1.1 DO138

1.1.1 General Information

The DO138 digital output module is a screw-in module for the B&R SYSTEM 2003 and for the B&R Power Panel with 8 outputs. Outputs 1 to 4 can also be used limitedly by TPU (see Section 1.1.10 "TPU Operation", on page 5).

1.1.2 Order Data

Model number	Short Description	Image
7DO138.70	2003 digital output module, 8 outputs 24 VDC, 0.5 A, short circuit protection, thermal overload protection, screw-in module. Order TB712 terminal block separately.	E
7TB712.9	Terminal block, 12 pin, screw clamps	N#
7TB712.91	Terminal block, 12 pin, cage clamps	OUT
7TB712:90-02	Terminal block, 12 pin, 20 pcs., screw clamps	DIGITAL
7TB712:91-02	Terminal block, 12 pin, 20 pcs., cage clamps	OUTPUT
Terminal block is not inc	cluded in the delivery.	1234 V00 0.5 A DO 138

Table 1: DO138 order data

1.1.3 Technical Data

Description	DO138
General Information	
C-UL-US Listed	In preparation
B&R ID Code	\$4C
Module Type	B&R 2003 screw-in module
Slot	AF101 adapter module, CP interface Power Panel interface (slots 4 - 6)
Static Characteristics	
Number of Outputs	8
Туре	FET positive switching
Status Display	None
Electrical Isolation Output - PLC Output - Output	No No

Table 2: DO138 technical data

Description	D0138
Diagnosis Status Voltage Monitoring Output Monitoring	10.5 V < supply voltage < 30 V Output OK
Switching Voltage/Supply Minimum Nominal Maximum	10.5 VDC 24 VDC 30 VDC
Continuous Current per Output Module	Max. 0.5 A Max. 4 A
	To increase the output current, outputs can be switched in parallel
Leakage Current when Switched Off	12 µA
Residual Voltage	0.2 V @ 0.5 A
Short Circuit Current	Тур. 4 А
Switching On after Overload Cutoff	Automatically within seconds (depends on the module temperature)
Power Consumption Internal 24 VDC Supply	Max. 0.25 W Max. 1.5 W
Protection	Thermal cutoff Integrated protection for switching inductances Reverse polarity protection
Dynamic Characteristics	
Switching Delay Log. 0 - Log. 1 Log. 1 - Log. 0	Max. 450 μs Max. 450 μs
Switching Frequency Resistive Load Inductive Load	Max. 100 Hz See Section 1.1.9 "Switching Inductive Loads", on page 5
Braking Voltage when Switching Off Inductive Loads	47 VDC
Mechanical Characteristics	
Dimensions	B&R 2003 screw-in module

Table 2: DO138 technical data (cont.)

1.1.4 Pin Assignments

	DO138	Pin Assignment
Pin	Assignment	
1	Output 1	
2	Output 2	
3	Output 3	
4	Output 4	
5	Output 5	
6	Output 6	
7	Output 7	
8	Output 8	
9	NC	
10	NC	TB712
11	+12 to +24 VDC	
12	GND	

1.1.5 Connection Example

Figure 1: DO138 connection example

1.1.6 Output Circuit Diagram

Figure 2: DO138 output circuit diagram

1.1.7 Area of Use

The DO138 was designed mainly as a digital add-on module for the Power Panel, but can also be used to increase digital component density on the B&R SYSTEM 2003.

1.1.8 Output Monitoring

In a defined cycle (multiple of $250 \ \mu$ s), the output states are compared with the set states. The control for the output driver is used for the set states. This allows monitoring of the outputs controlled by the TPU. If output states have changed during the monitoring cycle, the affected channels are not used in the output monitoring status.

The status can be read using a register. An accumulative bit for output monitoring is created in the module status. Individual channels can be masked and therefore an alarm can be supressed.

1.1.9 Switching Inductive Loads

Figure 3: DO138 switching inductive loads

1.1.10 TPU Operation

Outputs 1 to 4 can also be used limitedly by TPU

Remarks

- TPU functionality is automatically activated for the DO138
- Operation takes place using LTX functions
- TPU functionality is available on slots 1 to 3 when used with a Power Panel
- TPU functionality is available on slots 1 to 4 when used with the B&R SYSTEM 2003
- Maximum switching frequency should be observed

1.1.11 Variable Declaration

The variable declaration is valid for the following controllers:

- CPU for the PLC 2003
- Remote I/O bus controller
- CAN bus controller

B&R Automation Studio[™] Support: See B&R Automation Studio[™] Help starting with V 1.40

After booting, the DO138 digital module logically corresponds to an analog module. Communication takes place using shovel instructions from data and configuration words.

Accessing screw-in modules is also explained in the sections "AF101" and "CPU".

The following table provides an overview of the data and configuration words that are used for this module.

Data Access	VD Data Type	VD Module Type	VD Chan.	R	W	Description
Data Word 0	UINT	Transp. In	0	•		Read-back output states
	UINT	Transp. Out	0		•	Output states
Configuration Word 8	UINT	Transp. In	16	•		Output monitoring for individual channel evaluation
	UINT	Transp. Out	16		•	Definition of group monitoring
Configuration Word 9	UINT	Transp. Out	18		•	Cycle time for output monitoring
Configuration Word 12	UINT	Transp. In	24	•		Module status
Configuration Word 14	UINT	Transp. In	28	•		Module type
	UINT	Transp. Out	28		•	Module configuration

Table 4: DO138 data and configuration words

Access using CAN Identifier

Access via CAN identifiers is used if the slave is being controlled by a device from another manufacturer. Access via CAN identifiers is described in an example in Chapter 4 "Module Addressing". The transfer modes are explained in Chapter 5, "CAN Bus Controller Functions".

Input Data (Read-back Output States)

The read-back output states can be transferred packed or unpacked. CAN objects can only be sent back in packed mode.

CAN-ID ¹⁾	Slot 1		Slot 1 Slot 2		ot 2	Slot 3		Slot 4	
542	ANP 1L	ANP 1H	ANP 2L ANP 2H		ANP 3L	ANP 3H	ANP 4L	ANP 4H	
543		free							
544		free							
545	free								

Table 5: DO138 input data packed

1) CAN-ID = 542 + (nd - 1) x 16 + (ma - 1) x 4 nd Node number of the CAN slaves = 1

ma Module address of the AF101 = 1

Four CAN objects can be sent back in unpacked mode.

Slot	CAN-ID ¹⁾	Wo	rd 1	Word 2	Word 3	Word 4		
1	542	ANP 1L	ANP 1H	Not used (2 byte objects)				
2	543	ANP 2L	ANP 2H	Not used (2 byte objects)				
3	544	ANP 3L	ANP 3H	Not used (2 byte objects)				
4	545	ANP 4L	ANP 4H	Not used (2 byte objects)				

Table 6: DO138 input data unpacked

1) CAN-ID = 542 + (nd - 1) x 16 + (ma - 1) x 4 + (sl - 1)

nd Node number of the CAN slaves = 1

ma ... Module address of the AF101 = 1

sl Slot number of the screw-in module on the AF101 (1 - 4)

Note:

B&R 2000 users have to exchange the data so that the high data is first (Motorola format)!

For more information on ID allocation, see Chapter 5, "CAN Bus Controller Functions".

Output Data

The output states can be transferred packed or unpacked. CAN objects can only be transferred in packed mode.

CAN-ID ¹⁾	Slot 1		Slot 1 Slot 2		Slot 3		Slot 4	
1054	ANP 1L	ANP 1H	ANP 2L ANP 2H		ANP 3L	ANP 3H	ANP 4L	ANP 4H
1055		free						
1056		free						
1057	free							

Table 7: DO138 output data packed

1) CAN-ID = 1054 + (nd - 1) x 16 + (ma - 1) x 4 nd Node number of the CAN slaves = 1

ma ... Module address of the AF101 = 1

Four CAN objects can be transferred in unpacked mode.

Slot	CAN-ID ¹⁾	Wo	rd 1	Word 2 Word 3		Word 4		
1	1054	ANP 1L	ANP 1H	Not used (2 byte objects)				
2	1055	ANP 2L	ANP 2H	Not used (2 byte objects)				
3	1056	ANP 3L	ANP 3H	Not used (2 byte objects)				
4	1057	ANP 4L	ANP 4H	Not used (2 byte objects)				

Table 8: DO138 output data unpacked

1) CAN-ID = 1054 + (nd - 1) x 16 + (ma - 1) x 4 + (sl - 1)

nd Node number of the CAN slaves = 1

ma ... Module address of the AF101 = 1

sl Slot number of the screw-in module on the AF101 (1 - 4)

Note:

B&R 2000 users have to exchange the data so that the high data is first (Motorola format)!

For more information on ID allocation, see Chapter 5, "CAN Bus Controller Functions".

Description of Data and Configuration Words

Data Word 0 (read)

Read-back output states

Bit	Description
0	Output 1 status
1	Output 2 status
2	Output 3 status
3	Output 4 status
4	Output 5 status
5	Output 6 status
6	Output 7 status
7	Output 8 status
8 - 15	Not defined, masked out

Data Word 0 (write)

Output states.

Bit	Description
0	Output 1
1	Output 2
2	Output 3
3	Output 4
4	Output 5
5	Output 6
6	Output 7
7	Output 8
8 - 15	0

Configuration Word 8 (read)

The output states are compared cyclically to the set values by the module. In this way, a short circuit is recognized. The short circuit can be isolated using single channel evaluations.

Configuration word 8 indicates the current status of output monitoring.

Bit	Description
0	0 Output 1 OK 1 Short circuit on output 1
1	0 Output 2 OK 1 Short circuit on output 2
2	0 Output 3 OK 1 Short circuit on output 3
3	0 Output 4 OK 1 Short circuit on output 4
4	0 Output 5 OK 1 Short circuit on output 5
5	0 Output 6 OK 1 Short circuit on output 6
6	0 Output 7 OK 1 Short circuit on output 7
7	0 Output 8 OK 1 Short circuit on output 8
8 - 15	0

Configuration Word 8 (write)

Bit 0 in the module status (configuration word 12) indicates that output monitoring has been accessed for one channel. Individual outputs can be deactivated in this group monitoring.

Configuration word 8 (read) indicates the current status of output monitoring (single channel evaluation).

Bit	Description
0	0 Output 1 is taken into account in group monitoring1 Output 1 is deactivated in group monitoring
1	0 Output 2 is taken into account in group monitoring1 Output 2 is deactivated in group monitoring
2	0 Output 3 is taken into account in group monitoring1 Output 3 is deactivated in group monitoring
3	0 Output 4 is taken into account in group monitoring1 Output 4 is deactivated in group monitoring
4	0 Output 5 is taken into account in group monitoring1 Output 5 is deactivated in group monitoring
5	0 Output 6 is taken into account in group monitoring1 Output 6 is deactivated in group monitoring
6	 Output 7 is taken into account in group monitoring Output 7 is deactivated in group monitoring
7	0 Output 8 is taken into account in group monitoring1 Output 8 is deactivated in group monitoring
8 - 15	0

Configuration Word 9 (write)

In a defined cycle (multiple of 250 μ s), the output states are compared with the set states. The cycle time can be set between 250 μ s and 63.75 ms. The standard cycle times is 1.5 ms.

The cycle time should not be set under 1.25 ms. This time takes into account the switching delay for the output driver and the filter time for the read-back output states.

Bit	Description
0 - 7	1 - 255 0 is interpreted as 1 Standard cycle time 1.5 ms
8 - 15	0

Configuration Word 12 (read)

Configuration word 12 contains the module status.

Bit	Description
0	Group monitoring for the outputs. Individual outputs can be deactivated in this group monitoring (see Section "Configuration Word 8 (write)", on page 11).
	1 Output monitoring for a channel has been accessed. Single channel evaluation using configuration word 8 (read).
1-7	Not defined, masked out
8	0 Supply voltage is in the valid range (10.5 V < supply voltage < 30 V)
	1 Supply voltage too low (<10.5.V)
	1 Supply voltage too low (≥ 10.5 V)
9	0 Supply voltage is in the valid range (10.5 V < supply voltage < 30 V)
	1 Supply voltage too high (>30 V)
10 - 15	Not defined, masked out

Configuration Word 14 (read)

The high byte of configuration word 14 defines the module code.

Bit	Description
0 - 7	Not defined, masked out
8 - 15	Module Code: \$4C

Configuration Word 14 (write)

The module is configured using configuration word 14.

Bit	Description
0	The outputs are monitored by the module. The status of this group monitoring is shown by the module status in bit 0 and can be evaluated by the user.
	If a CAN bus controller is used, an alarm message is automatically generated by the bus controller on one of the digital outputs when an error has been recognized. It corresponds to the alarm message "Open Connection or Sensor Open" (see Appendix B "CAN Bus Controller Error Messages"). The generation of this alarm message can be deactivated by setting bit 0. The bit in the module status is processed further.
	0 Alarm message of group monitoring for outputs is activated (when used with a CAN bus controller)
	1 Alarm message of group monitoring for outputs is deactivated (when used with a CAN bus controller)
1-7	0
8	The supply voltage of the digital outputs to the lower threshold value is monitored by the module. The status is shown by the module status in bit 8 and can be evaluated by the user.
	If a CAN bus controller is used, an alarm message is automatically generated by the bus controller when the permitted supply voltage range has not been reached. It corresponds to the alarm message "Measurement Range not reached" (see Appendix B "CAN Bus Controller Error Messages"). The generation of this alarm message can be deactivated by setting bit 8. The bit in the module status is processed further.
	 Supply voltage monitoring alarm message for outputs to the lower threshold value is activated (when used with a CAN bus controller)
	1 Supply voltage monitoring alarm message for outputs to the lower threshold value is deactivated (when used with a CAN bus controller)
9	The supply voltage of the digital outputs to the upper threshold value is monitored by the module. The status is shown by the module status in bit 9 and can be evaluated by the user.
	If a CAN bus controller is used, an alarm message is automatically generated by the bus controller when the permitted supply voltage range has been exceeded. It corresponds to the alarm message "Measurement Range Exceeded" (see Appendix B "CAN Bus Controller Error Messages"). The generation of this alarm message can be deactivated by setting bit 9. The bit in the module status is processed further.
	0 Supply voltage monitoring alarm message for outputs to the upper threshold value is activated (when used with a CAN bus controller)
	1 Supply voltage monitoring alarm message for outputs to the upper threshold value is deactivated (when used with a CAN bus controller)
10 - 15	0