10.4 Al261

10.4.1 Technische Daten

Bezeichnung	Al261
Allgemeines	
Bestellnummer	7Al261.7
Kurzbeschreibung	2003 Analoges Eingangsmodul, 1 Eingang zur Auswertung einer DMS-Vollbrücke, 24 Bit, Anpassungsmodul
C-UL-US gelistet	JA
B&R ID-Code	\$20
Steckplatz	AF101 Adaptermodul, CP-Interface
Statische Eigenschaften	
Modultyp	B&R 2003 Anpassungsmodul
Eingangsart	differential
Anzahl der Eingänge	1
Einfluß Kabellänge	verdrillte und geschirmte Adern, Kabellänge so kurz wie möglich halten, von Lastkreisen getrennte Kabelführung, ohne Zwischenklemme zum Sensor
Schirmung	
modulseitig	über Zugentlastungsschelle am Modul
sensorseitig	über HF-Folienkondensator 10 nF/630 V zum geerdeten Sensorgehäuse (auf kurze Anschlußleitungen achten)
Maximal zulässige Dauerüberlast (ohne Beschädigung)	+30 V bei allen Anschlüssen außer GND
Ausgabe des Digitalwertes unter Überlastbedingungen	
Bruch der Versorgungsleitung	Wert geht gegen 0
Bruch der Sensorleitung	Wert geht gegen ±Endwert
SW-Auswertung	Auswertung über Konfigurationswort 12 (Modulstatus)
Digitale Wandlerauflösung	24 Bit
Effektive Wandlerauflösung	siehe Tabelle "Effektive Auflösung des Meßbereichs in Bits"

Bezeichnung	Al261
Quantisierung Meßbereich ±12 mV/V Meßbereich ±34 mV/V Meßbereich ±58 mV/V Meßbereich ±915 mV/V	LSB-Wert (bezogen auf 16 Bit) 275 nV 550 nV 1,1 µV 2,2 µV
An Anwenderprogramm geliefertes Datenformat	per Software einstellbar
Meßwertaufbereitung Kalibrierung Linearisierung Umrechnung	per Software, auch im Betrieb $y=k*x+d$ in physikalische Einheiten (32 Bit-Darstellung)
Meßbereich	±1 bis ±16 mV/V, per Software einstellbar
Eingangsstrom	<140 nA
Arbeitsbereich / Meßgrößenaufnehmer	75 bis 5000 Ω
Brückenbetriebsspannung kurzschluß- und überlastfest Anschluß	4,5 VDC ±3 % / max. 60 mA JA 4-Leiteranschluß Anschluß einer 6-Leiter DMS-Zelle (siehe Abschnitt "6-Leiter DMS-Zelle")
Wandlungsmethode	Sigma Delta
Wandlungszeit	1 ms
Analogeingang Meßfehler Maximaler Fehler bei 25 °C Temperaturkoeffizient Maximaler Fehler über vollen Temperaturbereich	$\pm 55 \text{ ppm} \pm 11 \mu\text{V}$ $\pm 3 \text{ ppm/°C} \pm 1,1 \mu\text{V/°C}$ $\pm 0,016 \% \pm 50 \mu\text{V}$
Sensortyp	isoliert
Gleichtaktunterdrückung	>120 dB bei 50 / 60 Hz Abtastfrequenz ≥ 75 Hz
Gleichtaktspannung	1,2 bis 3,8 V
Schutzeinrichtung	RC-Schutz
Leistungsaufnahme intern	max.0,6W
Dynamische Eigenschaften	
Applikationsabtastzeit	4 - 100 ms
Datenausgaberate am Modul	7 - 500 Hz, per Software einstellbar
Abtast-Wiederholzeit	1/Datenausgaberate
Einschwingzeit 1 LSB Datenausgaberate > 100 Hz Datenausgaberate≤ 100 Hz	ca. 250 ms ca. 500 ms
Eingangsfiltercharakteristik Ordnung Übergangs-/Eckfrequenz	1 6 Hz siehe auch Diagramm "Einschwingverhalten bei Lastsprung"
Softwarefilter 3 dB Eckfrequenz 64 dB Frequenz (1. Notch)	0,0395 x Datenausgaberate 0,14 x Datenausgaberate
Betriebseigenschaften	
Isolationsspannung unter normalen Betriebsbedingungen zwischen Kanal und Bus	keine galvanische Trennung
Missing Codes	Ja, wenn Ausgabebereich > Wandlerauflösung
Nichtlinearität	±0,0015 % vom Endwert
Mechanische Eigenschaften	
Maße	B&R 2003 Anpassungsmodul

10.4.2 Allgemeines

Eine DMS-Vollbrückenmessung kann z. B. für folgende Aufgaben verwendet werden:

- Kraftaufnehmer
- Biegestäbe
- Wägezellen
- Druckaufnehmer
- Dehnungsaufnehmer
- Drehmomentmessung

10.4.3 Effektive Auflösung des Meßbereichs in Bits

Die folgende Tabelle enthält eine Übersicht über die effektive Auflösung des Meßbereichs in Bits. Der entsprechende Wandlerbereich ist daneben angegeben.

Hardwaretechnisch liegt die Datenausgaberate zwischen 50 Hz und 500 Hz. Per Software sind auch Ausgaberaten <50 Hz einstellbar.

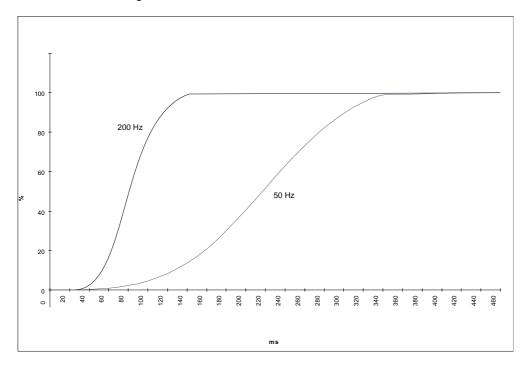
Diese Ausgaberate wird erzielt, indem der Wandler mit der 8fachen der eingestellten Ausgaberate ausgelesen wird. Für die Berechnung werden acht Werte addiert und anschließend wird die Summe durch acht dividiert.

Für die Feststellung der effektiven Auflösung muß in der Tabelle beim 8fachen Wert der eingestellten Datenausgaberate nachgesehen werden.

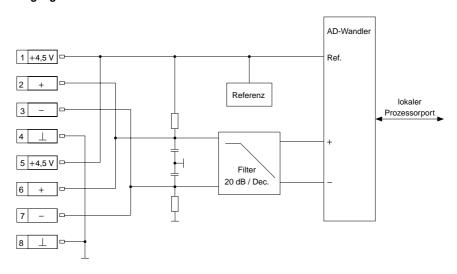
Beispiel

Eingestellte Ausgaberate: 25 Hz bei Meßbereich 2 mV/V

Effektive Auflösung: 8facher Wert der eingestellten Datenausgaberate:


25 Hz x 8 = 200 Hz \Rightarrow 15 Bit oder \pm 18000

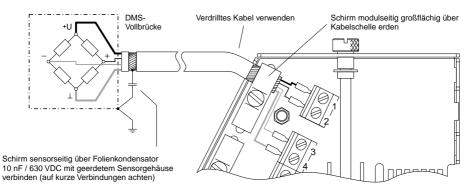
Datenaus	gaberate	Meßbereich							
HW	sw	±2 mV/V		±4 mV/V		±8 mV/V		±16 mV/V	
50 Hz	7 Hz	16 Bit	±35000	16,5 Bit	±50000	17 Bit	±69000	17,5 Bit	±99000
100 Hz	12 Hz	15,5 Bit	±25000	16 Bit	±33000	16,5 Bit	±51000	17 Bit	±69000
150 Hz	18 Hz	15,5 Bit	±20000	16 Bit	±29000	16,5 Bit	±42000	17 Bit	±56000
200 Hz	25 Hz	15 Bit	±18000	15 Bit	±27000	16 Bit	±36000	16,5 Bit	±49000
400 Hz	49 Hz	14,5 Bit	±11000	15 Bit	±18000	15,5 Bit	±24000	16 Bit	±36000


10.4.4 Einschwingverhalten bei Lastsprung

Das folgende Diagramm zeigt das Einschwingverhalten bei einem Lastsprung abhängig von der Datenausgaberate:

Kurve 1 Datenausgaberate = 50 Hz Kurve 2 Datenausgaberate = 200 Hz

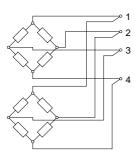
10.4.5 Eingangsschema

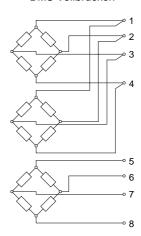


10.4.6 Anschluß

Klemmenbelegung

Anschluß	Bezeichnung	Beschreibung
1	+4,5 V	+4,5 V DMS-Versorgung
2	+	Differenzeingang
3	=	
4	Τ	GND
5	+4,5 V	+4,5 V DMS-Versorgung
6	+	Differenzeingang
7	-	
8	1	GND


Verdrahtung einer DMS-Vollbrücke


Parallelschaltung

Bei Parallelschaltung von DMS-Vollbrücken sind die Angaben des DMS-Herstellers zu beachten.

Parallelschaltung von zwei DMS-Vollbrücken

Parallelschaltung von drei DMS-Vollbrücken

10.4.7 6-Leiter DMS-Zelle

Allgemeines

Zur Verbesserung der Genauigkeit setzt man DMS-Zellen mit Rückführung der Brückenspannung ein. Die zusätzlichen Sense-Leitungen kompensieren die thermische Widerstandsänderung der Speiseleitungen.

4-Leiter Konzept der Al261

Die Al261 arbeitet mit 4-Leiter DMS-Zellen. Das Konzept der Al261 setzt einen Abgleich im Meßsystem voraus. Dieser Abgleich kompensiert bzw. eliminiert alle absoluten Ungenauigkeiten im Meßkreis, wie Bauteiltoleranzen, effektive Brückenspannung oder Nullpunktverschiebung.

Die Meßgenauigkeit bezogen auf einen absoluten (abgeglichenen) Wert verändert sich lediglich durch den negativen Einfluß einer Veränderung der Betriebstemperatur.

6-Leiter DMS-Zelle an Al261

Wenn eine 6-Leiter DMS-Zelle an eine Al261 angeschlossen wird, wirkt die Leitungskompensation nicht mehr. Dadurch ändert sich die Meßgenauigkeit bei Veränderung der Betriebstemperatur. Lange Kabelleitungen und kleine Kabelquerschnitte zwischen der Auswertestelle (Al261) und der DMS-Zelle erhöhen den möglichen Fehler des Meßsystems.

Im folgenden Beispiel wird die Abweichung des Meßwertes vom tatsächlichen Wert aufgezeigt, wenn der Arbeitsbereich zwischen 25 °C und 55 °C liegt.

Angabe

Bezeichnung	Wert
Angenommener (klassischer) Arbeitsbereich	25 °C bis 55 °C (ΔT = 30 °C)
Brückenwiderstand (Eingangswiderstand)	300 Ω
Anschlußkabel aus Kupfer, Temperaturkoeffizient	0,39 %/K

Formeln für die Berechnung der Tabelleneinträge

Bezeichnung	Formel
Leitungswiderstand	R = 2 * I / (γ * A)
	R = 2 * Kabellänge [m] / (56 * Querschnitt [mm²])
Widerstandsänderung	ΔR = R * 0,39 % * ΔT
	ΔR = R * 0,0039 * 30
Temperatureinfluß in ppm	(ΔR / Brückenwiderstand) * 10 ⁶
	(ΔR / 300) * 10 ⁶
Temperatureinfluß in %	(∆R / Brückenwiderstand) * 100
	(\(\Delta R \) / 300) * 100

Berechnungsbeispiele für verschiedene Kabellängen und Kabelquerschnitte

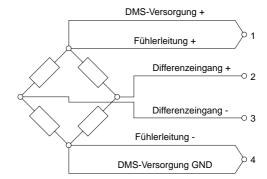
Bezeichnung	Einheit	Bsp. 1	Bsp. 2	Bsp. 3	Bsp. 4	Bsp. 5	Bsp. 6	Bsp. 7
Kabellänge	[m]	10	6	6	6	6	6	4
Querschnitt	[mm²]	0,25	0,14	0,25	0,22	0,34	0,5	0,5
Widerstand (Hin- und Rückleitung)	[Ω]	1,43	1,54	0,86	0,98	0,64	0,43	0,29
Widerstandsänderung bei ∆T = 30 °C	[mΩ]	168	181	101	115	75	51	34
Temperatureinfluß	[ppm]	560	604	337	384	250	170	114
Temperatureinfluß	[%]	0,056	0,060	0,034	0,038	0,025	0,017	0,011
Abweichung bei Meßbereich 0 bis 1000 kg	[g]	560	604	337	384	250	170	114

Verdrahtung

Zur zusätzlichen Reduktion des Leitungswiderstandes sollten die Sense-Leitungen des 6-Leiteranschlusses mit den Versorgungsleitungen parallel geschaltet sein.

Die optimale Signalgüte erhält man bei Nutzung paarweise verdrillter und geschirmter (Daten-)Kabel. Ein jeweils verdrilltes Paar verwendet man zum Anschluß der DMS-Versorgung (Eingang), der Sense-Leitungen (Fühlerleitung) und der Brückendifferenzspannung (Ausgang).

Paar 1: DMS-Versorgung +


DMS-Versorgung GND

Paar 2: Fühlerleitung + Fühlerleitung -

Paar 3:

Differenzeingang +

Differenzeingang -

10.4.8 Variablendeklaration

Die Variablendeklaration gilt für folgende Controller:

- Zentraleinheit RPS 2003
- Remote I/O-Buscontroller
- CAN-Buscontroller

Die Variablendeklaration erfolgt über das PG2000. Die Variablendeklaration ist im Kapitel 4 "Moduladressierung" beschrieben.

Unterstützung Automation Studio™: Siehe Hilfe Automation Studio™ ab V 1.40

Das Ansprechen der Anpassungsmodule ist auch in den Abschnitten "AF101" und "Zentraleinheit" erklärt.

Der Datenzugriff erfolgt über Daten- und Konfigurationswörter. Die folgende Tabelle enthält eine Übersicht, welche Daten- und Konfigurationswörter bei diesem Modul zum Einsatz kommen.

Datenzugriff	VD- Datentyp	VD- Modultyp	VD- Kanal	R	W	Beschreibung
Datenwort 0	LONG	Transp. In	0	•		Normierter Wert oder kalibrierter Rohwert
Konfigurationswort 4	LONG	Transp. In	8	•		Kalibrierter Rohwert während Normierung/Tarierung
	LONG	Transp. Out	8		•	Referenzwert/Tarawert als kalibrierter Rohwert
Konfigurationswort 6	LONG	Transp. Out	12		•	Normierter Referenzwert/Tarawert
Konfigurationswort 8	WORD	Transp. Out	16		•	Befehlsnummer für Normierung und Tarierung
Konfigurationswort 9	WORD	Transp. Out	18		•	Dämpfung des Fühlers
Konfigurationswort 10	WORD	Transp. Out	20		•	Datenausgaberate des Wandlers
Konfigurationswort 12	WORD	Transp. In	24	•		Modulstatus
Konfigurationswort 14	WORD	Transp. In	28	•		Modultyp
	WORD	Transp. Out	28	·	•	Modulkonfiguration

10.4.9 Zugriff über CAN-Identifier

Der Zugriff über CAN-Identifier wird verwendet, wenn der Slave über ein Fremdgerät angesteuert wird. Der Zugriff über CAN-Identifier ist in einem Beispiel im Kapitel 4 "Moduladressierung" beschrieben. Die Übertragungsmodi sind im Kapitel 5 "CAN-Buscontroller Funktionen" beschrieben.

Bei der Al261 ist das Packen der Daten nicht möglich. Pro Anpassungsmodul wird daher ein CAN-Objekt übertragen.

Wenn ein Adaptermodul AF101 mit vier Al261 bestückt ist, ergibt sich folgender Aufbau der CAN-Objekte:

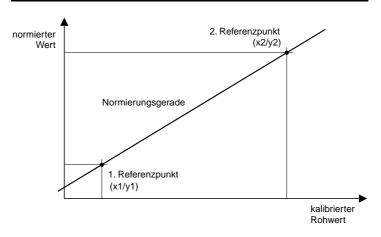
Slot	CAN-ID 1)	Wo	Word 1		rd 2	Word 3	Word 4
1	542	Daten LL	Daten ML	Daten MH Daten HH		nicht genutzt (2 Byte-Daten)	
2	543	Daten LL	Daten ML	Daten MH	Daten HH	ten HH nicht genutzt (2 Byte-Daten)	
3	544	Daten LL	Daten ML	Daten MH	Daten HH	nicht genutzt (2 Byte-Daten)
4	545	Daten LL	Daten ML	Daten MH	Daten HH	nicht genutzt (2 Byte-Daten)

¹⁾ CAN-ID = 542 + (kn - 1) x 16 + (ma - 1) x 4 + (sl - 1)

kn Knotennummer des CAN Slaves = 1

ma Moduladresse des AF101 = 1

sl Slotnummer des Anpassungsmoduls am AF101 (1 - 4)


B&R 2000 Anwender müssen die Daten austauschen, so daß die High-Daten am Anfang stehen (Motorola-Format)!

Weitere ID-Belegung siehe Kapitel 5 "CAN-Buscontroller Funktionen".

10.4.10 Begriffsbestimmung

Bei der Erklärung der Daten- und Konfigurationswörter werden die folgenden Begriffe verwendet:

Begriff	Beschreibung
kalibrierter Rohwert	Entspricht dem auf die Fühlerdämpfung abgeglichenen Wandlerwert
normierter Wert	Entspricht dem auf eine physikalische Einheit umgerechneten kalibrierten Rohwert
Normierungsgerade	Entlang dieser Geraden wird der kalibrierte Rohwert in einen normierten Wert umgerechnet
1. und 2. Referenzpunkt	Mit Hilfe dieser beiden Stützpunkte wird die Normierungsgerade berechnet

10.4.11 Beschreibung der Daten- und Konfigurationswörter

Datenwörter 0+1 (lesend)

Die Datenwörter 0 und 1 enthalten den normierten Wert oder den kalibrierten Rohwert der DMS-Vollbrücke mit 24 Bit Auflösung.

Wertebereich					
gültiger Wertebereich	\$007FFFFF bis \$FF800001				
Überlauf	\$7FFFFFF				
Unterlauf	\$8000001				
ungültiger Wert	\$8000000				

Konfigurationswörter 4+5 (lesend)

Während der Normierung bzw. Tarierung enthalten die Konfigurationswörter 4 und 5 den durch das Modul festgestellten kalibrierten Rohwert für den ersten bzw. zweiten Referenzpunkt der Normierungsgeraden.

Konfigurationswörter 4+5 (schreibend)

Mit den Konfigurationswörtern 4 und 5 wird entweder der erste Referenzpunkt oder der zweite Referenzpunkt als kalibrierter Rohwert definiert.

Konfigurationswörter 6+7 (schreibend)

Mit den Konfigurationswörtern 6 und 7 wird entweder der erste Referenzpunkt oder der zweite Referenzpunkt als normierter Wert definiert.

Konfigurationswort 8 (schreibend)

Mit dem Konfigurationswort 8 wird die Befehlsnummer für Normierung und Tarierung definiert.

	Bit	Beschreibung
	8 - 15	0
	4 - 7	Befehlsnummer für Normierung und Tarierung 0keine Auswirkung 1 - 5siehe Abschnitte "Normierung" und "Tarierung" 6 - 15reserviert
	0 - 3	0
0 0 0 0 0 0 0 0 0 0 0 0 0		
15 8 7 0		

Konfigurationswort 9 (schreibend)

Mit dem Konfigurationswort 9 wird die Dämpfung des Fühlers definiert. In der Betriebsart kalibrierte Rohwertausgabe werden Wandler und Wertausgabe gestartet (Konfigurationswort 14 = \$x800).

Wertebereich: 1 mV/V bis 16 mV/V

0 ist nicht erlaubt

(Fehlercode 5000, Zusatzcode k30ma siehe Anhang B "Fehlermeldungen")

Konfigurationswort 10 (schreibend)

Mit dem Konfigurationswort 10 wird die Datenausgaberate des Wandlers definiert.

Wertebereich: 7 bis 500

0 ist nicht erlaubt

(Fehlercode 5000, Zusatzcode k30ma siehe Anhang B "Fehlermeldungen")

Siehe auch Abschnitt "Effektive Auflösung des Meßbereichs in Bits"

Konfigurationswort 12 (lesend)

15

8 7

Das Konfigurationswort 12 enthält den Modulstatus (aktueller Zustand ungelatcht).

	Bit	Beschreibung
	12 - 15	xnicht definiert, ausmaskieren
	11	0Wandlerwert bereit 1Wandlerwert noch nicht bereit
	10	xnicht definiert, ausmaskieren
	9	0Warten auf die erste Wandlung nach Einstellung der Dämpfung 1Die erste Wandlung nach Einstellung der Dämpfung ist erfolgt
	8	0 Befehl zum Einstellen der Dämpfung noch nicht angenommen1 Befehl zum Einstellen der Dämpfung angenommen,Bit 9 wird gelöscht
	4 - 7	Wenn dieses Bitmuster gleich der in Konfigurationswort 8 definierten Befehlsnummer ist, wurde der Befehl ausgeführt.
	3	xnicht definiert, ausmaskieren
	2	0Wandlerparametrierung OK 1Wandlerparametrierung ungültig
	1	0Fühlerversorgung OK 1Fühlerversorgung ist überlastet
	0	0Referenzspannung OK 1Referenzspannung fehlt
x x x x x x x x x		

Konfigurationswort 14 (lesend)

Das High Byte des Konfigurationswortes 14 beschreibt die Modulkennung.

		Bit	Beschreibung
		8 - 15	Modulkennung = \$20
		0 - 7	xnicht definiert, ausmaskieren
0 0 1 0 0 0 0 0 x	x x x x x x x		
15 9.7	^		

Konfigurationswort 14 (schreibend)

Mit dem Konfigurationswort 14 wird das Modul konfiguriert.

	Bit	Beschreibung
	14 - 15	0
	13	0Entsprechend der Datenausgaberate wird in die Datenwörter 0 und 1 der normierte Wert oder der kalibrierte Rohwert der DMS-Vollbrücke eingetragen.
		…Entsprechend der Datenausgaberate wird in die Datenwörter 0 und 1 der normierte Wert oder der kalibrierte Rohwert der DMS-Vollbrücke eingetragen. Nach dem Auslesen wird der Wert auf ungültig gesetzt (\$80000000). Dadurch ist sichergestellt, daß der Wert pro Datenausgabezyklus nur einmal gelesen wird.
		Achtung: Bei Betrieb auf dem CP-Interface oder auf einem AF101 Modul der Rev. ≥02.00 muß auf der CPU bzw. auf dem AF101 Modul der Automatikmodus ausgeschaltet werden!
	12	0
	11	Number oder Wandlerwertes als normierten Wert der DMS- Vollbrücke
		Ausgabe des Wandlerwertes als auf die Fühlerdämpfung kalibrierten Rohwert
	0 - 10	0
0 0 0 0 0 0 0 0 0 0 0 0 0	0	
15 8 7	0	

10.4.12 Inbetriebnahme der Al261

Bei B&R ist ein Beispielprogramm erhältlich. Anhand dieses Programms wird die Bedienung der Al261 erklärt.

Falls Sie Interesse an diesem Programm haben, wenden Sie sich bitte an einen für Ihren Bereich zuständigen Vertriebspartner.

Folgende Schritte sind bei der Inbetriebnahme durchzuführen

Schritt	Konfiguratonswort	Beschreibung
1	14	Modul konfigurieren
2	10	Datenausgaberate des Wandlers definieren
3	9	Dämpfung des Fühlers definieren. In der Betriebsart kalibrierte Rohwertausgabe wird der Wandler gestartet und die Wertausgabe eingeleitet (Konfigurationswort 14 = \$x800).
4		Bei Betrieb mit normierten Werten (Konfigurationswort 14 = \$x000) muß jetzt die Normierung/Tarierung durchgeführt werden. Der Wandler und die Wertausgabe werden in Befehlsnummer 4 bzw. 5 gestartet.

10.4.13 Normierung

Durch die Normierung wird dem kalibrierten Rohwert ein der physikalischen Einheit entsprechender Wert zugewiesen. Die Umrechnung erfolgt entlang einer Normierungsgeraden.

Die Geradengleichung lautet

y = k * x + d

v..... normierter Wert

k Steigung

x kalibrierter Rohwert

 $d \dots y$, wenn x = 0 (Offset)

Es gibt zwei Arten der Normierung

- Bestimmung der Normierungsgeraden (die kalibrierten Rohwerte der Referenzpunkte sind nicht bekannt)
- Normierung w\u00e4hrend Hochlauf (Normierungsgerade wurde bereits bestimmt)

Bestimmung der Normierungsgeraden

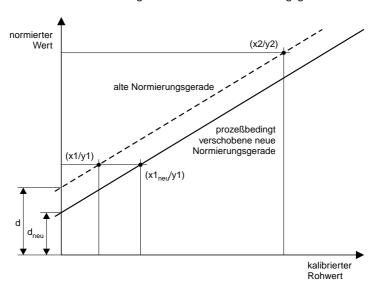
Diese Normierung wird durchgeführt, wenn die kalibrierten Rohwerte der Referenzpunkte nicht bekannt sind. Das ist der Fall, wenn:

- die Anlage in Betrieb genommen wird
- sich die Prozeßbedingungen geändert haben

Folgende Befehle sind auszuführen

Nr.	Auszuführender Befehl
1	Bedingungen herstellen, die dem ersten Referenzpunkt entsprechen (Gewicht, Druck, Drehmoment usw.).
2	In Konfigurationswort 8 Befehlsnummer 1 (\$0010) eintragen. Der Wandler stellt den ersten Referenzpunkt der Normierungsgeraden fest.
3	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx1x) nach ca. 1 s erfolgt.
4	Auslesen der Konfigurationswörter 4+5. Diese enthalten den kalibrierten Rohwert des ersten Referenzpunktes.
5	Den kalibrierten Rohwert speichern. Er muß bei jedem Hochlauf bzw. nach jedem Reset angegeben werden (siehe "Normierung während Hochlauf").
6	Den kalibrierten Rohwert in die Konfigurationswörter 4+5 schreiben.
7	Den, dem kalibrierten Rohwert entsprechenden, normierten Wert in die Konfigurationswörter 6+7 schreiben.
8	In Konfigurationswort 8 Befehlsnummer 2 (\$0020) eintragen. Die Werte in den Konfigurationswörtern 4+5 und 6+7 werden als erster Referenzpunkt der Normierungsgeraden übernommen.
9	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx2x) nach <100 ms erfolgt.
10	Bedingungen herstellen, die dem zweiten Referenzpunkt entsprechen.
11	In Konfigurationswort 8 Befehlsnummer 3 (\$0030) eintragen. Der Wandler stellt den zweiten Referenzpunkt der Normierungsgeraden fest.
12	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx3x) nach ca. 1 s erfolgt.
13	Auslesen der Konfigurationswörter 4+5. Diese enthalten den kalibrierten Rohwert des zweiten Referenzpunktes.
14	Den kalibrierten Rohwert speichern. Er muß bei jedem Hochlauf bzw. nach jedem Reset angegeben werden (siehe "Normierung während Hochlauf").
15	Den kalibrierten Rohwert in die Konfigurationswörter 4+5 schreiben.
16	Den, dem kalibrierten Rohwert entsprechenden, normierten Wert in die Konfigurationswörter 6+7 schreiben.
17	In Konfigurationswort 8 Befehlsnummer 4 (\$0040) eintragen. Die Werte in den Konfigurationswörtern 4+5 und 6+7 werden als zweiter Referenzpunkt der Normierungsgeraden übernommen, die Normierungsparameter berechnet, der Wandelvorgang und die Wertausgabe gestartet.
18	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx4x) nach <100 ms erfolgt.

Normierung während Hochlauf


Diese Normierung wird durchgeführt, wenn die Normierungsgerade bereits bestimmt wurde (die kalibrierten Rohwerte der Referenzpunkte sind bekannt). Sie wird bei jedem Hochlauf bzw. nach jedem Reset der Anlage durchgeführt.

Folgende Befehle sind auszuführen

Nr.	Auszuführender Befehl
1	Den kalibrierten Rohwert für den ersten Referenzpunkt der Normierungsgeraden in die Konfigurationswörter 4+5 schreiben. Die kalibrierten Rohwerte für den ersten und zweiten Referenzpunkt wurden während der Bestimmung der Normierungsgeraden festgestellt und gespeichert.
2	Den, dem kalibrierten Rohwert entsprechenden, normierten Wert in die Konfigurationswörter 6+7 schreiben.
3	In Konfigurationswort 8 Befehlsnummer 2 (\$0020) eintragen. Die Werte in den Konfigurationswörtern 4+5 und 6+7 werden als erster Referenzpunkt der Normierungsgeraden übernommen.
4	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx2x) nach <100 ms erfolgt.
5	Den kalibrierten Rohwert für den zweiten Referenzpunkt der Normierungsgeraden in die Konfigurationswörter 4+5 schreiben.
6	Den, dem kalibrierten Rohwert entsprechenden, normierten Wert in die Konfigurationswörter 6+7 schreiben.
7	In Konfigurationswort 8 Befehlsnummer 4 (\$0040) eintragen. Die Werte in den Konfigurationswörtern 4+5 und 6+7 werden als zweiter Referenzpunkt der Normierungsgeraden übernommen, die Normierungsparameter berechnet, der Wandelvorgang und die Wertausgabe gestartet.
8	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx4x) nach <100 ms erfolgt.

10.4.14 Tarierung

Eine Tarierung ist erforderlich, wenn sich die Normierungsgerade bei gleichbleibender Steigung prozeßbedingt verschoben hat. Bei einer Tarierung wird der Offset der Normierungsgeraden neu berechnet (d_{nei}).

Unter Berücksichtigung der folgenden Bedingungen kann im Betrieb jederzeit eine Tarierung durchgeführt werden:

- Es muß eine Normierung durchgeführt worden sein
- Es müssen die Bedingungen für den ersten Referenzpunkt erfüllt sein

Folgende Befehle sind auszuführen

Nr.	Auszuführender Befehl
1	Bedingungen herstellen, die dem ersten Referenzpunkt entsprechen (Gewicht, Druck, Drehmoment usw.).
2	In Konfigurationswort 8 Befehlsnummer 1 (\$0010) eintragen. Der Wandler stellt den ersten Referenzpunkt der Normierungsgeraden fest.
3	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx1x) nach ca. 1 s erfolgt.
4	Auslesen der Konfigurationswörter 4+5. Diese enthalten den kalibrierten Rohwert des ersten Referenzpunktes.
5	Den kalibrierten Rohwert in die Konfigurationswörter 4+5 schreiben.
6	Den, dem kalibrierten Rohwert entsprechenden, normierten Wert in die Konfigurationswörter 6+7 schreiben.
7	In Konfigurationswort 8 Befehlsnummer 5 (\$0050) eintragen. Die Werte in den Konfigurationswörtern 4+5 und 6+7 werden als erster Referenzpunkt der Normierungsgeraden übernommen und der neue Offsetwert der Normierungsgeraden ohne Veränderung der Steigung berechnet (d _{neu} - siehe oben abgebildetes Diagramm). Anschließend werden der Wandelvorgang und die Wertausgabe gestartet.
8	Pollen des Konfigurationswortes 12 bis die Quittung (\$xx5x) nach <100 ms erfolgt.

Einsatz der Tarierung

Wenn prozeßbedingt eine Tarierung erforderlich ist, muß sie nach jedem Hochlauf der Anlage durchgeführt werden.

Folgende Hinweise helfen für den richtigen Einsatz der Tarierung

- Bei oft wechselnden Prozeßbedingungen ist nach dem oben beschriebenen Schema vorzugehen.
- Bei selten wechselnden Prozeßbedingungen kann der neue Rohwert für den unteren Endpunkt gespeichert und in der Befehlsfolge sofort in Befehl 5 "Rohwert in die Konfigurationswörter 4+5 schreiben" eingestiegen werden.
 - Eine weitere Möglichkeit ist, den Rohwert für den oberen Endwert entsprechend der Änderung für den unteren Endwert nachzuziehen und für die Normierung während der Hochlaufphase die neuen Rohwerte zu verwenden.