X20DC2396

1 Allgemeines

1.1 Mitgeltende Dokumente

Weiterführende und ergänzende Informationen sind den folgenden gelisteten Dokumenten zu entnehmen.

Mitgeltende Dokumente

Dokumentname	Titel
MAX20	X20 System Anwenderhandbuch
MAEMV	Installations- / EMV-Guide

1.2 Bestelldaten

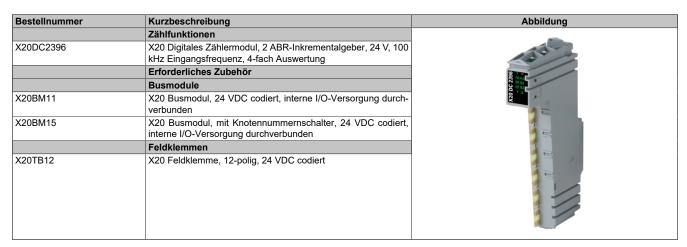


Tabelle 1: X20DC2396 - Bestelldaten

1.3 Modulbeschreibung

Das Modul ist mit 2 Eingängen für ABR-Inkrementalgeber mit 24 V Gebersignal ausgestattet.

Funktionen:

- · ABR-Inkrementalgeber
- Überwachung der Geberversorgung

ABR-Inkrementageber

Das Modul stellt 2 Eingänge für ABR-Inkrementalgeber zu Verfügung. Damit können Lageänderungen (linear) oder Winkeländerungen (rotierend) von ABR-Gebern erfasst werden.

Versorgungsspannung überwachen

Die Spannung der Geberversorgung wird überwacht.

2 Technische Beschreibung

2.1 Technische Daten

Bestellnummer	X20DC2396
Kurzbeschreibung	, , , , , , , , , , , , , , , , , , ,
I/O-Modul	2 ABR-Inkrementalgeber 24 V
Allgemeines	
Eingangsspannung	24 VDC -15% / +20%
B&R ID-Code	0x1BAB
Statusanzeigen	I/O-Funktion pro Kanal, Betriebszustand, Modulstatus
Diagnose	
Modul Run/Error	Ja, per Status-LED und SW-Status
Leistungsaufnahme	
Bus	0,01 W
I/O-intern	1,5 W
Zusätzliche Verlustleistung durch Aktoren (ohmsch) [W]	-
Ausführung der Signalleitungen	Für alle Signalleitungen sind geschirmte Leitungen zu verwenden
Zulassungen	
CE	Ja
UKCA	Ja
ATEX	Zone 2, II 3G Ex nA nC IIA T5 Gc IP20, Ta (siehe X20 Anwenderhandbuch) FTZÚ 09 ATEX 0083X
UL	cULus E115267 Industrial Control Equipment
HazLoc	cCSAus 244665 Process Control Equipment for Hazardous Locations Class I, Division 2, Groups ABCD, T5
DNV	Temperature: B (0 to 55 °C) Humidity: B (up to 100%) Vibration: B (4 g) EMC: B (bridge and open deck)
LR	ENV1
KR	Ja
ABS	Ja
BV	EC33B Temperature: 5 - 55 °C Vibration: 4 g EMC: Bridge and open deck
EAC	Ja
KC	Ja
Digitale Eingänge	
Anzahl	2
Nennspannung	24 VDC
Eingangsstrom bei 24 VDC	ca. 3,3 mA
Eingangsbeschaltung	Sink
Eingangsfilter Hardware	Z2 110
Software Software	≤2 µs
Software Anschlusstechnik	- 2 Leiterteelenik
Eingangswiderstand	3-Leitertechnik 7,19 kΩ
Zusatzfunktionen	Referenzfreigabeschalter
Schaltschwellen	Neierenzireigabesorialtei
Low	<5 VDC
High	>15 VDC
Isolationsspannung zwischen Kanal und Bus	500 V _{eff}
ABR-Inkrementalgeber	veii
Gebereingänge	24 V, asymmetrisch
Zähltiefe	16/32 Bit
Eingangsfrequenz	max. 100 kHz
Auswertung	4-fach
Geberversorgung	Modulintern, max. 600 mA
Eingangsfilter	20
Hardware	≤2 µs
Software	- - 12 mA
Eingangsstrom bei 24 VDC	ca. 1,3 mA
Eingangswiderstand Scholtzehwellen	18,4 kΩ
Schaltschwellen	ZE VIDO
Low	<5 VDC >15 VDC
High Überlastverhalten der Geberversorgung	>15 VDC Kurzschlussfest, überlastfest
Openasivemaiten der Geberversorgung	เงนเรอบแนออเซอเ, นมซแสอเเซอิเ

Tabelle 2: X20DC2396 - Technische Daten

Bestellnummer	X20DC2396
Isolationsspannung zwischen Geber und Bus	500 V _{eff}
Elektrische Eigenschaften	
Potenzialtrennung	Bus zu Geber und R-Freigabeschalter getrennt Geber zu R-Freigabeschalter und zueinander nicht getrennt
Einsatzbedingungen	
Einbaulage	
waagrecht	Ja
senkrecht	Ja
Aufstellungshöhe über NN (Meeresspiegel)	
0 bis 2000 m	Keine Einschränkung
>2000 m	Reduktion der Umgebungstemperatur um 0,5°C pro 100 m
Schutzart nach EN 60529	IP20
Umgebungsbedingungen	
Temperatur	
Betrieb	
waagrechte Einbaulage	-25 bis 60°C
senkrechte Einbaulage	-25 bis 50°C
Derating	-
Lagerung	-40 bis 85°C
Transport	-40 bis 85°C
Luftfeuchtigkeit	
Betrieb	5 bis 95%, nicht kondensierend
Lagerung	5 bis 95%, nicht kondensierend
Transport	5 bis 95%, nicht kondensierend
Mechanische Eigenschaften	
Anmerkung	Feldklemme 1x X20TB12 gesondert bestellen Busmodul 1x X20BM11 gesondert bestellen
Rastermaß	12,5 ^{+0,2} mm

Tabelle 2: X20DC2396 - Technische Daten

2.2 Status-LEDs

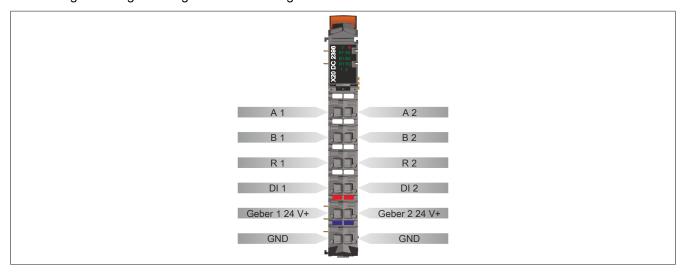
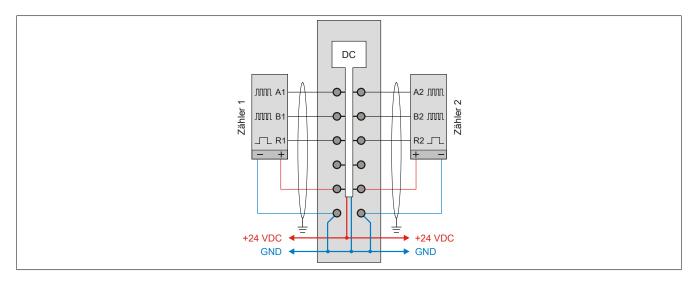
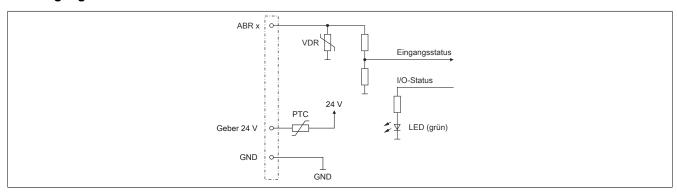

Für die Beschreibung der verschiedenen Betriebsmodi siehe X20 System Anwenderhandbuch, Abschnitt "Zusätzliche Informationen - Diagnose-LEDs".

Abbildung	LED	Farbe	Status	Beschreibung
	r	Grün	Aus	Modul nicht versorgt
			Single Flash	Modus RESET
			Double Flash	Modus BOOT (während Firmware-Update) ¹⁾
			Blinkend	Modus PREOPERATIONAL
0 r e			Ein	Modus RUN
96 A1 A2 E 81 B2	е	Rot	Aus	Modul nicht versorgt oder alles in Ordnung
O R1 R2			Ein	Fehler- oder Resetzustand
	A1, A2	Grün		Eingangszustand Zähleingang A1 oder A2
X20	B1, B2	Grün		Eingangszustand Zähleingang B1 oder B2
1	R1, R2	Grün		Eingangszustand Referenzimpuls R1 oder R2
	1 - 2	Grün		Eingangszustand des korrespondierenden digitalen Eingangs

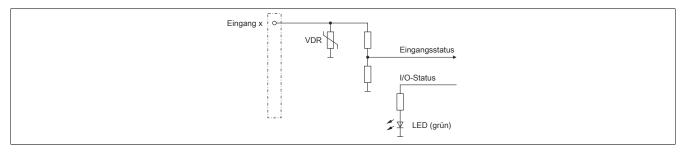

¹⁾ Je nach Konfiguration kann ein Firmware-Update bis zu mehreren Minuten benötigen.

2.3 Anschlussbelegung

Für alle Signalleitungen sind geschirmte Leitungen zu verwenden.



2.4 Anschlussbeispiel


2.5 Eingangsschema

Zähleingänge

Standardeingänge

4

3 Funktionsbeschreibung

3.1 ABR-Inkrementalgeber

Das Modul ist mit 1 Eingang für ABR-Inkrementalgeber ausgestattet.

3.1.1 Allgemeines

Als Inkrementalgeber werden Sensoren zur Erfassung von Lageänderungen (linear) oder Winkeländerungen (rotierend) bezeichnet, die Wegstrecke und Wegrichtung bzw. Winkelveränderung und Drehrichtung erfassen können.

Gegenüber kontinuierlich arbeitenden Messsystemen wie Servo-Potentiometern besitzen Inkrementalgeber eine Maßverkörperung mit sich wiederholenden periodischen Teilstrichen. Die Messung beruht auf einer Richtungsbestimmung und einer Zählung. Am häufigsten werden rotierende optische Geber verwendet.

Inkrementalgeber müssen (im Gegensatz zu Absolutwertgebern) nach dem Einschalten gegebenenfalls referenziert werden, da Änderungen der Position in ausgeschaltetem Zustand nicht erfasst werden.

Typische Einsatzgebiete sind die Positions- und Drehzahlbestimmung in der Automatisierungstechnik.

3.1.2 Signalauswertung

Bei einer Bewegung geben die beiden Sensoren 2 um 90° elektrisch phasenverschobene Signale (A und B) ab.

Das Modul ermittelt aus diesen 2 Signalen die Richtung und zählt die Impulse. Damit kann direkt auf die Maßverkörperung (Weg bzw. Winkel) geschlossen werden.

3.1.3 Referenzieren

Der Inkrementalgeber misst nach Zuschalten der Spannungsversorgung nur Änderungen gegenüber der Einschaltposition. Bei vielen Anwendungen ist aber die Kenntnis der absoluten Position erforderlich. Deshalb geben die
meisten Winkelmessgeräte einen Referenzimpuls (Nullimpuls, Referenzmarke) einmal pro Umdrehung auf einem
dritten Ausgang aus (Referenzsignal R). Nach dem Einschalten muss der Geber so lange gedreht werden, bis der
Referenzimpuls erkannt wurde. Spätestens nach einer Umdrehung steht dann der absolute Winkel zur Verfügung.

Positionierungssysteme mit Inkrementalgebern führen nach dem Einschalten sogenannte Referenzfahrten auf einen externen Positionssensor (z. B. Endlagenschalter) aus. Von diesem Punkt aus wird der nächste Referenzimpuls des Inkrementalgebers als genauer Referenzpunkt verwendet.

Information:

Die Register sind unter "Referenzieren" auf Seite 11 beschrieben.

3.1.3.1 Referenziermodus

Es können 2 verschiedene Referenziermodi eingestellt werden:

- · Einmaliges Referenzieren (single shot)
- Kontinuierliches Referenzieren

3.1.3.2 Referenzfreigabeeingang

Unabhängig vom Referenziermodus kann die Übernahme der Referenzposition durch den entsprechenden Spannungspegel des Referenzeingangs (siehe "Eingangszustand der digitalen Eingänge 1 bis 2" auf Seite 10: Bit 7) verhindert werden. Die gewünschte Einstellung kann durch einmaliges azyklisches Schreiben konfiguriert werden.

3.1.4 Zählerstand erfassen

Der Zählerstand des Inkrementalgebers wird als 16 oder 32 Bit Zählerwert dargestellt.

Information:

Das Register ist unter "Zählerstand der Geber" auf Seite 10 beschrieben.

3.2 Überwachung der Geberversorgung

Überwachung der Geberversorgung

Der Status der integrierten Geberversorgung kann ausgelesen werden.

Bit	Beschreibung
0	24 VDC Geberversorgungsspannung OK
1	24 VDC Geberversorgungsspannung fehlerhaft

Information:

Das Register ist unter "Status der Geberversorgung" auf Seite 10 beschrieben.

4 Inbetriebnahme

4.1 Verwendung des Moduls am Bus Controller

Das Funktionsmodell 254 "Bus Controller" wird defaultmäßig nur von nicht konfigurierbaren Bus Controllern verwendet. Alle anderen Bus Controller können, abhängig vom verwendeten Feldbus, andere Register und Funktionen verwenden.

Für Detailinformationen siehe X20 Anwenderhandbuch (ab Version 3.50), Abschnitt "Zusätzliche Informationen - Verwendung von I/O-Modulen am Bus Controller".

4.1.1 CAN-I/O Bus Controller

Das Modul belegt an CAN-I/O 1 analogen logischen Steckplatz.

5 Registerbeschreibung

5.1 Allgemeine Datenpunkte

Neben den in der Registerbeschreibung beschriebenen Registern verfügt das Modul über zusätzliche allgemeine Datenpunkte. Diese sind nicht modulspezifisch, sondern enthalten allgemeine Informationen wie z. B. Seriennummer und Hardware-Variante.

Die allgemeinen Datenpunkte sind im X20 System Anwenderhandbuch, Abschnitt "Zusätzliche Informationen - Allgemeine Datenpunkte" beschrieben.

5.2 Funktionsmodell 0 - Standard und Funktionsmodell 1 - Standard mit 32 Bit Geber Zählerwert

Funktionsmodell 0 und Funktionsmodell 1 unterscheiden sich nur durch die Größe des Datentyps bei einigen Registern.

- · Funktionsmodell 0 verwendet Datentyp INT
- Funktionsmodell 1 verwendet Datentyp DINT und zum Teil erweiterte Namen. (In Klammern angegeben)

Register	Name	Datentyp	Lesen		Schreiben	
			Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguration	1					
4104	CfO_EdgeDetectFalling	USINT				•
4106	CfO_EdgeDetectRising	USINT				•
2064	CfO_PresetABR01_1(_32Bit)	(D)INT				•
2068	CfO_PresetABR01_2(_32Bit)	(D)INT				•
2576	CfO_PresetABR02_1(_32Bit)	(D)INT				•
2580	CfO_PresetABR02_2(_32Bit)	(D)INT				•
512	ConfigOutput24	UINT				•
522	ConfigOutput26	USINT				•
520	ConfigOutput27	USINT				•
544	ConfigOutput32	UINT				•
554	ConfigOutput34	USINT				•
552	ConfigOutput35	USINT				•
Kommunikat	ion	·				
2116	ReferenzModeEncoder01	USINT			•	
2628	ReferenzModeEncoder02	USINT			•	
2080	Encoder01	(D)INT	•			
2592	Encoder02	(D)INT	•			
264	Eingangszustand der digitalen Eingänge 1 bis 2	USINT	•			
	DigitalInput01	Bit 3	1			
	DigitaIInput02	Bit 7	1			
2118	StatusInput01	USINT	•			
2630	StatusInput02	USINT	•			
40	Status der Geberversorgung	USINT	•			
	PowerSupply01	Bit 0]			

5.3 Funktionsmodell 2 - MotionKonfiguration

Das Datenformat von 16 oder 32 Bit ist in der Konfiguration einstellbar.

Das Funktionsmodell 2 - MotionKonfiguration ist ab Hardware-Upgrade 1.4.0.0 verfügbar.

Register	Name	Datentyp	Le	sen	Schr	eiben
		1	Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguration	1					
4104	CfO_EdgeDetectFalling	USINT				•
4106	CfO_EdgeDetectRising	USINT				•
2064	CfO_PresetABR01_1	INT				•
2068	CfO_PresetABR01_2	INT				•
2576	CfO_PresetABR02_1	INT				•
2580	CfO_PresetABR02_2	INT				•
2110	CfO_Encoder01Command	USINT				•
2622	CfO_Encoder02Command	USINT				•
512	ConfigOutput24	UINT				•
522	ConfigOutput26	USINT				•
520	ConfigOutput27	USINT				•
544	ConfigOutput32	UINT				•
554	ConfigOutput34	USINT				•
552	ConfigOutput35	USINT				•
Kommunikat	ion	<u> </u>				
2096	RefPulsePos01	INT	•			
2100	RefPulsePos01	DINT	•			
2608	RefPulsePos02	INT	•			
2612	RefPulsePos02	DINT	•			
2108	RefPulseCnt01	SINT	•			
2620	RefPulseCnt02	SINT	•			
2104	Encoder01Reset	BOOL			•	
2616	Encoder02Reset	BOOL			•	
0	EncOk01	BOOL	•			
0	EncOk02	BOOL	•			
2088	Encoder01	INT	•			
2092	Encoder01	DINT	•			
2600	Encoder02	INT	•			
2604	Encoder02	DINT	•			
264	Eingangszustand der digitalen Eingänge 1 bis 2	USINT	•			
	DigitalInput01	Bit 3				
	DigitalInput02	Bit 7	<u> </u>			
2118	StatusInput01	USINT	•			
2630	StatusInput02	USINT	•			
40	Status der Geberversorgung	USINT	•			
	PowerSupply01	Bit 0]			

5.4 Funktionsmodell 254 - Bus Controller

Register	Offset1)	Name	Datentyp	Le	sen	Schreiben	
				Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguration							
4104	-	CfO_EdgeDetectFalling	USINT				•
4106	-	CfO_EdgeDetectRising	USINT				•
2064	-	CfO_PresetABR01_1	INT				•
2068	-	CfO_PresetABR01_2	INT				•
2576	-	CfO_PresetABR02_1	INT				•
2580	-	CfO_PresetABR02_2	INT				•
512	-	ConfigOutput24	UINT				•
522	-	ConfigOutput26	USINT				•
520	-	ConfigOutput27	USINT				•
544	-	ConfigOutput32	UINT				•
554	-	ConfigOutput34	USINT				•
552	-	ConfigOutput35	USINT				•
Kommunikatio	n						
2116	0	ReferenzModeEncoder01	USINT			•	
2628	1	ReferenzModeEncoder02	USINT			•	
2080	0	Encoder01	INT	•			
2592	4	Encoder02	INT	•			
264	2	Eingangszustand der digitalen Eingänge 1 bis 2	USINT	•			
		DigitalInput01	Bit 3	1			
		DigitalInput02	Bit 7	1			
2118	6	StatusInput01	USINT	•			
2630	7	StatusInput02	USINT	•			
40	3	Status der Geberversorgung	USINT	•			
		PowerSupply01	Bit 0	1			

¹⁾ Der Offset gibt an, wo das Register im CAN-Objekt angeordnet ist.

5.5 ABR-Absolutgeber

5.5.1 Zählerstand der Geber

Name:

Encoder01 bis Encoder02

In diesem Register werden die Geberwerte als 16 oder 32 Bit Zählerwert dargestellt.

Datentyp	Werte
INT	-32768 bis 32767
DINT¹)	-2.147.483.648 bis 2.147.483.647

¹⁾ Nur in Funktionsmodell 1

5.5.2 Eingangszustand der digitalen Eingänge 1 bis 2

Name

DigitalInput01 bis DigitalInput02.

In diesem Register werden die Eingangszustände der Geber und digitalen Eingänge abgebildet.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	Geber 1	0 oder 1	Eingangszustand Signal A
1		0 oder 1	Eingangszustand Signal B
2		0 oder 1	Eingangszustand Referenzimpuls
3	DigitalInput01	0 oder 1	Eingangszustand Digitaleingang 1
4	Geber 2	0 oder 1	Eingangszustand Signal A
5		0 oder 1	Eingangszustand Signal B
6		0 oder 1	Eingangszustand Referenzimpuls
7	DigitalInput02	0 oder 1	Eingangszustand Digitaleingang 2

5.5.3 Status der Geberversorgung

Name:

PowerSupply01

Dieses Register zeigt den Status der integrierten Geberversorgung. Eine fehlerhafte Geberversorgungsspannung wird als Warnung ausgegeben.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	PowerSupply01	0	24 VDC Geberversorgungsspannung OK
		1	24 VDC Geberversorgungsspannung fehlerhaft
1 - 7	Reserviert	-	

5.6 Referenzieren

5.6.1 Referenzimpuls

Folgende Register müssen durch einmaliges azyklisches Schreiben mit den angeführten Werten konfiguriert werden, damit der Referenziervorgang auf die Flanke des Referenzimpulses abgeschlossen wird.

Der Referenziervorgang kann erfolgen auf:

- · Steigende Flanke
- Fallende Flanke (Default-Konfiguration)

5.6.1.1 Konstantes Register "CfO_EdgeDetectFalling"

Name:

CfO_EdgeDetectFalling

Datentyp	Werte	Filter	
USINT	0x00	Konfigurationswert für steigende Flanke	
	0x04	Konfigurationswert für fallende Flanke Geber 1	
	0x40	Konfigurationswert für fallende Flanke Geber 2	
	0x44	Konfigurationswert für fallende Flanke Geber 1 und 2 (Bus Controller Default)	

5.6.1.2 Konstantes Register "CfO_EdgeDetectRising"

Name:

CfO_EdgeDetectRising

Datentyp	Werte	Filter	
USINT	0x00	Konfigurationswert für fallende Flanke (Bus Controller Default)	
	0x04	0x04 Konfigurationswert für steigende Flanke Geber 1	
	0x40	Konfigurationswert für steigende Flanke Geber 2	
	0x44	Konfigurationswert für steigende Flanke Geber 1 und 2	

5.6.1.3 Konstantes Register "ConfigOutput24"

Name:

ConfigOutput24

Dieses Register enthält den Wert für ABR-Geber 1.

Datentyp	Werte	Information	
UINT	0x1012	0x1012 Konfigurationswert für steigende Flanke	
0x1002 Konfigurationswert für fallende Flanke (Bus Controller Default)		Konfigurationswert für fallende Flanke (Bus Controller Default)	

5.6.1.4 Konstantes Register "ConfigOutput32"

Name:

ConfigOutput32

Dieses Register enthält den Wert für ABR-Geber 2.

Datentyp	Werte	Filter	
UINT	0x1016	Konfigurationswert für steigende Flanke	
	0x1006	Konfigurationswert für fallende Flanke (Bus Controller Default)	

5.6.2 Einstellen der Referenzposition

Name:

CfO PresetABR01 1 bis CfO PresetABR01 2 (Funktionsmodelle 0 und 2)

CfO PresetABR02 1 bis CfO PresetABR02 2 (Funktionsmodelle 0 und 2)

CfO_PresetABR01_1_32Bit bis CfO_PresetABR01_2_32Bit (Funktionsmodell 1)

CfO_PresetABR02_1_32Bit bis CfO_PresetABR02_2_32Bit (Funktionsmodell 1)

Funktionsmodell 0 - Standard und Funktionsmodell 1 - Standard mit 32 Bit Geber Zählerwert

Mit diesen Registern ist es möglich für jeden Geber 2 Referenzpositionen z. B. durch einmaliges azyklisches Schreiben vorzugeben (Default = 0). Die eingestellten Werte werden mit abgeschlossenem Referenziervorgang in die Zählerwerte übernommen.

Datentyp	Werte	Information
INT	-32768 bis 32767	Bus Controller Default: 0
DINT ¹⁾	-2.147.483.648	
	bis 2.147.483.647	

¹⁾ Nur im Funktionsmodell 1

Funktionsmodell 2 - MotionKonfiguration

Diese 4 Register sind im Funktionsmodell MotionKonfiguration standardmäßig auf 0 gesetzt und nicht konfigurierbar.

5.6.3 Referenzieren mit Referenzfreigabeeingang

5.6.3.1 Spannungspegel für Referenzfreigabe - ABR-Geber 1

Name:

ConfigOutput26

Mit diesem Register wird der zur Referenzfreigabe aktive Spannungspegel des digitalen Einganges 1 konfiguriert.

Datentyp	Werte	Information	
USINT	0x00	Referenzfreigabe ist aktiv bei 0 VDC (Bus Controller Default)	
0x08 Referenzfreigabe ist aktiv bei 24 VDC		Referenzfreigabe ist aktiv bei 24 VDC	

5.6.3.2 Referenzfreigabe des Eingangs - ABR-Geber 1

Name:

ConfigOutput27

In diesem Register kann festgelegt werden, ob die Referenzfreigabe aktiviert ist.

Datentyp	Werte	Information	
USINT	0x00	Referenzfreigabe Eingang ausgeschaltet (Bus Controller Default)	
0x08 Referenzfreigabe Eingang aktiviert		Referenzfreigabe Eingang aktiviert	

5.6.3.3 Spannungspegel für Referenzfreigabe - ABR-Geber 2

Name:

ConfigOutput34

Mit diesem Register wird der zur Referenzfreigabe aktive Spannungspegel des digitalen Einganges 2 konfiguriert.

Datentyp	Werte	Information	
USINT	0x00 Referenzfreigabe ist aktiv bei 0 VDC (Bus Controller Default)		
0x80 Referenzfreigabe ist aktiv bei 24 VDC		Referenzfreigabe ist aktiv bei 24 VDC	

5.6.3.4 Referenzfreigabe des Eingangs - ABR-Geber 2

Name:

ConfigOutput35

In diesem Register kann festgelegt werden, ob die Referenzfreigabe aktiviert ist.

Datentyp	Werte	Information	
USINT	0x00	Referenzfreigabe Eingang ausgeschaltet (Bus Controller Default))	
0x80 Referenzfreigabe Eingang aktiviert		Referenzfreigabe Eingang aktiviert	

5.6.4 Auslesen des Referenziermodus

Name:

ReferenceModeEncoder01 bis ReferenceModeEncoder02

Mit diesem Register wird der Referenziermodus bestimmt.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0 - 1		00	Referenzieren ausgeschaltet
		01	Einmaliges Referenzieren (single shot)
		11	Kontinuierliches Referenzieren
2 - 5		0	Fixes Einstellen der Bits = 0
6 - 7		00	Referenzieren ausgeschaltet
		11	Fixes Einstellen der Bits = 1

Daraus ergeben sich folgende Werte:

Binär	Hex	Bedeutung
00000000	0x00	Referenzieren ausgeschaltet
11000001	0xC1	Einmaliges Referenzieren (single shot)
		Für einen neuen Start nach abgeschlossenem Referenziervorgang:
		Wert 0x00 schreiben
		 Warten, bis Bit 0 bis 3 des Registers StatusInput01 den Wert 0 annimmt. Zählerbits 4 bis 7 werden nicht gelöscht.
		Referenzierung wieder einschalten
11000011	0xC3	Kontinuierliches Referenzieren
		Es wird bei jedem Referenzimpuls automatisch referenziert

Es muss darauf geachtet werden, wie die optionale Referenzfreigabe konfiguriert ist (siehe "Referenzieren mit Referenzfreigabeeingang" auf Seite 12).

5.6.5 Status der Referenzierung

Name:

StatusInput01 (für Geber 1) bis StatusInput02 (für Geber 2)

Dieses Register beinhaltet Informationen über den Referenziervorgang.

STO STORY
ehe Bitstruktur
ehe

Bitstruktur:

Bit	Bezeichnung	Wert	Information
0	Referenzimpuls ohne Referenzierung¹)	0	Noch kein Referenzimpuls ohne Referenzierung aufgetreten
		1	Wenigstens ein Referenzimpuls ohne Referenzierung aufgetre-
			ten
1	Zustandswechsel	0 bzw. 1	Wechselt mit jedem Referenzimpuls ohne Referenzierung
2	Referenzimpuls mit Referenzierung ¹⁾	0	Noch keine Referenzierung aufgetreten
		1	Wenigstens eine Referenzierung aufgetreten
3	Zustandswechsel	0 bzw. 1	Wechselt mit jeder erfolgten Referenzierung
4	Referenzimpuls	0	Letzter Referenzimpuls bewirkte keine Referenzierung
		1	Letzter Referenzimpuls bewirkte Referenzierung
5 - 7	Zähler	х	Freilaufender Zähler, wird mit jedem Referenzimpuls erhöht

¹⁾ Immer 1 nach dem ersten aufgetretenen Referenzimpuls

Beispiele möglicher Werte:

Binär	Hex	Bedeutung
0x00000000	0x00	Referenzieren ausgeschaltet bzw. Referenziervorgang bereits aktiv
0x00111100	0x3CE	Erstes Referenzieren abgeschlossen. Referenzwert wurde in das Register Encoder01 übernommen.
0xxxx11100	0xxB	Die Bits 5 bis 7 werden nachfolgend mit jedem Referenzimpuls verändert
0xxxx1x100	0xxx	Stetige Änderung der Bits bei Einstellung kontinuierliches Referenzieren. Der Referenzwert wird bei jedem Referenzimpuls in das Register Encoder01 übernommen.

Es muss darauf geachtet werden, wie die optionale Referenzfreigabe konfiguriert ist (siehe "Referenzieren mit Referenzfreigabeeingang" auf Seite 12).

5.7 Minimale Zykluszeit

Die minimale Zykluszeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, ohne dass Kommunikationsfehler auftreten. Es ist zu beachten, dass durch sehr schnelle Zyklen die Restzeit zur Behandlung der Überwachungen, Diagnosen und azyklischen Befehle verringert wird.

Minimale Zykluszeit
128 µs

5.8 Maximale Zykluszeit

Die maximale Zykluszeit gibt an, bis zu welcher Zeit der Buszyklus hochgefahren werden kann, ohne dass interne Zählerüberläufe zu Modulfehlfunktionen führen.

Maximale Zykluszeit
16 ms

5.9 Minimale I/O-Updatezeit

Die minimale I/O-Updatezeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, so dass in jedem Zyklus ein I/O-Update erfolgt.

Minimale I/O-Updatezeit
128 µs