
X20(c)AO2438

X20(c)AO2438

1 General information

The module is equipped with 2 current outputs with 16-bit digital converter resolution. It supports the HART com-
munication standard for data transfer, parameter configuration and diagnostics.
The 2 channels are electrically isolated from each other. The user can select between the 3 output ranges
4 to 20 mA, 0 to 20 mA and 0 to 24 mA.

• 2 analog current outputs
• HART protocol integration
• Support for HART variables
• Electrically isolated analog channels
• 16-bit digital converter resolution
• OSP mode
• NetTime timestamp: HART image

NetTime timestamp of the HART image
For many applications, not only the HART values are important, but also the exact time of reception. For this
purpose, the module has a NetTime timestamp function that provides the reception time with a timestamp with
microsecond accuracy.
The timestamp function is based on synchronized timers. If a timestamp event occurs, the module immediately
saves the current NetTime. After the respective data is transferred to the CPU, including this precise moment, the
CPU can then evaluate the data using its own NetTime (or system time), if necessary.
OSP mode
In function model "OSP" (Operator Set Predefined), the user defines an analog value. This OSP value is always
output as soon as the communication between the module and master is interrupted. Alternatively, the last valid
output value can also be obtained.
This ensures that the module does not fall into an undefined state in the event of communication failure.

Data sheet V 1.44 1



X20(c)AO2438

2 Coated modules

Coated modules are X20 modules with a protective coating for the electronics component. This coating protects
X20c modules from condensation and corrosive gases.
The modules' electronics are fully compatible with the corresponding X20 modules.

For simplification purposes, only images and module IDs of uncoated modules are used in this data
sheet.

The coating has been certified according to the following standards:

• Condensation: BMW GS 95011-4, 2x 1 cycle
• Corrosive gas: EN 60068-2-60, method 4, exposure 21 days

3 Order data
Order number Short description Figure

Analog outputs
X20AO2438 X20 analog output module, 2 outputs, 4 to 20 mA / 0 to 20 mA or

0 to 24 mA, 16-bit converter resolution, single-channel galvani-
cally isolated, supports the HART protocol, NetTime function

X20cAO2438 X20 analog output module coated, 2 outputs, 4 to 20 mA / 0 to
20 mA or 0 to 24 mA, 16-bit converter resolution, single-chan-
nel galvanically isolated, supports the HART protocol, NetTime
function
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-

ternal I/O power supply connected through
X20cBM11 X20 bus module, coated, 24 VDC keyed, internal I/O supply con-

tinuous
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20AO2438, X20cAO2438 - Order data

2 Data sheet V 1.44



X20(c)AO2438

4 Technical data
Order number X20AO2438 X20cAO2438
Short description
I/O module 2 analog outputs 4 to 20 mA, 0 to 20 mA or 0 to 24 mA
General information
B&R ID code 0xB3AA 0xE211
Status indicators I/O function per channel, operating state, module status, HART
Diagnostics

Module run/error Yes, using LED status indicator and software
Outputs Yes, using LED status indicator and software
HART link Yes, using LED status indicator and software
HART error Yes, using LED status indicator and software

Power consumption
Bus 0.05 W
Internal I/O 1.65 W

Additional power dissipation caused by actuators
(resistive) [W]

-

Certifications
CE Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

DNV GL Temperature: B (0 - 55°C)
Humidity: B (up to 100%)

Vibration: B (4 g)
EMC: B (bridge and open deck)

LR ENV1
KR Yes
ABS Yes
EAC Yes
KC Yes -

Analog outputs
Output 4 to 20 mA, 0 to 20 mA or 0 to 24 mA configurable using software
Digital converter resolution 16-bit
Settling time on output change over entire range 2 ms to 20 s, configurable using software
Data output rate

With HART 210 ms (default)
Analog 1 ms without ramp

Max. error
Gain

4 to 20 mA 0.025% 1)

0 to 20 mA 0.022% 1)

0 to 24 mA 0.02% 1)

Offset
4 to 20 mA 0.025% 2)

0 to 20 mA 0.022% 2)

0 to 24 mA 0.02% 2)

Output protection Short-circuit proof, overvoltage protection (up to 30 VDC)
Open-circuit detection Yes, using hardware and software
Data format INT
Output format

4 to 20 mA INT 0x0000 to 0x7FFF / 1 LSB = 0x0001 = 488.281 nA
0 to 20 mA INT 0x0000 to 0x7FFF / 1 LSB = 0x0001 = 610.352 nA 

UINT 0x0000 to 0xFFFF / 1 LSB = 0x0001 = 305.176 nA
0 to 24 mA INT 0x0000 to 0x5DC0 / 1 LSB = 0x0001 = 1000 nA

Load per channel Max. 600 Ω
Short-circuit proof Yes, continuous
Output filter Active second-order low-pass filter / cutoff frequency 19 Hz

Configurable slew rate
Max. gain drift

4 to 20 mA 0.0055 %/°C 1)

0 to 20 mA 0.005 %/°C 1)

0 to 24 mA 0.005 %/°C 1)

Max. offset drift
4 to 20 mA 0.0035 %/°C 2)

0 to 20 mA 0.002%/°C 2)

0 to 24 mA 0.002%/°C 2)

Table 2: X20AO2438, X20cAO2438 - Technical data

Data sheet V 1.44 3



X20(c)AO2438

Order number X20AO2438 X20cAO2438
Error caused by load change 3)

4 to 20 mA 0.14%
0 to 20 mA 0.1%
0 to 24 mA 0.1%

Nonlinearity <0.003% 4)

Test voltage
Channel - Channel 1000 VAC
Channel - Bus 1000 VAC
Channel - Ground 1000 VAC

HART
Transfer rate 1200 bit/s
Operating frequencies 1200 Hz / 2200 Hz
Burst operation possible Yes
Multi-drop operation

Possible Yes
Stations Up to 15

Transmission amplitude
Minimum 400 mVpp

Typical 500 mVpp

Maximum 600 mVpp

Receiving amplitude
Minimum 120 mVpp

Maximum 1500 mVpp

Electrical properties
Electrical isolation Channel isolated from channel and bus
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating See section "Derating".
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing Up to 100%, condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately. 

Order 1x bus module X20BM11 separately.
Order 1x terminal block X20TB12 separately. 
Order 1x bus module X20cBM11 separately.

Pitch 12.5+0.2 mm

Table 2: X20AO2438, X20cAO2438 - Technical data

1) Based on the current output value.
2) Based on the respective output range.
3) Load change from 1 Ω → 600 Ω, resistive
4) Based on the entire output range.

4 Data sheet V 1.44



X20(c)AO2438

5 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" in the
X20 system user's manual.

Figure LED Color Status Description
Operating status

Off No power to module
Single flash UNLINK mode
Double flash BOOT mode (during firmware update)1)

Blinking quickly SYNC mode
Blinking slowly PREOPERATIONAL mode
On RUN mode

r Green

Flickering
(approx. 10 Hz)

Module is in OSP mode

Module status
Off No power to module or everything OK
Single flash A conversion error has occurred. When an error occurs, the LED of the faulty

analog output channel begins to double flash and this status is output.

e Red

On Error or reset status
Analog output

Off Indicates one of the following cases:
• No power to module
• Channel disabled

Single flash Open line
Double flash A conversion error has occurred. A single flash is output on the red "e" module

status LED.

1 - 2 Orange

On Digital/analog converter running, value OK
HART link

Off Indicates one of the following cases:
• No power to module
• HART disabled for the respective channel

L Green

Flickering Carrier signal active (DCD or RTS)
HART error

Off Indicates one of the following cases:
• Communication taking place without errors
• No power to module
• HART disabled for the respective channel

e Red

On Communication error

1) Depending on the configuration, a firmware update can take up to several minutes.

6 Pinout

r
1
L
e

e
2
L
e

X2
0 

A
O

 2
43

8

Channel 1 +

Channel 1 −

Channel 2 +

Channel 2 −

Data sheet V 1.44 5



X20(c)AO2438

7 Connection example

4-wire
actuator

4-wire
actuator

GND
+24 VDC

GND
+24 VDC

AO 1)

1)

1) With external power supply.

8 OSP hardware requirements

In order to use OSP mode sensibly, it should be ensured that the power supply of the output module and CPU are
independent of each other when the application is set up.

9 Output circuit diagram

HART error

HART link

I/O status

LED (red)

LED (green)

LED (orange)

Channel x +

Channel x -

Pow
er supply units

Processor

D/A
converter

Galvanic
isolation

I/O
power supply

HART
Modem

Receive

Transmit

GND x
GND I/O

GND x

GND x

GND x

GND x

6 Data sheet V 1.44



X20(c)AO2438

10 Operation

10.1 Derating

To ensure proper operation, the derating values listed below must be adhered to:

Horizontal installation

Ambient temperature [°C]

0-10-20
0

100

200

300

400

500

600

40302010 50 60

Lo
ad

 [Ω
]

Horizontal mounting orientation

Forbidden
range

60°C / 400 Ω

50°C / 0 Ω

Figure 1: Derating the load with horizontal mounting

Vertical installation

Ambient temperature [°C]

0-10-20
0

100

200

300

400

500

600

40302010 50 60

Lo
ad

 [Ω
]

Vertical mounting orientation

Forbidden
range

50°C / 200 Ω

45°C / 0 Ω

Figure 2: Derating the load with vertical mounting

10.2 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream transfer.
For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

Data sheet V 1.44 7



X20(c)AO2438

10.3 HART communication standard

This module supports the HART communication standard for data transfer, parameter configuration and diagnos-
tics. The HART standard is used for the current range 4 to 20 mA. Be aware that the load is not permitted to fall
below 230 Ω .

Current [mA]

20 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

600
Lo

ad
 [Ω

]

Forbidden
range

Specified
HART workspace

Figure 3: Specified HART operational range

Both current ranges 0 to 20 mA and 0 to 24 mA are supported by this module. HART communication can also be
used in these ranges as well. It is important to make sure, however, that the output current lies within the specified
HART operational range.

8 Data sheet V 1.44



X20(c)AO2438

11 Register description

11.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X20 system user's
manual.

11.2 Function model 0 - Standard

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Analog signal - Configuration
386
394

AnalogMode01
AnalogMode02

UINT ●

390
398

DACSlewrate01
DACSlewrate02

UINT ●

Analog signal - Communication
0
2

AnalogOutput01
AnalogOutput02

(U)INT ●

AnalogStatus01
AnalogStatus02

USINT

OpenLineAnalogOutput01 or OpenLineAnalogOutput02 Bit 2
ConversionErrorAnalogOutput01 or
ConversionErrorAnalogOutput02

Bit 3

30
31

IoSuppErrorAnalogOutput01 or
IoSuppErrorAnalogOutput02

Bit 7

●

HART - Configuration
1537
1665

HartNodeCnt_1
HartNodeCnt_2

USINT ●

1539
1667

HartMode_1
HartMode_2

USINT ●

1541
1669

HartBurstNode_1
HartBurtNode_2

USINT ●

HART - Extended configuration
1558
1668

HartNodeDisable_1
HartNodeDisable_2

UINT ●

1546
1674

HartProtTimeOut_1
HartProtTimeOut_2

UINT ●

1550
1678

HartProtRetry_1
HartProtRetry_2

UINT ●

1554
1682

HartPreamble_1
HartPreamble_2

UINT ●

HART - Communication (P2P)
612 + Index*24
1124 + Index*24

PvInput01_N (Index N = 01 to 04)
PvInput02_N (Index N = 01 to 04)

REAL ● ●1)

617 + Index*24
1129 + Index*24

PvUnit01_N (Index N = 01 to 04)
PvUnit02_N (Index N = 01 to 04)

USINT ● ●1)

628
1140

PvSampleTime01
PvSampleTime02

DINT ● ●1)

626
1138

PvSampleTime01
PvSampleTime02

INT ●

566
1078

PvNodeComStatus01
PvNodeComStatus02

UINT ●

HART - Communication (multidrop)
612 + Index*24
1124 + Index*24

PvInput01_N (Index N = 01 to 15)
PvInput02_N (Index N = 01 to 15)

REAL ● ●1)

617 + Index*24
1129 + Index*24

PvUnit01_N (Index N = 01 to 15)
PvUnit02_N (Index N = 01 to 15)

USINT ● ●1)

604 + Index*24
1116 + Index*24

PvSampleTime01_N (Index N = 01 to 15)
PvSampleTime02_N (Index N = 01 to 15)

DINT ● ●1)

602 + Index*24
1114 + Index*24

PvSampleTime01_N (Index N = 01 to 15)
PvSampleTime02_N (Index N = 01 to 15)

INT ●

562 + Index*4
1074 + Index*4

PvNodeComStatus01_N (Index N = 01 to 15)
PvNodeComStatus02_N (Index N = 01 to 15)

UINT ●

HART - Extended communication
522

1034
PvCountHartRequest01
PvCountHartRequest02

UINT ●

530
1042

PvCountHartTimeout01
PvCountHartTimeout02

UINT ●

538
1050

PvCountHartRxError01
PvCountHartRxError02

UINT ●

546
1058

PvCountHartFrameError01
PvCountHartFrameError02

UINT ●

554
1066

PvNodeFound01
PvNodeFound02

UINT ●

Data sheet V 1.44 9



X20(c)AO2438

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

558
1070

PvNodeError01
PvNodeError02

UINT ●

Flatstream - Configuration
1793 OutputMTU USINT ●
1795 InputMTU USINT ●
1797 FlatstreamMode USINT ●
1799 Forward USINT ●
1802 ForwardDelay UINT ●

Flatstream - Communication
1857 InputSequence USINT ●

1857 + Index*2 RxByteN (Index N = 1 to 15) USINT ●
1889 OutputSequence USINT ●

1889 + Index*2 TxByteN (Index N = 1 to 15) USINT ●

1) These HART registers are defined multiple times. Hence, they can be activated acyclically, if they are not registered during the cyclical phase of the X2X
transmission.

11.3 Function model 1 - OSP

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Analog signal - Configuration
386
394

AnalogMode01
AnalogMode02

UINT ●

390
398

DACSlewrate01
DACSlewrate02

UINT ●

Analog signal - Communication
0
2

AnalogOutput01
AnalogOutput02

(U)INT ●

AnalogStatus01
AnalogStatus02

USINT

OpenLineAnalogOutput01 or OpenLineAnalogOutput02 Bit 2
ConversionErrorAnalogOutput01 or
ConversionErrorAnalogOutput02

Bit 3

30
31

IoSuppErrorAnalogOutput01 or
IoSuppErrorAnalogOutput02

Bit 7

●

HART - Configuration
1537
1665

HartNodeCnt_1
HartNodeCnt_2

USINT ●

1539
1667

HartMode_1
HartMode_2

USINT ●

1541
1669

HartBurstNode_1
HartBurtNode_2

USINT ●

HART - Extended configuration
1558
1668

HartNodeDisable_1
HartNodeDisable_2

UINT ●

1546
1674

HartProtTimeOut_1
HartProtTimeOut_2

UINT ●

1550
1678

HartProtRetry_1
HartProtRetry_2

UINT ●

1554
1682

HartPreamble_1
HartPreamble_2

UINT ●

HART - Communication (P2P)
612 + Index*24
1124 + Index*24

PvInput01_N (Index N = 01 to 04)
PvInput02_N (Index N = 01 to 04)

REAL ● ●1)

617 + Index*24
1129 + Index*24

PvUnit01_N (Index N = 01 to 04)
PvUnit02_N (Index N = 01 to 04)

USINT ● ●1)

628
1140

PvSampleTime01
PvSampleTime02

DINT ● ●1)

626
1138

PvSampleTime01
PvSampleTime02

INT ●

566
1078

PvNodeComStatus01
PvNodeComStatus02

UINT ●

HART - Communication (multidrop)
612 + Index*24
1124 + Index*24

PvInput01_N (Index N = 01 to 15)
PvInput02_N (Index N = 01 to 15)

REAL ● ●1)

617 + Index*24
1129 + Index*24

PvUnit01_N (Index N = 01 to 15)
PvUnit02_N (Index N = 01 to 15)

USINT ● ●1)

604 + Index*24
1116 + Index*24

PvSampleTime01_N (Index N = 01 to 15)
PvSampleTime02_N (Index N = 01 to 15)

DINT ● ●1)

602 + Index*24
1114 + Index*24

PvSampleTime01_N (Index N = 01 to 15)
PvSampleTime02_N (Index N = 01 to 15)

INT ●

562 + Index*4
1074 + Index*4

PvNodeComStatus01_N (Index N = 01 to 15)
PvNodeComStatus02_N (Index N = 01 to 15)

UINT ●

HART - Extended communication
522

1034
PvCountHartRequest01
PvCountHartRequest02

UINT ●

10 Data sheet V 1.44



X20(c)AO2438

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

530
1042

PvCountHartTimeout01
PvCountHartTimeout02

UINT ●

538
1050

PvCountHartRxError01
PvCountHartRxError02

UINT ●

546
1058

PvCountHartFrameError01
PvCountHartFrameError02

UINT ●

554
1066

PvNodeFound01
PvNodeFound02

UINT ●

558
1070

PvNodeError01
PvNodeError02

UINT ●

Flatstream - Configuration
1793 OutputMTU USINT ●
1795 InputMTU USINT ●
1797 FlatstreamMode USINT ●
1799 Forward USINT ●
1802 ForwardDelay UINT ●

Flatstream - Communication
1857 InputSequence USINT ●

1857 + Index*2 RxByteN (Index N = 1 to 15) USINT ●
1889 OutputSequence USINT ●

1889 + Index*2 TxByteN (Index N = 1 to 15) USINT ●
The OSP function model

OSPComByte USINT32
OSPValid Bit 0

●

401
403

CfgOSPMode01
CfgOSPMode02

USINT ●

34
36

CfgOSPValue01
CfgOSPValue02

INT ●

1) These HART registers are defined multiple times. Hence, they can be activated acyclically, if they are not registered during the cyclical phase of the X2X
transmission.

Data sheet V 1.44 11



X20(c)AO2438

11.4 Function model 254 - Bus controller

Read WriteRegister Offset1) Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Analog signal - Configuration
386
394

-
-

AnalogMode01
AnalogMode02

UINT ●

390
398

-
-

DACSlewrate01
DACSlewrate02

UINT ●

Analog signal - Communication
0
2

0
8

AnalogOutput01
AnalogOutput02

(U)INT ●

AnalogStatus01
AnalogStatus02

USINT

OpenLineAnalogOutput01 or
OpenLineAnalogOutput02

Bit 2

ConversionErrorAnalogOutput01 or
ConversionErrorAnalogOutput02

Bit 3

30
31

-
-

IoSuppErrorAnalogOutput01 or
IoSuppErrorAnalogOutput02

Bit 7

●

HART - Configuration
1537
1665

-
-

HartNodeCnt_1
HartNodeCnt_2

USINT ●

1539
1667

-
-

HartMode_1
HartMode_2

USINT ●

1541
1669

-
-

HartBurstNode_1
HartBurtNode_2

USINT ●

HART - Extended configuration
1558
1668

-
-

HartNodeDisable_1
HartNodeDisable_2

UINT ●

1546
1674

-
-

HartProtTimeOut_1
HartProtTimeOut_2

UINT ●

1550
1678

-
-

HartProtRetry_1
HartProtRetry_2

UINT ●

1554
1682

-
-

HartPreamble_1
HartPreamble_2

UINT ●

HART - Communication (P2P)
636
1148

4
12

PvInput01_01
PvInput02_01

REAL ●

612 + Index*24
1124 + Index*24

-
-

PvInput01_N (Index N = 02 to 04)
PvInput02_N (Index N = 02 to 04)

REAL ●

641
1153

2
10

PvUnit01_01
PvUnit02_01

USINT ●

617 + Index*24
1129 + Index*24

-
-

PvUnit01_N (Index N = 02 to 04)
PvUnit02_N (Index N = 02 to 04)

USINT ●

566
1078

-
-

PvNodeComStatus01
PvNodeComStatus02

UINT ●

HART - Communication (multidrop)
636
1148

4
12

PvInput01_01
PvInput02_01

REAL ●

612 + Index*24
1124 + Index*24

-
-

PvInput01_N (Index N = 02 to 15)
PvInput02_N (Index N = 02 to 15)

REAL ●

641
1153

2
10

PvUnit01_01
PvUnit02_01

USINT ●

617 + Index*24
1129 + Index*24

-
-

PvUnit01_N (Index N = 02 to 15)
PvUnit02_N (Index N = 02 to 15)

USINT ●

562 + Index*4
1074 + Index*4

-
-

PvNodeComStatus01_N (Index N = 01 to
15)
PvNodeComStatus02_N (Index N = 01 to
15)

UINT ●

HART - Extended communication
522

1034
-
-

PvCountHartRequest01
PvCountHartRequest02

UINT ●

530
1042

-
-

PvCountHartTimeout01
PvCountHartTimeout02

UINT ●

538
1050

-
-

PvCountHartRxError01
PvCountHartRxError02

UINT ●

546
1058

-
-

PvCountHartFrameError01
PvCountHartFrameError02

UINT ●

554
1066

-
-

PvNodeFound01
PvNodeFound02

UINT ●

558
1070

-
-

PvNodeError01
PvNodeError02

UINT ●

1) The offset specifies the position of the register within the CAN object.

12 Data sheet V 1.44



X20(c)AO2438

11.4.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X20
user's manual (version 3.50 or later).

11.4.2 CAN I/O bus controller

The module occupies 2 analog logical slots on CAN I/O.

11.5 Analog signal - Configuration

The module has 2 independent electrically isolated channels with integrated HART modems. Both channels can
be used to output an analog signal and handle HART communication. 2 registers need to be configured for one
analog signal. The 2 channels operate independently, so 2 registers must be configured per channel to be used.
The current outputs (default: 4 to 20 mA) can be used as conventional analog signals. The integrated HART
modems retrieve digital information from the memory on the HART slave using the same physical lines that mod-
ulate the HART signals.

Each channel can use one of the following connection variants:
• Point-to-point (connection of one HART node on the channel):

→ Evaluation of the analog signal
and
→ Recording of up to 4 HART values

• Multidrop (connection of up to 15 HART nodes on the channel):
→ Recording of one HART value per connected node

Specific features
• Electrical isolation by channel
• Up to 4 or 15 HART input variables per channel
• Configurable output rate (DAC slew rate) to transfer HART and analog signal without interference (default:

210 ms full scale)
• Selectable error strategy (static replacement value or retention of the last permitted value)
• Cyclic "HART status" polling (HART command 0), the status information received is made available for

channel diagnostics
• Compatible with an additional secondary master in the HART network (module acts as the primary master)
• "HART communication error bit" (shows loss of HART connection if a connection had already been estab-

lished successfully)
• Optional: BURST mode for one node per channel
• Optional: Cyclic polling of "HART variables" (HART command 3 or 9)
• Optional: FlatStream functionality (module acts as bridge for HART packets)

Data sheet V 1.44 13



X20(c)AO2438

11.5.1 AnalogMode

Name:
AnalogMode01 to AnalogMode02
These registers are used to predefine the operating parameters that the module will be using for the respective
channel. Each channel must be activated and configured separately.

Information:
When you select the operating mode "Scaling 0 to 20 mA (Resolution 0 to 65535)", then the corre-
sponding "AnalogOutput" registers are interpreted internally as UINT instead of INT.
The entire program must be rebuilt for the data type change to take effect. The data type cannot be
changed during runtime (e.g. using a library).

Data type Values Bus controller default setting
UINT See the bit structure. 33

Bit structure:
Bit Name Value Information

0 Disabled0 Channel
1 Enabled (bus controller default setting)
0 Enabled (bus controller default setting)1 Check - D/A converter configuration/status
1 Disabled

2 - 3 Reserved -
0 Disabled4 Scaling 0 to 20 mA

(Resolution 0 to 32767) 1 Enabled
0 Disabled5 Scaling 4 to 20 mA

(Resolution 0 to 32767) 1 Enabled (bus controller default setting)
0 Disabled6 Scaling 0 to 24 mA

(Resolution 0 to 24000) 1 Enabled
0 Disabled7 Scaling 0 to 20 mA

(Resolution 0 to 65535) 1 Enabled
8 - 15 Reserved -

Information:
The "AnalogMode" registers provide the option of avoiding the cyclic check of the D/A converter con-
figuration. To manage communication reliably, this option should only be used if no HART communi-
cation is taking place on the channel.

14 Data sheet V 1.44



X20(c)AO2438

11.5.2 DACSlewrate

Name:
DACSlewrate01 to DACSlewrate02
These registers limit the rate at which the analog signal is modified. This makes it possible to define a sort of upper
limit frequency.

The following formula
applies:

f(Analog) = f(Output rate) * Permitted change / max. Δ(standardized output value)

To ensure communication takes place without errors, it's important that the frequency range of the digital HART
signal is not influenced by the analog output. HART communication takes place in the frequency range 950 to
2500 Hz.

Example (standard): f(Analog) = 152440 Hz * 4 / (32767 - 0)
Conclusion: f(Analog) = ~20 Hz << 950 Hz = f(HART)
Data type Values Bus controller default setting
UINT See the bit structure. 514

Bit structure:
Bit Name Value Information

000 1-bit
001 2-bit
010 4-bit (bus controller default setting)
011 8-bit
100 16-bit
101 32-bit
110 64-bit

0 - 2 Permitted change per rate

111 128-bit
3 - 7 Reserved -

0000 257730 Hz
0001 198410 Hz
0010 152440 Hz (bus controller default setting)
0011 131580 Hz
0100 115740 Hz
0101 69440 Hz
0110 37590 Hz
0111 25770 Hz
1000 20160 Hz
1001 16030 Hz
1010 10290 Hz
1011 8280 Hz
1100 6900 Hz
1101 5530 Hz
1110 4240 Hz

8 - 11 Output rate

1111 3300 Hz
12 - 14 Reserved -

0 Disabled (undefined jump behavior)15 Slewrate enable
(ramp functionality) 1 Enabled (defined transitions)

Data sheet V 1.44 15



X20(c)AO2438

11.6 Analog signal - Communication

In order to output the desired current signal (default: 4 to 20 mA), the module must be provided with the normalized
output value (default: 0 to 32767). In this way, the X20AO2438 can be used as a conventional output module.
The integrated HART modem physically uses the same line. Using higher frequency signals, the module can
communicate with the HART slave and retrieve additional information.

11.6.1 AnalogOutput

Name:
AnalogOutput01 to AnalogOutput02
These registers provide the standardized output values. Depending on the scaling selected (see register "Analog-
Mode" on page 14), the value range and the data type can be adapted to the requirements of the application. Once
a permitted value is determined, the module outputs the respective current.

Information:
The value "0" disables the channel status LED.

Data type Value
INT 0 to 32767
Optional: UINT 0 to 65535

11.6.2 AnalogStatus

Name:
AnalogStatus01 to AnalogStatus02
The status register gives the user feedback about whether the respective channel is functioning properly.
Data type Value
USINT See bit structure

Bit structure:
Bit Name Value Information

0 - 1 Reserved -
0 Line OK2 OpenLineAnalogOutput01, 02
1 Open line
0 Conversion temperature OK3 ConversionErrorAnalogOutput01, 02
1 Conversion temperature too high

4 - 6 Reserved -
0 Module supply OK7 IoSuppErrorAnalogOutput01, 02
1 Module supply error

16 Data sheet V 1.44



X20(c)AO2438

11.7 HART

HART (Highway Addressable Remote Transducer) is a protocol for communicating with intelligent field devices. It
was developed in order to more efficiently use the infrastructure for transferring analog signals. The digital HART
notifications are modulated to the analog signal using Frequency Shift Keying (FSK). HART can thus use the same
physical line as the analog signal without influencing the original function.
HART slaves are able to determine different process data independently and prepare HART concordantly. This
protocol supports polling of the value of a process variable as well as its unit and status. Field devices usually supply
their information after the master requests it. In newer revisions, it is also possible to transfer configuration data.
There are 2 different types of HART networks. In a point-to-point network, only one slave is connected to a HART
master. Here, the analog signal and the HART signal can be transferred over the same line. Managing several
slaves with HART requires what is known as a multidrop network. Here, each HART slave is assigned and identified
by a unique address. Classic analog signals cannot be clearly traced in bus systems. As a result, the HART protocol
does not support analog information transfers in multidrop networks up to and including HART Revision 5.

Information:
Split range operation with HART AO modules
Beginning with HART revision 6, bus stations that use an analog signal according to the split range
method are written to separately. The HART protocol supports multidrop addressing as well as the use
of analog signals for these applications.

The module was designed based on HART-Revision 5. Only single-channel FSK scheme is available for transmit-
ting the signals.
Since all HART frames are generated and evaluated in the application when using the FlatStream interface, infor-
mation that isn't specified until later revisions can also be read.

11.7.1 HART - Configuration

HART modules are analog modules equipped with a HART modem. For each channel, a separate HART network
can be managed by the module, which acts as a primary master. Once configured successfully, the HART infor-
mation is stored in the module where it can then be used by the PLC.
The number of HART slaves must be specified in the configuration.
If only one slave is connected to the HART channel, then it is part of a point-to-point network. The module can then
prepare up to 4 process variables from the connected slave.
Multidrop mode allows up to 15 HART slaves to be connected. The primary process variable from each slave is
then retrieved.

11.7.1.1 HartNodeCnt

Name:
HartNodeCnt_1 to HartNodeCnt_2
These registers tell the module how many HART slaves are connected to a channel.

Information:
If a slave is not connected to one of the HART channels, the value "0" should be defined in this register.
This shortens the I/O update time and avoids superfluous error messages.

Data type Value Information
0 HART communication disabled for this channel
1 Point-to-point Standard HART communication (bus controller default setting)

USINT

2 to 15 Multidrop Number of HART slave nodes

Data sheet V 1.44 17



X20(c)AO2438

11.7.1.2 HartBurstNode

Name:
HartBurstNode_1 to HartBurstNode_2
In addition to the type of network, the user can also choose from 2 different types of communication behavior.
Conventional HART communication relies on polling. The module queries the data from the HART slave individually
and receives the corresponding information from the slave as a response. If a HART node should be queried in
short time intervals, the user can configure burst mode for a node on each channel. In this case, the slave transmits
the information from this node cyclically without a new request by the master.
The node numbers (short address) whose information should be queried using burst mode are entered by channel
in the "HartBurstNode" registers. Burst mode is enabled using register "HartMode" on page 18.
Data type Value Information
USINT 0 to 15 Point-to-point.

Bus controller default setting: 0

11.7.1.3 HartMode

Name:
HartMode_1 to HartMode_2
The user can use these registers to configure the communication behavior of each of the HART channels. Gener-
ally, the HART nodes are polled individually. This register can still be used to start or stop burst mode when needed.
In burst mode, a node transmits its information cyclically instead of continuously. As a result, the HART standard
allows the simultaneous usage of both burst mode and polling.

Information:
Register "HartBurstNode" on page 18 must be configured correctly for burst queries.

Data type Values Bus controller default setting
UINT See bit structure. 0

Bit structure:
Bit Name Value Information

0 Polling mode enabled (bus controller default setting)0 Slave polling mode
1 Polling mode disabled
0 No response to burst (bus controller default setting)1 Start slave burst mode
1 Enables burst mode in the "HartBurstNode" on page 18 node
0 No response to burst (bus controller default setting)2 Stop slave burst mode
1 Disables burst mode, if enabled

3 - 7 Reserved -

18 Data sheet V 1.44



X20(c)AO2438

11.7.2 HART - Communication

After the configuration is completed, the information is retrieved automatically and transferred to the module regis-
ters. A separate register is implemented in the module for each piece of information. HART modules are designed
to query up to 15 pieces of information per channel. The module reads in the data, stores it in temporary memory
and prepares it for retrieval. When the X2X master accesses the module registers, it is irrelevant whether the HART
data originates from a point-to-point or multidrop network.
Overview of internal module mapping

Point-to-point network (1 HART slave) Multidrop network (2 to 15 HART slaves)
(Pv)Input_01 Primary piece of information from HART node 1 Primary piece of information from HART node 1
(Pv)Input_02 Secondary piece of information from HART node 1 Primary piece of information from HART node 2
... ... ...
(Pv)Input_04 Quaternary piece of information from HART node 1 Primary piece of information from HART node 4
(Pv)Input_05 Reserved Primary piece of information from HART node 5
... ... ...
(Pv)Input_15 Reserved Primary piece of information from HART node 15

The HART specifications stipulates that information from a HART node be split into various pieces. The value of
a process variable is stored to the respective "PvInput" on page 19 register and has a size of 4 bytes (REAL)
per the HART specification. Due to the length limitation of 30 bytes on the X2X Link network, there are limitations
to the number of possible cyclic variables. It is recommended to transfer a maximum of 2 "PvInput" on page 19
registers cyclically to the X2X master. All other information should be read in a different way. To access HART
information, the user can choose between the following methods:

• Acyclic - If library AsIOAcc is used, information is queried acyclically only when it is needed, i.e. communi-
cation can be adapted to the program sequence of the X2X master. In this way, all of the necessary module
registers on the X2X Link network can be queried despite the length limitation.
This type of information exchange is not real-time capable.

• Cyclic: Data points configured for cyclic transfer are read once per bus cycle. This procedure allows re-
al-time capable information exchange between the module and X2X master. The length limitation may
prevent all data from being queried within one cycle, however.

• Multiplexed - A runtime driver can be used to transfer the HART data points in the I/O mapping. In this case,
the HART process data is transmitted alternately (time multiplexed). Communication remains real-time
capable. Multiple bus cycles are needed to update all data points, however.

Information:
This mode cannot be used when using the module after a bus controller.
"Multiplexed" data transfer is used only for HART data points.
Information from the analog inputs/outputs is always transferred cyclically (see above).

• Flatstream - HART modules are equipped with a Flatstream interface. When using Flatstream communi-
cation, the module is used as a bridge between the X2X master and HART slave, i.e. the X2X master
communicates directly with the HART slave (see "Flatstream communication" on page 24).
Flatstream communication is also not real-time capable. It allows unrestricted access to the HART slave.
The user must have sufficient knowledge of the HART protocol command set as well as the capabilities
of the corresponding HART slave.

11.7.2.1 PvInput

Name:
PvInput01_01 to PvInput01_15
PvInput02_01 to PvInput02_15
These registers return the current value of the process variable that has been read.

Information:
These registers are of data type REAL, which means that the available bytes on the X2X Link are filled
more quickly when operated cyclically. If information from several slave nodes is needed, it must be
retrieved acyclically or using Flatstream .

Data type Value Information
IEEE745 SPF 32-bit data type with valid valueREAL
0x7FA00000 Not a number (NaN) with invalid value

Data sheet V 1.44 19



X20(c)AO2438

11.7.2.2 PvUnit

Name:
PvUnit01_01 to PvUnit01_15
PvUnit02_01 to PvUnit02_15
These registers return a HART-specific code that specifies the unit for the measured value. The coding for this is
established in the HART specification.
Data type Value
USINT See description of the HART slave

See HART specification

11.7.2.3 PvSampleTime

Name:
PvSampleTime01 to PvSampleTime02
PvSampleTime01_01 to PvSampleTime01_15
PvSampleTime02_01 to PvSampleTime02_15
These registers return the timestamp for when the module reads the current channel mapping. The values are
provided as signed 2-byte or 4-byte values.
For more information about NetTime and timestamps, see "NetTime Technology" on page 55.
Data type Values Information
INT -32,768 to 32767 NetTime timestamp of the current input value in µs
DINT -2147483648 to 2147483647 NetTime timestamp of the current input value in µs

This refers to the point in time when the HART master receives the slave's response. This is a way to check whether
new HART information has been read since the last X2X cycle.

Information:
The cycle times of a HART network are relatively long so that it is not possible to reliably determine
when the measured value is retrieved with just this information.

20 Data sheet V 1.44



X20(c)AO2438

11.7.2.4 PvNodeComStatus

Name:
PvNodeComStatus01 to PvNodeComStatus02
PvNodeComStatus01_01 to PvNodeComStatus01_15
PvNodeComStatus02_01 to PvNodeComStatus02_15
These registers provide information about whether a read value is valid. Per the HART specification, this type of
status register consists of 2 parts. The "response code" is stored in the high byte; the "field device status" is stored
in the low byte. This makes it possible to check the current state of a read process variable.
These registers can be checked before further processing information in temporary storage. If the current value
is 0x0000, an error was not detected during the HART transfer and the information from the checked node can
be used. If a different value is present, the situation in the HART network should be checked. This can be done
using an extension register, for example.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Digital measured value okay0 Quality - Node information 2 to n
1 Measured value outside the permitted range
0 Digital measured value okay1 Quality - Node information 1
1 Measured value outside the permitted range
0 Parameter okay2 Limit violation
1 Invalid measured value(s) or encoder supply value
0 Normal value change/fluctuation3 Static analog signal
1 Constant analog value of Node 1 slave
0 Not available4 Additional status information

(only supported by a few slaves) 1 Available (only using Flatstream command #48)
0 Normal operation5 Restart
1 Field device restarts
0 Unchanged6 Device ID
1 Changed
0 Measured value okay7 Device error
1 Questionable measured value information

8 - 14 Response code, if relevant x See HART-specific response code
0 Error-free communication (response code irrelevant)15 Error - Communication
1 Faulty communication (response code relevant)

HART-specific response code (excerpt):
0x82 … Receive buffer overflow
0x88 … Checksum incorrect
0x90 … Faulty protocol structure
0xA0 … Overrun
0xC0 … Parity not allowed
0xFF … Timeout

If a HART communication error occurs, the response code is written. Bit 15 is
always set.

Retrieving information that has been read
After the node data has been transferred to the module registers, the information can be retrieved from the module.
A separate register in the module is implemented for each piece of information.

11.7.2.5 PvCountHartRequest

Name:
PvCountHartRequest01 to PvCountHartRequest02
These registers are increased once the module is ready to transmit a message to the corresponding channel.
Data type Values
UDINT 0 to 4,294,967,295

11.7.2.6 PvCountHartTimeout

Name:
PvCountHartTimeout01 to PvCountHartTimeout02
These registers are increased if the slave exceeds the maximum permitted time before responding to the module's
request.
Data type Values
UDINT 0 to 4,294,967,295

Data sheet V 1.44 21



X20(c)AO2438

11.7.2.7 PvCountHartRxError

Name:
PvCountHartRxError01 to PvCountHartRxError02
These registers are increased if communication errors occur on Layer 1 of the OSI model (e.g. transmission error
as per parity bit).
Data type Values
UDINT 0 to 4,294,967,295

11.7.2.8 PvCountHartFrameError

Name:
PvCountHartFrameError01 to PvCountHartFrameError02
These registers are increased if communication errors occur on Layer 2 of the OSI model (e.g. faulty telegram
structure).
Data type Values
UDINT 0 to 4,294,967,295

11.7.2.9 PvNodeFound

Name:
PvNodeFound01 to PvNodeFound02
These registers provide information about which nodes were detected on which channel (slave identified success-
fully).
Data type Values
UINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Not detected as valid0 Node 0 (default mode)
Node 1 (multidrop mode) 1 Detected as valid

0 Not detected as valid1 Node 2 (multidrop mode)
1 Detected as valid

... ...
0 Not detected as valid13 Node 14 (multidrop mode)
1 Detected as valid
0 Not detected as valid14 Node 15 (multidrop mode)
1 Detected as valid

15 Reserved -

11.7.2.10 PvNodeError

Name:
PvNodeError01 to PvNodeError02
These registers contain the HART communications error bits. These bits are set if the connection to a node was
established successfully but the node at some point no longer responds as it should (e.g. the HART slave exceeds
the configured timeout / number of retries).
Data type Values
UINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Detected as having no errors0 Node 0 (default mode)
Node 1 (multidrop mode) 1 Detected as having errors

0 Detected as having no errors1 Node 2 (multidrop mode)
1 Detected as having errors

... ...
0 Detected as having no errors13 Node 14 (multidrop mode)
1 Detected as having errors
0 Detected as having no errors14 Node 15 (multidrop mode)
1 Detected as having errors

15 Reserved -

22 Data sheet V 1.44



X20(c)AO2438

11.7.3 Extended configuration

The additional configuration registers are specified values when the module is started. In most systems, the user
does not need to make any adjustments here. Register values should only be changed if HART network commu-
nication is not taking place satisfactorily.

11.7.3.1 HartNodeDisable

Name:
HartNodeDisable_1 to HartNodeDisable_2
These registers are intended for things like maintenance. They make it possible to cut off configured HART nodes
to suppress error messages for a certain period of time. During normal operation, the configured nodes must be
switched active to guarantee that the procedure runs smoothly.
Data type Values Bus controller default setting
UINT See bit structure. 0x3FFF

Bit structure:
Bit Name Value Information

0 Enabled (bus controller default setting)0 Node 0 (default mode)
Node 1 (multidrop mode) 1 Disabled

0 Enabled1 Node 2 (multidrop mode)
1 Disabled (bus controller default setting)

... ...
0 Enabled13 Node 14 (multidrop mode)
1 Disabled (bus controller default setting)
0 Enabled14 Node 15 (multidrop mode)
1 Disabled (bus controller default setting)

15 Reserved -

11.7.3.2 HartProtTimeOut

Name:
HartProtTimeOut_1 to HartProtTimeOut_2
These registers specify the time span within which the slave must respond for the response to be valid.
Data type Values [ms] Information
UINT 0 to 65535 Bus controller default setting: 256 [ms]

11.7.3.3 HartProtRetry

Name:
HartProtRetry_1 to HartProtRetry_2
These registers determine how many times the master retries a request if it receives an invalid response or no
response at all.
Data type Value Information
UINT 0 to 65535 Bus controller default setting: 3 attempts

11.7.3.4 HartPreamble

Name:
HartPreamble_1 to HartPreamble_2
The length of the preamble can be set in these registers. The preamble is used to synchronize the receiver to the
transmitter. The longer the declared preamble, the less chance that a communication error will occur. Nevertheless,
a useful signal is not transmitted during synchronization so the preamble should be kept as short as possible.
Data type Value Information
UINT 5 to 20 Bus controller default setting: 20

Data sheet V 1.44 23



X20(c)AO2438

11.8 Flatstream communication

11.8.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 4: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

24 Data sheet V 1.44



X20(c)AO2438

11.8.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

Data sheet V 1.44 25



X20(c)AO2438

11.8.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 5: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

26 Data sheet V 1.44



X20(c)AO2438

11.8.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

11.8.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

11.8.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

Data sheet V 1.44 27



X20(c)AO2438

11.8.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

11.8.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

11.8.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

11.8.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
28 Data sheet V 1.44



X20(c)AO2438

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

11.8.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

Data sheet V 1.44 29



X20(c)AO2438

11.8.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

30 Data sheet V 1.44



X20(c)AO2438

11.8.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 6: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

Data sheet V 1.44 31



X20(c)AO2438

11.8.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

32 Data sheet V 1.44



X20(c)AO2438

11.8.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 7: Transmit/Receive array (default)

Data sheet V 1.44 33



X20(c)AO2438

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

34 Data sheet V 1.44



X20(c)AO2438

11.8.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 8: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V 1.44 35



X20(c)AO2438

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter  = 1 OutputSyncBit = 1 OutputSequenceCounter  = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 9: Flowchart for the output direction

36 Data sheet V 1.44



X20(c)AO2438

11.8.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 10: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V 1.44 37



X20(c)AO2438

General flowchart

Se
gm

en
t d

at
a 

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 11: Flowchart for the input direction

38 Data sheet V 1.44



X20(c)AO2438

11.8.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

Data sheet V 1.44 39



X20(c)AO2438

11.8.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 12: Message arrangement in the MTU (default)

40 Data sheet V 1.44



X20(c)AO2438

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 13: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 14: Arrangement of messages in the MTU (large segments)

Data sheet V 1.44 41



X20(c)AO2438

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 15: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

42 Data sheet V 1.44



X20(c)AO2438

11.8.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 16: Transmit/receive array (MultiSegmentMTUs)

Data sheet V 1.44 43



X20(c)AO2438

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

44 Data sheet V 1.44



X20(c)AO2438

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 17: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

Data sheet V 1.44 45



X20(c)AO2438

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 18: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

46 Data sheet V 1.44



X20(c)AO2438

11.8.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

11.8.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Receiver
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 19: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

Data sheet V 1.44 47



X20(c)AO2438

11.8.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

11.8.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

11.8.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in microseconds. This is the amount of time the module
has to wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle.
The program routine for receiving sequences from a module can therefore be run in a task class whose cycle time
is slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 20: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

48 Data sheet V 1.44



X20(c)AO2438

11.8.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

Data sheet V 1.44 49



X20(c)AO2438

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

50 Data sheet V 1.44



X20(c)AO2438

11.8.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 21: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

Data sheet V 1.44 51



X20(c)AO2438

11.9 HART with Flatstream

When using Flatstream communication, the module acts as a bridge between the X2X master and an intelligent
field device connected to the module. Flatstream mode can be used for either point-to-point connections as well
as for multidrop systems. Specific algorithms such as timeout and checksum monitoring are usually managed
automatically. During normal operation, the user does not have access to these details.
HART is considered a master-slave network where half-duplex communication takes place asynchronously. Vari-
ous features have been included to ensure that signals are transmitted without errors.
For example, the user can increase the length of the preamble, thus making the transmission more secure. How-
ever, this also has an effect on the percentage of payload data and overhead.
Additional information about HART can be found at www.HARTcomm.org.

How it works

The module has 2 independent channels. When using Flatstream , the channel number must therefore be specified.
The general structure of a Flatstream frame is extended as follows.

Input/Output sequence Tx/Rx bytes
(unchanged) Control byte

(unchanged)
Channel number HART frame

(without preamble and checksum)

HART frame with Flatstream
Startup ADDR CMD BCNT (STS) (DATA)

Startup Start identification
ADDR Address within the HART network
CMD HART command
BCNT Byte counters (number of remaining bytes)
*STS Status of the last command received. Information about the working mode of the HART Slave and communication

errors (if supported, return data from the HART Slave)
*DATA Data (if necessary for the command)

Examples of HART commands
Command Function
0x00 Read slave ID
0x03 Read current value and up to 4 variables
0x09 Read up to 4 variables including status
0x21 Read variables

52 Data sheet V 1.44

http://www.HARTcomm.org


X20(c)AO2438

11.10 Function model "OSP"

In function model "OSP" (Operator Set Predefined), the user defines an analog value or digital pattern. This OSP
value is output as soon as the communication between the module and master is aborted.
Functionality
The user has the choice between 2 OSP modes:

• Retain last valid value
• Replace with static value

In the first case, the module retains the last value recognized as a valid output status.
When selecting mode "Replace with static value", a plausible output value must be entered in the associated value
register. When an OSP event occurs, this value is output instead of the value currently requested by the task.

11.10.1 Activating the OSP output in the module

Name:
OSPValid
This data point offers the possibility to start module output and request OSP operation during running operation.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Request OSP operation (after initial start or module in Standby)0 OSPValid
1 Request normal operation

1 - 7 Reserved 0

There is one OSPValid bit on the module, which is managed by the user task. It must be set when the enabled
channels are started. As long as the OSPValid bit remains set in the module, the module behaves the same as
the "Standard" function model.
If an OSP event occurs (e.g. communication between the module and master CPU interrupted) then the OSPValid
bit will be reset on the module. The module enters OSP mode and the output occurs in the "OSPMode" on page
53 register according to the configuration.

The following applies:
The OSP replacement value remains even after the communication channel has recovered. OSP mode
is only exited when a set OSPValid bit is transferred.
When the master CPU is restarted, the OSPValid bit is re-initialized on the master CPU. It must once
more be set by the application and transferred via the bus.
When temporary communication errors occur between the module and master CPU (e.g. due to EMC),
a few bus cycles will pass without refreshing the cyclic registers. The OSPValid bit is reset internally in
the module - the bit in the CPU however remains set. Upon the next successful transfer, the OSPValid
bit in the module is set again and the module returns to normal operation.

The ModulOK bit can be evaluated if the task in the master CPU needs to know which output mode the module
is currently in.

Warning!
If the OSPValid bit is reset to "0" on the module, then the output state no longer depends on the relevant
task in the master CPU. However, an output still occurs depending on the configuration of the OSP
replacement value.

11.10.2 Setting the OSP mode

Name:
CfgOSPMode01 to CfgOSPMode02
This register essentially controls a channel's behavior when OSP is being used.
Data type Value Description

0 Replace with static valueUSINT
1 Retain last valid value

Data sheet V 1.44 53



X20(c)AO2438

11.10.3 Define the OSP analog output value

Name:
CfgOSPValue01 to CfgOSPValue02
This register contains the analog output value, which is output in "Replace with static value" mode during OSP
operation.
Data type Value
Corresponds to AnalogOut-
put0x

Corresponds to AnalogOutput0x

Warning!
"OSPValue" is only applied by the module if bit "OSPValid" has been set in the module.

54 Data sheet V 1.44



X20(c)AO2438

11.11 NetTime Technology

NetTime refers to the ability to precisely synchronize and transfer system times between individual components of
the controller or network (CPU, I/O modules, X2X Link, POWERLINK, etc.).
This allows the moment that events occur to be determined system-wide with microsecond precision. Upcoming
events can also be executed precisely at a specified moment.

11.11.1 Time information

Various time information is available in the controller or on the network:

• System time (on the PLC, Automation PC, etc.)
• X2X Link time (for each X2X Link network)
• POWERLINK time (for each POWERLINK network)
• Time data points of I/O modules

The NetTime is based on 32-bit counters, which are increased with microsecond resolution. The sign of the time
information changes after 35 min, 47 s, 483 ms and 648 µs; an overflow occurs after 71 min, 34 s, 967 ms and
296 µs.
The initialization of the times is based on the system time during the startup of the X2X Link, the I/O modules or
the POWERLINK interface.
Current time information in the application can also be determined via library AsIOTime.

11.11.1.1 PLC/Controller data points

The NetTime I/O data points of the PLC or the controller are latched to each system clock and made available.

11.11.1.2 X2X Link reference moment

X2X Link

Full cycle Half cycle

SI AO AISOAIAOSISOAIAO

Full cycle Full cycleHalf cycle

Task class Task class Task class

System time System time System timeX2X Link
time

X2X Link
time

23000 24000 25000 26000 27000

System cycle time = 2 ms
X2X cycle time = 2 ms

The reference moment on the X2X Link network is always calculated at the half cycle of the X2X Link cycle. This
results in a difference between the system time and the X2X Link reference moment when the reference time is
read out.
In the example above, this results in a difference of 1 ms, i.e. if the system time and X2X Link reference moment
are compared at time 25000 in the task, then the system time returns the value 25000 and the X2X Link reference
moment returns the value 24000.

Data sheet V 1.44 55



X20(c)AO2438

11.11.1.3 POWERLINK reference moment

Full cycle

PReqSoC

Full cycle Full cycle

Task class Task class Task class

System time System time System time

POWERLINK
NetTime SoC

23000 25000 27000

System cycle time = 2 ms
POWERLINK system cycle time = 2 ms

POWERLINK
NetTime SoC

POWERLINK
NetTime SoC

PRes PReq PReqSoC PRes PReq... ...

The reference moment on the POWERLINK network is always calculated at the start of cycle (SoC) of the POW-
ERLINK network. The SoC starts 20 µs after the system tick. This results in the following difference between the
system time and the POWERLINK reference time:
POWERLINK reference time = System time - POWERLINK cycle time + 20 µs.
In the example above, this means a difference of 1980 µs, i.e. if the system time and POWERLINK reference mo-
ment are compared at time 25000 in the task, then the system time returns the value 25000 and the POWERLINK
reference moment returns the value 23020.

11.11.1.4 Synchronization of system time/POWERLINK time and I/O module

Time

X2X Link cycle

(E)

(S)

C
ou

nt
er

 v
al

ue

(1)

(2)
Counter PLC/POWERLINK
Counter I/O module

(E)

(S)

At startup, the internal counters for the PLC/POWERLINK (1) and the I/O module (2) start at different times and
increase the values with microsecond resolution.
At the beginning of each X2X Link cycle, the PLC or the POWERLINK network sends time information to the I/
O module. The I/O module compares this time information with the module's internal time and forms a difference
(green line) between the two times and stores it.
When a NetTime event (E) occurs, the internal module time is read out and corrected with the stored difference
value (brown line). This means that the exact system moment (S) of an event can always be determined, even if
the counters are not absolutely synchronous.
Note
The deviation from the clock signal is strongly exaggerated in the picture as a red line.

56 Data sheet V 1.44



X20(c)AO2438

11.11.2 Timestamp functions

NetTime-capable modules provide various timestamp functions depending on the scope of functions. If a timestamp
event occurs, the module immediately saves the current NetTime. After the respective data is transferred to the
CPU, including this precise moment, the CPU can then evaluate the data using its own NetTime (or system time),
if necessary.

11.11.2.1 Time-based inputs

NetTime Technology can be used to determine the exact moment of a rising edge at an input. The rising and falling
edges can also be detected and the duration between 2 events can be determined.

Information:
The determined moment always lies in the past.

11.11.2.2 Time-based outputs

NetTime Technology can be used to specify the exact moment of a rising edge on an output. The rising and falling
edges can also be specified and a pulse pattern generated from them.

Information:
The specified time must always be in the future, and the set X2X Link cycle time must be taken into
account for the definition of the moment.

11.11.2.3 Time-based measurements

NetTime Technology can be used to determine the exact moment of a measurement that has taken place. Both
the starting and end moment of the measurement can be transmitted.

11.12 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

11.13 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is performed
in each cycle.
Minimum I/O update time
Analog outputs 1 ms

Minimum I/O update time Hart Communication
Point-to-point 500 ms
Multidrop 500 ms * number of stations

Data sheet V 1.44 57


	X20(c)AO2438
	1 General information
	2 Coated modules
	3 Order data
	4 Technical data
	5 LED status indicators
	6 Pinout
	7 Connection example
	8 OSP hardware requirements
	9 Output circuit diagram
	10 Operation
	10.1 Derating
	10.2 Usage after the X20IF1091-1
	10.3 HART communication standard

	11 Register description
	11.1 General data points
	11.2 Function model 0 - Standard
	11.3 Function model 1 - OSP
	11.4 Function model 254 - Bus controller
	11.4.1 Using the module on the bus controller
	11.4.2 CAN I/O bus controller

	11.5 Analog signal - Configuration
	11.5.1 AnalogMode
	11.5.2 DACSlewrate

	11.6 Analog signal - Communication
	11.6.1 AnalogOutput
	11.6.2 AnalogStatus

	11.7 HART
	11.7.1 HART - Configuration
	11.7.1.1 HartNodeCnt
	11.7.1.2 HartBurstNode
	11.7.1.3 HartMode

	11.7.2 HART - Communication
	11.7.2.1 PvInput
	11.7.2.2 PvUnit
	11.7.2.3 PvSampleTime
	11.7.2.4 PvNodeComStatus
	11.7.2.5 PvCountHartRequest
	11.7.2.6 PvCountHartTimeout
	11.7.2.7 PvCountHartRxError
	11.7.2.8 PvCountHartFrameError
	11.7.2.9 PvNodeFound
	11.7.2.10 PvNodeError

	11.7.3 Extended configuration
	11.7.3.1 HartNodeDisable
	11.7.3.2 HartProtTimeOut
	11.7.3.3 HartProtRetry
	11.7.3.4 HartPreamble


	11.8 Flatstream communication
	11.8.1 Introduction
	11.8.2 Message, segment, sequence, MTU
	11.8.3 The Flatstream principle
	11.8.4 Registers for Flatstream mode
	11.8.4.1 Flatstream configuration
	11.8.4.1.1 Number of enabled Tx and Rx bytes

	11.8.4.2 Flatstream operation
	11.8.4.2.1 Format of input and output bytes
	11.8.4.2.2 Transport of payload data and control bytes
	11.8.4.2.3 Control bytes
	11.8.4.2.4 Communication status of the CPU
	11.8.4.2.5 Communication status of the module
	11.8.4.2.6 Relationship between OutputSequence and InputSequence

	11.8.4.3 Synchronization
	11.8.4.4 Transmitting and receiving
	11.8.4.5 Transmitting data to a module (output)
	11.8.4.6 Receiving data from a module (input)
	11.8.4.7 Details
	11.8.4.8 Flatstream mode
	11.8.4.9 Adjusting the Flatstream

	11.8.5 Example of function "Forward" with X2X Link
	11.8.5.1 Function principle
	11.8.5.2 Configuration
	11.8.5.2.1 Number of unacknowledged sequences
	11.8.5.2.2 Delay time

	11.8.5.3 Transmitting and receiving with Forward
	11.8.5.4 Errors when using Forward


	11.9 HART with Flatstream
	11.10 Function model "OSP"
	11.10.1 Activating the OSP output in the module
	11.10.2 Setting the OSP mode
	11.10.3 Define the OSP analog output value

	11.11 NetTime Technology
	11.11.1 Time information
	11.11.1.1 PLC/Controller data points
	11.11.1.2 X2X Link reference moment
	11.11.1.3 POWERLINK reference moment
	11.11.1.4 Synchronization of system time/POWERLINK time and I/O module

	11.11.2 Timestamp functions
	11.11.2.1 Time-based inputs
	11.11.2.2 Time-based outputs
	11.11.2.3 Time-based measurements


	11.12 Minimum cycle time
	11.13 Minimum I/O update time



