12

4 Received data

Byte offset	Descri	ption							
5	Registe	er address hig	h byte, access	and error bits					
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
		Error bit	Access bit	Address bit 13	Address bit 12	Address bit 11	Address bit 10	Address bit 9	Address bit 8
6	Registe	Register address low byte							
7	Registe	Register value of LBLW (low byte, low word)							
8	Registe	Register value of HBLW (high byte, low word)							
9	Registe	er value of LB	HW (low byte, I	nigh word)					
10	Registe	er value of HB	HW (high byte,	high word)					

When read/write access is successful, bytes 5 and 6 are set to the same values as the corresponding bytes in the request frame. When the access bit in the response frame is TRUE, this indicates that write access has been performed.

When the error bit is TRUE, this indicates that the desired register address in the module can't be accessed.

Errors can therefore easily be identified by comparing bytes 5 and 6 in the response frame.

Example

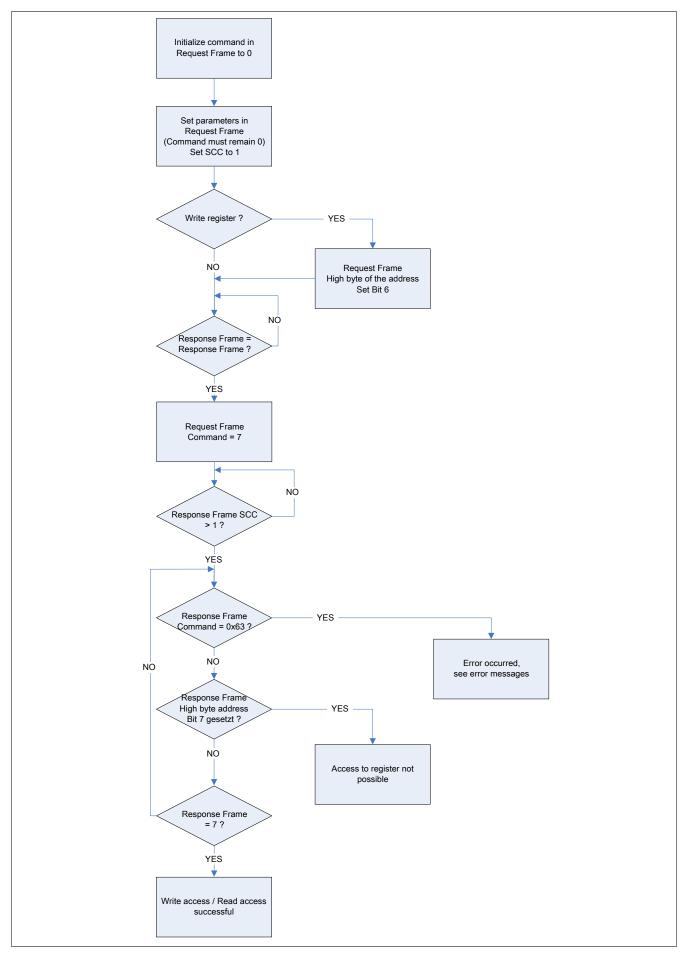
An attempt to read Register **0x0001** in the power supply module X20PS9400, which doesn't exist in the firmware. (The I/O station number is 0x00)

Request frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x07	0x01	0x00	0x20	0x06	0x00	0x01	XX ¹⁾	XX ¹⁾	XX ¹⁾	XX ¹⁾	0x00 ²⁾

1) XX any byte (ignored)

2) Filler byte


Response frame:

0x07 SCC ¹) 0x00 0x20 0x06 0x80 0x01 0x00 0x00 0x00	0x00	0x00 ²⁾

1) Service cycle counter

2) Filler byte

5 Flow chart - Register access

Chapter 4 Command 7 - Asynchronous register access to I/O modules

6 Example

Set the "Homing position (CH 1)" of the X20DC2396 module.

Hardware used:

- X20BC0063
- X20PS9400
- X20DC2396 •

The register number can be found in the module's register description. This is included in the "PROFIBUS User's Manual" and can be downloaded from the B&R website (www.br-automation.com).

Register	Bezeichnung	Bytes		Мо	dul	
			X20 DC 2	2396 -C 01	X20 DC :	2396-C02
Eingang:						
2080	ABR Counter (Ch 1)	2	IW ¹)		IW ¹)	
40	HI: Power Supply Status	2	IW ²)		W ²)	
264	LO: Digital Input 1 - 2	2	100~)		100~)	
2592	ABR Counter (Ch 2)	2	IW ¹)		IW ¹)	
2630	HI: Status Input 02	2	IW ³)		I₩ ³)	
2118	LO: Status Input 01		100%)		1000)	
Ausgang:						
2116	ReferenceModeEncoder01	1		OB4)		OB4)
2628	ReferenceModeEncoder02	1		OB ⁴)		OB4)
512	Reference Pulse Mode (Ch 1)	1				5)
520	Reference Input Enable (Ch 1)	1				6)
522	Reference Input Polarity (Ch 1)	1				7)
2064	Homing Position (Ch 1)	2				8)
544	Reference Pulse Mode (Ch 2)	1				5)
552	Reference Input Enable (Ch 2)	1				6)
554	Reference Input Polarity (Ch 2)	1				7)
2576	Homing Position (Ch 2)	2				8)
	Daten Bytes in DP frame		8 ein	2 aus	8 ein	2 aus

ABR Counter (Ch x) stellt die Zählwerte des entsprechenden Encoders als 16 Bit Werte dar. 1

2 Power Supply Status zeigt mit gesetztem Bit 0 einen Fehler der integrierten 24 VDC Geberversorgung an.

Digital Input 1 - 2: Beschreibung siehe Tabelle "Digital Input 1 - 2".

3 Status Input 0x beinhaltet Informationen über ausgeschaltenen, aktiven oder abgeschlossenen Referenziervorgang des Encoders 0x: Beschreibung siehe Tabelle "Status Input 0x"unten.

ReferenceModeEncoder0x bestimmt den Referenziermodus des entsprechenden Encoders. Beschreibung siehe Tabelle "ReferenceModeEncoder0x". 4

Reference Pulse Mode (Ch x) : für das kontinuierliche Referenzieren (zyklischer Betrieb) ist eine Parametrierung auf steigende oder fallende Flanke des 5 Referenzimpulses notwendig, damit der Referenziervorgang abgeschlossen wird.

6 Reference Input Enable (Ch x): unabhängig vom Referenziermodus (ReferenceModeEncoder0x) kann hier die Übernahme der Referenzposition durch den entsprechenden Spannungspegel des Referenzeingangs (Digital Input 0x) ein- oder ausgeschaltet werden.

Reference Input Polarity (Ch x): konfiguriert den zur Referenzfreigabe aktiven Spannungspegel (Digital Input 0x).

7 Homing Position (Ch x): mit diesem Register ist es möglich die Referenzposition vorzugeben (Default = 0). Der eingestellte Wert wird mit abgeschlossenem 8 Referenziervorgang in den Zählerwert übernommen.

Insert three virtual BC ServiceChannel modules as cyclic data in the development environment.

11X20 PS 9400-C02:Module1IB321X20 DC 2396-C02:Module2IW4QB231BC ServiceChannel 2Module3IB4QB441BC ServiceChannel 2Module4IB4QB451BC ServiceChannel 2Module5IB4QB4	Slot	Idx	Module	Symbol	Type	I Len.	Type	0 Len.
3 1 BC ServiceChannel 2 Module3 IB 4 QB 4 4 1 BC ServiceChannel 2 Module4 IB 4 QB 4	1	1	X20 PS 9400-C02:	Modulel	IB	3		
4 1 BC ServiceChannel 2 Module4 IB 4 QB 4	2	1	X20 DC 2396-C02: 2	Module2	IW	4	QB	2
· · · · · · · · · · · · · · · · · · ·	3	1	BC ServiceChannel 2	Module3	IB	4	QB	4
5 1 BC ServiceChannel 2 Module5 IB 4 QB 4	4	1	BC ServiceChannel 2	Module4	IB	4	QB	4
	5	1	BC ServiceChannel 2	Module5	IB	4	QB	4

11 bytes of data are needed in order to write asynchronous I/O registers. It is therefore recommended to create three instances of the second entry "BC ServiceChannel 2" \rightarrow 3 * 4 = 12 bytes. This minimizes the amount of I/O data on the PROFIBUS network, since "BC ServiceChannel 1" occupies 34 bytes of input and output data.

Module	Inputs	Outputs	In/Out Identifier	^
7XX436.50-1-C14: All	12 Word	ll Word	OxC2, OxCA,	
			0x00	
BC ServiceChannel l	34 Byte	34 Byte	0xC2, 0x21,	
BC ServiceChannel 2	4 Byte	4 Byte	0xC2, 0x03,	~

The 11 byte structure is now written to the 12 bytes of the BC service channel. The last byte is not needed and goes unused.

Writing the register value

To set "Homing Position (Ch 1)" to 4660, the value 4660 (0x1234) needs to be written to Register 2046 (0x0810).

To write data, the MSB of the register address needs to make a logical OR operation with the access bit that has been set to TRUE. (0x0810 OR 0x4000 \rightarrow **0x4810**)

In our example, the X20DC2396 module is the first module after the power supply, so the I/O station number is 0x01.

Information:

I/O station number (decimal 0 to 63 or 0x00 to 0x3F)

0	The IP67 bus controller's integrated I/O module or the power supply module (X20PS94xx) on the IP20 bus controller (X20BC0063)
1	First I/O module after power supply module or IP67 bus controller
2	Second I/O module after power supply module or IP67 bus controller
3	

Request frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x07	0x01	0x01	0x20	0x06	0x48	0x10	0x34	0x12	0x00	0x00	0x00

Response frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x07	SCC ¹⁾	0x01	0x20	0x06	0x48	0x10	0x34	0x12	0x00	0x00	0x00

1) Service cycle counter

Reading the register value

Here, the "access bit" needs to be set to FALSE, so in this case the register address remains 0x0810.

Request frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x07	0x01	0x01	0x20	0x06	0x08	0x10	XX ¹⁾	XX ¹⁾	XX ¹⁾	XX ¹⁾	0x00
				-					·	•	

1) Any bytes (ignored)

Response frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11
0x07	SCC ¹⁾	0x01	0x20	0x06	0x08	0x10	0x34	0x12	0x00	0x00	0x00

1) Service cycle counter

Evaluation of errors

- For errors in the response frame due to inaccessible registers, see 4 "Received data " on page 12
- For all other errors (Byte 0 in the response frame = 0x63), see Chapter 5 "Error messages" on page 16

15

Chapter 5 • Error messages

Byte offset	Description	I	
0	0x63		
1	Service cycl	e counter (s	ee 2 "Service cycle counter" on page 6)
2, 3	Service erro Offset: 2 = h		= low byte
		ode	Description
	Dec.	Hex	
	1	0x01	The configured DP buffers are too small for the access attempt
	2	0x02	Incorrect checksum
	3	0x03	Block number too high
	4	0x04	Data read from flash memory doesn't match written data
	5	0x05	Timeout while waiting for TX confirmation
	6	0x06	Timeout while waiting for RX response from X2X Link
	7	0x07	Timeout while waiting for write procedure in flash memory
	8	0x08	NAK received, but requested module is not available
	9	0x09	Acyclic communication is not possible in service mode
	10	0x0A	Write/read command exceeds size of flash block
	11	0x0B	Odd value entered for offset or invalid length
	12	0x0C	Requested parameter number is invalid or doesn't exist
	13	0x0D	I/O module download has size 0 or odd value. (not a multiple of a block size)
	14	0x0E	Command not permitted while I/O manager is active
	15	0x0F	File to large (Command 5)
	16	0x10	Module has no SMB flash or is write protected
	17	0x11	Write access not permitted to blocks with a size other than 16 bytes
	18	0x12	Serial number can't be written if it is already unequal to 0xFFFFFFFF

Figure index

Figure 1:	Inserting virtual service channel modules as placeholders4	ŀ
Figure 2:	Example of module label)