
X20CS1012

X20CS1012

1 General information

The M-Bus master is designed as a single-width module and can be connected anywhere within the X20 I/O
system. It can therefore be used decentrally for distributed topologies. The M-Bus master supports transfer rates
of 300, 2400 and 9600 bit/s; up to 64 slaves supplied via M-Bus can be connected.
M-Bus (Meter-Bus) is a relatively simple fieldbus for recording consumption data, such as from electricity or heat
meters. It is based on a reverse polarity protected two-wire line and works according to the master-slave principle.

• Power supply for up to 64 slaves on the M-Bus
• Decentralized use of the communication interface

1.1 Other applicable documents

For additional and supplementary information, see the following documents.

Other applicable documents
Document name Title
MAX20 X20 system user's manual
MAEMV Installation / EMC guide

2 Order data
Order number Short description Figure

X20 electronics module communication
X20CS1012 X20 interface module, 1 M-Bus master interface, integrated

slave supply
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O power supply con-
nected through

X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-
ternal I/O power supply connected through
Terminal blocks

X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20CS1012 - Order data

Data sheet V 1.20 1

https://www.br-automation.com/download/10000017209
https://www.br-automation.com/download/10000457141

X20CS1012

3 Technical description

3.1 Technical data

Order number X20CS1012
Short description
Communication module 1 M-Bus master for controlling up to 64 slaves
General information
B&R ID code 0xCABF
Status indicators Data transfer, M-Bus power supply, operating state, module status
Diagnostics

Module run/error Yes, using LED status indicator and software
Data transfer Yes, using LED status indicator
M-Bus power supply Yes, using LED status indicator and software

Power consumption
Bus 0.2 W
Internal I/O 0.35 W + (Number of slaves * 0.08 W)

Module power dissipation 0.55 W + (Number of slaves * 0.006 W)
Additional power dissipation caused by actuators
(resistive) [W]

-

Insulation voltage between M-Bus and X2X Link 500 VDC, 1 min
Certifications

CE Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

EAC Yes
Interfaces
Interface

Type M-Bus master
Variant Connection via 12-pin terminal block X20TB12
Max. distance See section "M-Bus".
Transfer rate 300, 2400 or 9600 bit/s
Number of slaves Max. 64
Internal resistance of master Max. 6 Ω
Bus voltage mark at 0 mA I/O supply voltage + (11.5 to 13.5) V
Bus voltage drop with space 12 to 13.5 V
Overload shutdown 250 mA ±10%
Bit threshold 6 to 9 mA
Collision threshold 24 to 36 mA
Received readjustment time Max. 10 s 1)

Bus cable Shielded or unshielded
Electrical properties
Electrical isolation M-Bus isolated from bus

M-Bus not isolated from I/O power supply
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating -
Storage -40 to 85°C
Transport -40 to 85°C

Table 2: X20CS1012 - Technical data

2 Data sheet V 1.20

X20CS1012

Order number X20CS1012
Relative humidity

Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB12 separately.

Order 1x bus module X20BM11 separately.
Pitch 12.5+0.2 mm

Table 2: X20CS1012 - Technical data

1) After each load change on M-Bus (e.g. switching slaves on or off)

3.2 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" in the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash UNLINK mode
Double flash Mode BOOT (during firmware update)1)

Blinking PREOPERATIONAL mode

r Green

On RUN mode
Off No power to module or everything OKe Red
On Error or reset status

e + r Red on / Green single flash Invalid firmware
Off No slaves sending dataS Yellow
On At least one slave is sending data via the M-Bus
Off M-Bus supply okP Red
On Short-circuit or overload on M-Bus

1) Depending on the configuration, a firmware update can take up to several minutes.

3.3 Pinout

M+

M+

M+

M-

M-

M-

S

X2
0

C
S

10
12 P

M+

M+

M+

M-

M-

r e

M-

Data sheet V 1.20 3

X20CS1012

3.4 Connection example

M-Bus
Slave

M-Bus
Slave

M-Bus
Slave

M-Bus
Slave

M-Bus
Slave

M-Bus
Slave

M-Bus
Slave

GND
+24 VDC

GND
+24 VDC

CS

3.5 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream transfer.
For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

4 Data sheet V 1.20

X20CS1012

4 M-Bus

4.1 Bus topology

The bus topology has a significant influence on the maximum load of an M-Bus network. In general a star structure is
preferred over a tree structure and in turn a tree structure is preferred over a line structure. Furthermore, connecting
the slaves to the bus the same way provides better values than connecting them all at the end of the branches
after all other parameters have been determined.

a) Star structure b) Tree structure c) Line structure

Legend:

Master

Slave

Resistive
cable length

4.2 Cable cross section

The cable being used has a specific capacity and resistance, which in turn has an effect on the operation of the
bus. The resistive influence of the cable means a loss of voltage on the line, which is subsequently not available
for supplying the bus. In order to guarantee sufficient power, the voltage on the slaves must never be less than
12 V neither when sending from the master to the slave, nor in the opposite direction. The deciding factor in this
case is the longest branch of the network whose length is referred to as the resistive cable length.
The cable's capacity causes signal distortion during data transfer because the slew rates of the rising and falling
edges are slowed down. For example, replacing a 3 km branch in a network with two 1.5 km branches will improve
the signal. The total distance of the network is referred to as the capacitive cable length (the sum of all segment
lengths).

Information:
The maximum permissible line resistance (for the longest loop) is 250 Ω.
The maximum permissible line capacitance for the entire bus is 500 nF.

4.3 Transmission current and bit threshold

The bit threshold on the master is typically 7.5 mA. Therefore, a slave transmission current of 15 mA results in the
least amount of signal distortion while the highest amount occurs at 11 or 20 mA.

4.4 Transfer rate

A lower transfer rate decreases the influence of the signal distortion caused by cable capacity and bit threshold.

Information:
Starting with a total bus length >1 km, the slaves must be operated at a baud rate <9600 bit/s.

Data sheet V 1.20 5

X20CS1012

4.5 Calculating the resistive bus length

The resistive cable length must be calculated in order to ensure a sufficient power supply of 12 V on the M-Bus.
What matters most here is the longest segment between the master and slave.
The resistive bus length is calculated using the following formula without taking an increased bus current caused
by a defective receiver into account:

Lres =
V - (n * 0.0015 + 0.02) * 6 - 12.6I/O

(n * 0.0015 + 0.02) * RL
* 1000

Lres ... Resistive bus length [m]
n ... Number of slaves (all at end of line)
RL ... Line resistance (loop resistance [Ω/km])
VI/O ... I/O supply voltage [V]

Examples for calculating the maximum resistive bus length:
No. Example Maximum resistive bus length
1 • 64 slaves (all at end of line)

• 19.2 V I/O supply voltage
• 0.5 mm² wire cross-section

675 m

2 • 64 slaves (all at end of line)
• 28.8 V I/O supply voltage
• 1.5 mm² wire cross-section

5340 m

4.6 Accounting for the capacitive bus length

The total distance of the network is referred to as the capacitive bus length (the sum of all segment lengths). The
capacitive bus length depends on two factors:

• Distributed capacitance of cable
• Transfer rate

Distributed capacitance of cable

A lower distributed capacitance on a cable means a higher capacitive bus length.

Transfer rate

A lower transfer rate on an M-Bus system means a higher capacitive bus length.
Example of a cable with a distributed capacitance of 50 nF/km:
Transfer rate Capacitive bus length
9600 bit/s 1 km
2400 bit/s 4 km
300 bit/s 10 km

4.7 Bus installation

Cables with twisted pair wires and a cross-section of 0.5 mm² to 1.5 mm² are normally used for bus installation
(according to standard: J-Y(ST)Y nx2x0.8). The shield on shielded cables only has to be grounded to the module
on one side. On the slaves, the shielding must be high resistance for DC and low frequency signals.

4.8 Repeater

Repeaters can be used to further expand the M-Bus network.

6 Data sheet V 1.20

X20CS1012

5 Register description

5.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X20 system user's
manual.

5.2 Function model 0 - Standard

Read WriteRegister Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Module configuration
774 CfO_FunctionModel UINT ●

M-Bus - Configuration
Index * 16 + 767 CfO_LengthData1 to CfO_LengthData8 USINT ●
Index * 16 + 775 CfO_BaudData1 to CfO_BaudData8 USINT ●
Index * 16 + 761 CfO_PAdrData1 to CfO_PAdrData8 USINT ●
Index * 16 + 765 CfO_IndexData1 to CfO_IndexData8 USINT ●
Index * 16 + 773 CfO_ReqTimeData1 to CfO_ReqTimeData8 USINT ●
Index * 16 + 770 CfO_MBusModeData1 to CfO_MBusModeData8 UINT ●
Index * 16 + 763 CfO_ToutOffData1 to CfO_ToutOffData8 USINT ●
Index * 8 + 1009 CfO_ReplData1 to CfO_ReplData8 (U)SINT ●
Index * 8 + 1010 CfO_ReplData1 to CfO_ReplData8 (U)INT ●
Index * 8 + 1012 CfO_ReplData1 to CfO_ReplData8 (U)DINT

REAL
●

M-Bus - Communication
513 MBusCommand USINT ● ●
263 MBusOperation USINT ●
257 MBusState USINT ●

ValidDataByte USINT ●
ValidData1 Bit 0 ●
... ... ●

259

ValidData8 Bit 7 ●
InvalidDataByte USINT ●
InvalidData1 Bit 0 ●
... ... ●

261

InvalidData8 Bit 7 ●
Index * 8 + 265 Data1 to Data8 (U)SINT ●
Index * 8 + 266 Data1 to Data8 (U)INT ●
Index * 8 + 268 Data1 to Data8 (U)DINT

REAL
●

337 ChangedSNByte USINT ●
Index * 8 + 900 SNData1 to SNData8 UDINT ●

FlatStream
2051 InputMTU USINT ●
2049 OutputMTU USINT ●
2113 InputSequence USINT ●

Index * 2 + 2113 RxByte1 to RxByte15 USINT ●
2177 OutputSequence USINT ●

Index * 2 + 2177 TxByte1 to TxByte15 USINT ●
2053 FlatstreamMode USINT ●
2055 Forward USINT ●
2057 ForwardDelay UINT ●

Data sheet V 1.20 7

X20CS1012

5.3 Function model 254 - Bus controller

Read WriteRegister Offset 1) Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Module configuration
774 - CfO_FunctionModel UINT ●

M-Bus - Configuration
Index * 16 + 767 - CfO_LengthData1 to CfO_LengthData8 USINT ●
Index * 16 + 775 - CfO_BaudData1 to CfO_BaudData8 USINT ●
Index * 16 + 761 - CfO_PAdrData1 to CfO_PAdrData8 USINT ●
Index * 16 + 765 - CfO_IndexData1 to CfO_IndexData8 USINT ●
Index * 16 + 773 - CfO_ReqTimeData1 to CfO_ReqTimeData8 USINT ●
Index * 16 + 770 - CfO_MBusModeData1 to CfO_MBusMode-

Data8
UINT ●

Index * 16 + 763 - CfO_ToutOffData1 to CfO_ToutOffData8 USINT ●
Index * 8 + 1009 - CfO_ReplData1 to CfO_ReplData8 (U)SINT ●
Index * 8 + 1010 - CfO_ReplData1 to CfO_ReplData8 (U)INT ●
Index * 8 + 1012 - CfO_ReplData1 to CfO_ReplData8 (U)DINT

REAL
●

M-Bus - Communication
8 8 MBusCommand USINT ● ●
11 11 MBusOperation USINT ●
8 8 MBusState USINT ●
9 9 ValidDataByte USINT ●

10 10 InvalidDataByte USINT ●
Index * 4 + 5 Index * 4 + 8 Data1 to Data8 (U)SINT ●
Index * 4 + 6 Index * 4 + 8 Data1 to Data8 (U)INT ●
Index * 4 + 8 Index * 4 + 8 Data1 to Data8 (U)DINT

REAL
●

337 - ChangedSNByte USINT ●
Index * 8 + 900 - SNData1 to SNData8 UDINT ●

FlatStream
2051 - InputMTU USINT ●
2049 - OutputMTU USINT ●

0 0 InputSequence USINT ●
Index * 1 + 0 Index * 1 + 0 RxByte1 to RxByte7 USINT ●

0 0 OutputSequence USINT ●
Index * 1 + 0 Index * 1 + 0 TxByte1 to TxByte7 USINT ●

2053 - FlatstreamMode USINT ●
2055 - Forward USINT ●
2057 - ForwardDelay UINT ●

1) The offset specifies the position of the register within the CAN object.

5.3.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X20
user's manual (version 3.50 or later).

5.3.2 CAN I/O bus controller

The module occupies 3 analog logical slots with CAN I/O.

8 Data sheet V 1.20

X20CS1012

5.4 General information

The M-Bus standard is a serial bus system that handles half-duplex or asynchronous communication. The high level
of variability provided by this protocol enables a wide range of information to be handled via the same interface. In
basic M-Bus networks, the master communicates with up to 250 slaves via the "primary address". In later stages
of development, the secondary address (4 bytes) was then also specified. This made it possible to significantly
increase the number of slaves in a network.

Important information about the module
• Generally: Primary address used (1 to 250)
• Work with the secondary address is supported only by Flatstream.
• Bus can supply 64 slaves with power

5.5 Module configuration

The flexible design of the M-Bus protocol can quickly add up to a lot of configuration work. That's why B&R offers
two different user interfaces for the module: "Standard" and "FlatStream". The user-friendly B&R Standard interface
allows users to view up to eight values requested cyclically from the M-Bus network. In FlatStream mode, the
module acts as a bridge between the PLC and the M-Bus slave, which makes all M-Bus functions available.

Information:
The B&R Standard interface is statically configured and based on cyclic registers. Because X2X Link
can only transfer a certain number of values cyclically, the user must make his selection accordingly.

5.5.1 Settings for operation

Name:
CfO_FunctionModel
This register can be used to enable either the Standard or FlatStream interface, which makes the module much
more efficient.
Bits 8 to 15 are only evaluated if bit 0 (B&R default interface) is enabled.
Data type Values Bus controller default setting
USINT See the bit structure. 1825

Bit structure:
Bit Description Value Information

0 Disabled0 B&R standard interface
1 Enabled (bus controller default setting)
0 Disabled (bus controller default setting)1 Flatstream
1 Enabled

3 - 7 Reserved 0
0 Disabled8 Data1
1 Enabled (bus controller default setting)

... ...
0 Disabled10 Data 3
1 Enabled (bus controller default setting)
0 Disabled (bus controller default setting)11 Data 4
1 Enabled

... ...
0 Disabled (bus controller default setting)15 Data8
1 Enabled

Data sheet V 1.20 9

X20CS1012

5.6 M-Bus - Configuration

Separate configuration registers are provided for each value to read. These must be configured correctly in order
to call up a counter value from the M-Bus network. The user must know the following values from the slave:

• Transfer rate configured on the slave
• Primary address configured on the slave (value: 1 to 250, otherwise only point-to-point connection is pos-

sible)
• Data type / data length of value
• How the slave's memory is structured

Information:
The following section "M-Bus - Configuration" is based solely on the B&R standard interface.

5.6.1 Data length

Name:
CfO_LengthData1 to CfO_LengthData8
The Standard interface is able to request data from the M-Bus slave with different lengths. When using Automation
Studio the value of the "Length" register is a result of the data type defined for the X2X Link. All common data
types with up to 4 bytes in length are supported.
Data type Value Bus controller default setting
USINT See the bit structure. 8

Bit structure:
Bit Name Value Information

00 0000 USINT
00 0001 SINT
00 0010 UINT
00 0100 INT
00 1000 UDINT (bus controller default setting)
01 0000 DINT

0 - 5 Data length code

10 0000 REAL
6 - 7 Reserved 0

5.6.2 Transfer rate

Name:
CfO_BaudData1 to CfO_BaudData8
This register can be used to define the transfer rate for retrieving the desired values.
Data type Value Bus controller default setting
USINT See the bit structure. 4

Bit structure:
Bit Name Value Information

0000 Reserved!
0001 300 bit/s
0010 600 bit/s
0011 1200 bit/s
0100 2400 bits/s (bus controller default setting)
0101 4800 bit/s
0110 9600 bit/s
0111 19200 bit/s

0 - 3 Baud rate (Code)

1000 38400 bit/s
4 - 7 Reserved 0

10 Data sheet V 1.20

X20CS1012

5.6.3 Address

Name:
CfO_PAdrData1 to CfO_PAdrData8
This register can be used to define the address where the desired values will be requested from.
Data type Value Information
USINT 1 to 250 Bus controller default setting: 254

Special addresses:
Value Information
251 to 253 Reserved (in accordance with M-Bus specification)
254 Broadcast address (response from all connected slaves - risk of collision)

5.6.4 Index

Name:
CfO_IndexData1 to CfO_IndexData8
This register is used to specify the ordinal number of the value (independent of the medium). This value results
from the order of values in the slave. The value is then transferred to the data register.
Data type Value Information
USINT 1 to 255 Bus controller default setting: 1

5.6.5 Specifies the refresh time

Name:
CfO_ReqTimeData1 to CfO_ReqTimeData8
The slave information can be queried manually or time-based. A time-controlled query must include the value for
the refresh time. The associated unit is defined in register "M-Bus mode" on page 11.
Data type Value Information
USINT 1 to 255 In [s, min].

Bus controller default setting: 0

5.6.6 M-Bus mode

Name:
CfO_MBusModeData1 to CfO_MBusModeData8
To speed up the module's boot procedure, various configuration details that define the module's behavior have
been combined in this register.
Data type Values Bus controller default setting
UINT See the bit structure. 2

Bit structure:
Bit Description Value Information

0 - 2 Byte offset 0 - 7 Data types.
Bus controller default setting: 2

3 - 4 Reserved 0
0 No additional frame (bus controller default setting)5 InitFrame
1 Transmit additional frame
0 No additional frame (bus controller default setting)6 ApplicationResetFrame
1 Transmit additional frame
0 Hold last valid value (bus controller default setting)7 Replacement value strategy
1 Replace with static value
0 Disabled (bus controller default setting)8 Time-based reading
1 Enabled
0 Disabled (bus controller default setting)9 Manually triggered reading
1 Reading via register "MBusCommand" on page 13
0 [s] - Seconds (bus controller default setting)10 Unit of periodic reading
1 [min] - Minutes

11 - 15 Reserved 0

Byte offset

The M-Bus specification allows for many individual data types. In order to also read these counter values with up
to 64 bits, a slave value may have to be read using 2 data registers. The byte offset can be defined to select a
desired section of the information.

Data sheet V 1.20 11

X20CS1012

5.6.7 Timeout offset

Name:
CfO_ToutOffData1 to CfO_ToutOffData8
The timeout for the M-Bus communication generally depends on the currently defined transfer rate. The user can
also define an offset value in addition to the calculated standard timeout.
Timeout = standard timeout + (timeout offset * 10 ms)
Data type Value Information
USINT 0 to 255 Resolution 10 ms.

Bus controller default setting: 0

5.6.8 Static replacement value

Name:
CfO_ReplData1 to CfO_ReplData8
This register defines the static replacement value if replacement value strategy "Replace with static value" was
enabled in register "CfO_MBusModeData" on page 11. The data register takes on this value if an invalid input
value is detected.
Data type Value Information
(U)SINT
(U)INT
(U)DINT
REAL

According to data type Bus controller default setting: 0

12 Data sheet V 1.20

X20CS1012

5.7 M-Bus - Communication

Three important control and status bytes are provided in the B&R interface for communication with the M-Bus
slaves. Register "MBusCommand" on page 13 switches UART on/off, for example, in order to increase the
system's energy efficiency.
Up to 8 cyclic input registers are registered depending on the configuration. Manually configured data must be
requested via register "MBusCommand" on page 13. Registers "ValidDataByte" on page 14 and "Invalid-
DataByte" on page 14 can be used to determine the quality of the value currently read.

Information:
The following section "M-Bus - Communication" is based solely on the B&R standard interface.

5.7.1 M-Bus commands

Name:
MBusCommand
This register can be used to apply different commands to the module. The module only responds to positive edges.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information
0 Activate UART 0 → 1 Execute command
1 Read manually triggered values 0 → 1 Execute command
2 Acknowledge the "MBusState" register 0 → 1 Execute command

3 - 6 Reserved 0
7 Deactivate UART 0 → 1 Execute command

Bit 0 and 7
The level converter is switched on by default when the module boots. This bit can be used to switch it on or off
from the application to save electricity, for example.

5.7.2 M-Bus operation

Name:
MBusOperation
This register shows the user which task the module is currently processing. The LSB is always set when the UART
is active. Manual commands are indicated by an increase of one in this byte while being processed.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Inactive0 UART
1 Active
0 -1 Read values
1 Command being processed
0 -2 Refresh/reset the "MBusState" register
1 Command being processed1)

3 - 6 Reserved 0
0 Inactive7 UART
1 Active

1) Bit 2 is only set for one X2X cycle. Requesting this bit is not recommended when operating the module behind a bus controller.

Data sheet V 1.20 13

X20CS1012

5.7.3 M-Bus state

Name:
MBusState
This register contains the current M-Bus network error state. All bits are managed in nonvolatile memory. This
means they must be reset via register "MBusCommand" on page 13.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Error-free addressing0 Collision detection
1 Multiple addresses on the bus
0 Configured information OK1 Read error (at least once)
1 Could not read information
0 Received checksum OK2 Checksum
1 Error in input direction
0 Power supply OK3 M-Bus load
1 Load too high on M-Bus network
0 Everything OK4 Communication aborted due to overflow
1 The master is overloaded and cannot take on any additional

requests.
Corrective measure: Repeat the request.1)

0 Everything OK5 Communication aborted due to level converter
1 Level converter is OFF (aborted at runtime or not started).
0 Valid data not yet received6 Data exchange since startup
1 Valid data at least once
0 M-Bus driver, level converter inactive7 UART off MBUS ENABLE
1 Module ready for communication

1) Communication is reestablished automatically as soon as the pending communication jobs have been processed.

5.7.4 Valid data

Name:
ValidDataByte
ValidData1 to ValidData8
This register indicates (by bit) which of the max. 8 read values are valid.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Value 1 invalid0 ValidData1
1 Value 1 valid

...
0 Value 8 invalid7 ValidData8
1 Value 8 valid

5.7.5 Invalid data

Name:
InvalidDataByte
InvalidData1 to InvalidData8
The validity of the read values can be checked redundantly. This register indicates (by bit) which of the max. 8
read values are invalid.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Value 1 valid0 InvalidData1
1 Value 1 invalid

...
0 Value 8 valid7 InvalidData8
1 Value 8 invalid

14 Data sheet V 1.20

X20CS1012

5.7.6 Data

Name:
Data1 to Data8
Each cyclic data register contains the respective pre-configured value from the M-Bus network. The data type of
the data register was designed to be variable and must be specified by the user during configuration.

Information:
Because X2X Link can only transfer a certain number of bytes cyclically, the user must make his se-
lection accordingly.

Data type Value
(U)SINT
(U)INT
(U)DINT
REAL

According to data type

5.7.7 Change the serial number of an M-bus slave

Name:
ChangedSNByte
This register indicates (by bit) whether one of the M-Bus slave serial numbers on the bus has changed. Only the
serial numbers of the slaves accessed via the B&R interface are checked. The respective bit is toggled if a change
is detected.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 -> 10 SN (Slave 1)
1 -> 0

Slave1: Serial number changed

...
0 -> 17 SN (Slave 8)
1 -> 0

Slave8: Serial number changed

5.7.8 M-Bus slave serial numbers

Name:
SNData1 to SNData8
These registers contain the serial numbers of the M-Bus slaves that are queried via the B&R interface. They are
implemented acyclically and can be read using library AsIOAcc.
Data type Values
UDINT 0 to 4,294,967,295

Data sheet V 1.20 15

X20CS1012

5.8 Flatstream communication

5.8.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

16 Data sheet V 1.20

X20CS1012

5.8.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

Data sheet V 1.20 17

X20CS1012

5.8.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

18 Data sheet V 1.20

X20CS1012

5.8.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

5.8.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

5.8.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

Data sheet V 1.20 19

X20CS1012

5.8.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

5.8.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

5.8.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

5.8.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
20 Data sheet V 1.20

X20CS1012

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

5.8.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

Data sheet V 1.20 21

X20CS1012

5.8.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

22 Data sheet V 1.20

X20CS1012

5.8.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

Data sheet V 1.20 23

X20CS1012

5.8.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

24 Data sheet V 1.20

X20CS1012

5.8.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

Data sheet V 1.20 25

X20CS1012

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

26 Data sheet V 1.20

X20CS1012

5.8.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V 1.20 27

X20CS1012

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

28 Data sheet V 1.20

X20CS1012

5.8.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V 1.20 29

X20CS1012

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

30 Data sheet V 1.20

X20CS1012

5.8.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

Data sheet V 1.20 31

X20CS1012

5.8.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

32 Data sheet V 1.20

X20CS1012

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

Data sheet V 1.20 33

X20CS1012

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

34 Data sheet V 1.20

X20CS1012

5.8.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

Data sheet V 1.20 35

X20CS1012

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

36 Data sheet V 1.20

X20CS1012

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

Data sheet V 1.20 37

X20CS1012

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

38 Data sheet V 1.20

X20CS1012

5.8.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

5.8.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Receiver
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

Data sheet V 1.20 39

X20CS1012

5.8.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

5.8.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

5.8.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in microseconds. This is the amount of time the module
has to wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle.
The program routine for receiving sequences from a module can therefore be run in a task class whose cycle time
is slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

40 Data sheet V 1.20

X20CS1012

5.8.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

Data sheet V 1.20 41

X20CS1012

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

42 Data sheet V 1.20

X20CS1012

5.8.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

Data sheet V 1.20 43

X20CS1012

5.9 M-Bus with FlatStream

When using FlatStream communication, the module acts as a bridge between the X2X master and an intelligent
field device connected to the module. FlatStream mode can be used for either point-to-point connections as well as
for bus systems. Specific algorithms such as timeout and checksum monitoring are usually managed automatically.
During normal operation, the user does not have direct access to these details.
Operation
The M-Bus specification recognizes four different frame types. From the application standpoint, only "long frames"
are generated and transferred when using the M-Bus via FlatStreams. Due to the flexible design of the M-Bus
protocol, the user must include the corresponding slave configuration with each request.

FlatStream structure
In-/OutputSequence Rx-/TxBytes

(unchanged) Control byte
(unchanged)

M-Bus data
(FlatStream)

5.9.1 FlatStream in output direction

FlatStream query

This standard protocol specifies that a data query via FlatStream consists of a main part and two index records.
An index record is made up of an introduction containing various information and followed by a parameter block.

5.9.1.1 Introduction

The primary role of the main part is to assign a synchronization number and register the protocol type.
Note 1
When registering an undefined protocol type, the module works with the standard protocol.
Note 2
Because there is currently only one protocol type defined, the corresponding configuration bytes should be set to 1.
This will allow the protocol to be expanded later without becoming incompatible with existing projects.

Bytes Name Value Description
1 Frame number: For synchronization in the application 0 - 255 The frame number is repeated in the module's response. This

allows the later response from the module to be distinctly at-
tributed to the request.

2 Index Record Count "i" 2! Number of subsequent index records
0 Native M-Bus (level converter mode) - see "Native M-Bus"3 Protocol type
1 Data query (raw data / parameters)

4 Reserved 1!
... Index record (configuration)
... Index record (data query)

Native M-Bus

The "Native M-Bus" protocol type provides universal communication within the M-Bus network. It can be used to
assemble and send M-Bus frames in the application.
A conventional data query is possible using a raw data or parameter query.

44 Data sheet V 1.20

X20CS1012

5.9.1.2 Index record 0

Configuration block

The interface parameters for defining the module's behavior in the M-Bus network must be chosen configuration
part.

Information:
With the standard protocol, the index record must be resent with each request for configuration.

Introduction
Bytes Name Value Description

1 Index record type 0! Module interface configuration
2 Counter (config parameter) 5! Number of subsequent M-Bus parameters
3 Length of parameter block - Low 19! Length of index record description
4 Length of parameter block - High 0! Length of index record description

Parameter block
Configuration parameter 0 - Addressing type

Bytes Name Value Description
1 Parameter number 0!
2 Length 1!

1 Addressing via primary address3 Addressing type
2 Addressing via secondary address

Configuration parameter 1 - Address
Bytes Name Value Description

4 Parameter number 1!
5 Length 4!
6 Address - LowLow 1 - 255 Primary address
7 Address - LowHigh 0 - 255 0!, if primary addressing
8 Address - HighLow 0 - 255 0!, if primary addressing
9 Address - HighHigh 0 - 255 0!, if primary addressing

Configuration parameter 2 - Transfer rate
Bytes Name Value Description

10 Parameter number 2!
11 Length 2!
12 Transfer rate Low 0 - 255
13 Transfer rate High 0 - 255

Verified transfer rates
300 bit/s, 2400 bit/s, 9600 bit/s

Configuration parameter 3 - Timeout offset
Bytes Name Value Description

14 Parameter number 3!
15 Length 1!
16 TimeoutOffset 0 - 255 Additional time for timeout monitoring on the M-Bus

(Resolution: 10 ms)

Configuration parameter 4 - Extra frames
Bytes Name Value Description

17 Parameter number 4!
18 Length 1!

Bit 0 … 1 Send Init frame
Bit 1 … 1 Send application reset
Bit 6 … 1 Set frame count bit1)

19 M-Bus options

Bit 7 … 1 Request media and version

1) Some M-Bus slaves use this bit to switch to a another data set.

Data sheet V 1.20 45

X20CS1012

5.9.1.3 Index record 1

Data query block

The M-Bus parameters to be retrieved from the memory of the M-Bus slaves are requested in the request part.
The user can request certain parameters from the slave or the entire slave memory.
Introduction

Bytes Name Value Description
1 Index record type 1! Data request for M-Bus slave

0 • Communication via native M-Bus
• Read out M-Bus raw data

2 Counter (data parameter) = (d + 1)

1 - 20 Number of parameters to read out
3 Length of subsequent block - Low 0 - 255 • Length of M-Bus frame to be sent

• Length of the parameter block
• 0! with raw data query

4 Length of subsequent block - High 0 - 255 • Length of M-Bus frame to be sent
• Length of the parameter block
• 0! with raw data query

... Depending on request:
• Native M-Bus frame
• Parameter block

Not needed if raw data query = 0

M-Bus frame
M-Bus frame to be sent

Bytes Name Value Description
1 TxByte 1 0 - 255 Byte 1 in output direction
2 TxByte 2 0 - 255 Byte 2 in output direction
n TxByte n 0 - 255 Byte n in output direction

Parameter block
Data parameter 0

Bytes Name Value Description
1 Parameter number 0!
2 Data index 1 - 48 Data index in the M-Bus frame

Data parameter 1
Bytes Name Value Description

2 Parameter number 1!
3 Data index 1 - 48 Data index in the M-Bus frame

Data parameter d
Bytes Name Value Description

... Parameter number d!

... Data index 1 - 48 Data index in the M-Bus frame

46 Data sheet V 1.20

X20CS1012

5.9.2 FlatStream in input direction

FlatStream response

The standard protocol has three different responses according to the request.

5.9.2.1 Error response

The error response occurs when the module receives an invalid or incomplete request.
Byte Name Value Description

1 Frame number: For synchronization in the application 0 - 255 This frame number is repeated in the module's response. In
this way, the response of the module can be clearly assigned
to the request.

2 Error code - LowLow 0 - 255 See the error code table.
3 Error code - LowHigh 0 - 255 See the error code table.
4 Error code - HighLow 0 - 255 See the error code table.
5 Error code - HighHigh 0 - 255 See the error code table.
6 Additional information - LowLow 0 - 255 Optional
7 Additional information - LowHigh 0 - 255 Optional
8 Additional information - HighLow 0 - 255 Optional
9 Additional information - HighHigh 0 - 255 Optional

Error codes
Error code and name Error description
0x11111111 An M-Bus counter is not responding to a data request. This can have different causes:

• The counter is not connected.
• The counter is defective.
• A counter with the selected addressing parameters does not exist on the bus.

0x22222222 This error code is transmitted if addressing via the secondary address and the selected counter does not respond.
0x33333333 If an invalid transfer rate is sent along with the stream, it is not evaluated. No M-Bus frame is sent; the Flatstream interface re-

sponds directly with this error code.
0x44444444 If a collision occurs on the bus while querying the data, the data request is ended and this error code is returned.
0x55555555 Communication aborted due to overflow (see bit 4 in section "M-Bus state" on page 14)
0x66666666 Before the data is evaluated by the M-Bus counter, the checksum of the M-Bus frame is checked. If this is not correct, the re-

ceived data is not processed further; instead, the error code is transmitted to the CPU.
0x77777777 The stream (CPU → IOM) is not correct. It is possible that a parameter number is not correct. The stream is checked very care-

fully, so an incorrect stream is never used.
0x88888888 Overload during M-Bus communication
0x99999999 Communication aborted due to level converter (see bit 5 in section "M-Bus state" on page 14)
0xAAAAAAAA Interpretation of slave data not possible. The M-Bus slave being used is not compatible with the parameter query. The M-Bus

slave must be implemented using the native M-Bus protocol or a raw data query.

Additional information
Additional information Error description
0x00000001 Number of index records less than 2
0x00000002 Invalid stream length
0x00000004 Invalid index numbers
0x00000008 Incorrect number of parameters per index record
0x00000010 Index length too small
0x00000020 Incorrect parameter number for index record 0
0x00000040 Incorrect parameter length for index record 0
0x00000080 Invalid addressing type
0x00000100 Invalid address
0x00000200 Invalid transfer rate
0x00000400 Invalid timeout offset
0x00000800 Invalid additional frame configuration

Data sheet V 1.20 47

X20CS1012

5.9.2.2 Response - native M-Bus

This response corresponds with a successfully transferred M-Bus frame created within the application.
Bytes Name Value Description

1 Frame number: For synchronization in the application 0 - 255 The frame number is repeated in the module's response. This
allows the response from the module to be distinctly attributed
to the request.

2 Reserved 0
... Response

Response
Bytes Name Value Description

1 RxByte 1 0 - 255 Byte 1 in input direction
2 RxByte 2 0 - 255 Byte 2 in input direction
n RxByte n 0 - 255 Byte n in input direction

5.9.2.3 Response - Raw data

The raw data response is sent if the M-Bus slave's entire memory is requested.
Bytes Name Value Description

1 Frame number: For synchronization in the application 0 - 255 The frame number is repeated in the module's response. This
allows the response from the module to be distinctly attributed
to the request.

2 M-Bus status 0 - 255 Status info from M-Bus header
3 0 - 255
...

Raw data frame
0 - 255

Includes all bytes sent by the M-Bus slave.

5.9.2.4 Response - Parameters

The parameter response is sent if one or more parameters from an M-Bus slave have been requested.
Bytes Name Value Description

1 Frame number: For synchronization in the application 0 - 255 The frame number is repeated in the module's response. This
allows the response from the module to be distinctly attributed
to the request.

2 M-Bus status 0 - 255 Status info from M-Bus header
3 Parameter count "p" 0 - 255 Number of parameters received
4 M-Bus address 0 - 255 Primary address
5 Serial number - LowLow 0 - 255 Secondary address
6 Serial number - LowHigh 0 - 255 Secondary address
7 Serial number - HighLow 0 - 255 Secondary address
8 Serial number - HighHigh 0 - 255 Secondary address
9 VendorID – Low \ Version 0 - 255 See "MBus option (IndexRecord 0)" on page 45

10 VendorID – High \ Medium 0 - 255 See "MBus option (IndexRecord 0)" on page 45
1 Fixed data structure11 Data structure (M-Bus)
2 Variable data structure

... Received parameter 1 through p Not needed if parameter count = 0

Received parameter
Bytes Name Value Description

1 Medium 0 - 255 Medium of subsequent counter value
2 Index 0 - 255 Index of subsequent counter value

1 - 8 Length of the counter value3 Data length
255 If the parameter number is invalid

4 DIF 0 - 255 0!, if fixed data structure
5 VIF 0 - 255 0!, if fixed data structure
6 0 - 255 LowLowLowLowLowLowLowLow
...
13

Counter value

0 - 255 HighHighHighHighHighHighHigh

48 Data sheet V 1.20

X20CS1012

5.10 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

5.11 Minimum I/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update to
take place in each cycle.

Minimum I/O update time
1 s

Data sheet V 1.20 49

	X20CS1012
	1 General information
	1.1 Other applicable documents

	2 Order data
	3 Technical description
	3.1 Technical data
	3.2 LED status indicators
	3.3 Pinout
	3.4 Connection example
	3.5 Usage after the X20IF1091-1

	4 M-Bus
	4.1 Bus topology
	4.2 Cable cross section
	4.3 Transmission current and bit threshold
	4.4 Transfer rate
	4.5 Calculating the resistive bus length
	4.6 Accounting for the capacitive bus length
	4.7 Bus installation
	4.8 Repeater

	5 Register description
	5.1 General data points
	5.2 Function model 0 - Standard
	5.3 Function model 254 - Bus controller
	5.3.1 Using the module on the bus controller
	5.3.2 CAN I/O bus controller

	5.4 General information
	5.5 Module configuration
	5.5.1 Settings for operation

	5.6 M-Bus - Configuration
	5.6.1 Data length
	5.6.2 Transfer rate
	5.6.3 Address
	5.6.4 Index
	5.6.5 Specifies the refresh time
	5.6.6 M-Bus mode
	5.6.7 Timeout offset
	5.6.8 Static replacement value

	5.7 M-Bus - Communication
	5.7.1 M-Bus commands
	5.7.2 M-Bus operation
	5.7.3 M-Bus state
	5.7.4 Valid data
	5.7.5 Invalid data
	5.7.6 Data
	5.7.7 Change the serial number of an M-bus slave
	5.7.8 M-Bus slave serial numbers

	5.8 Flatstream communication
	5.8.1 Introduction
	5.8.2 Message, segment, sequence, MTU
	5.8.3 The Flatstream principle
	5.8.4 Registers for Flatstream mode
	5.8.4.1 Flatstream configuration
	5.8.4.1.1 Number of enabled Tx and Rx bytes

	5.8.4.2 Flatstream operation
	5.8.4.2.1 Format of input and output bytes
	5.8.4.2.2 Transport of payload data and control bytes
	5.8.4.2.3 Control bytes
	5.8.4.2.4 Communication status of the CPU
	5.8.4.2.5 Communication status of the module
	5.8.4.2.6 Relationship between OutputSequence and InputSequence

	5.8.4.3 Synchronization
	5.8.4.4 Transmitting and receiving
	5.8.4.5 Transmitting data to a module (output)
	5.8.4.6 Receiving data from a module (input)
	5.8.4.7 Details
	5.8.4.8 Flatstream mode
	5.8.4.9 Adjusting the Flatstream

	5.8.5 Example of function "Forward" with X2X Link
	5.8.5.1 Function principle
	5.8.5.2 Configuration
	5.8.5.2.1 Number of unacknowledged sequences
	5.8.5.2.2 Delay time

	5.8.5.3 Transmitting and receiving with Forward
	5.8.5.4 Errors when using Forward

	5.9 M-Bus with FlatStream
	5.9.1 FlatStream in output direction
	5.9.1.1 Introduction
	5.9.1.2 Index record 0
	5.9.1.3 Index record 1

	5.9.2 FlatStream in input direction
	5.9.2.1 Error response
	5.9.2.2 Response - native M-Bus
	5.9.2.3 Response - Raw data
	5.9.2.4 Response - Parameters

	5.10 Minimum cycle time
	5.11 Minimum I/O update time

