X20(c)AT6402

1 Allgemeines

1.1 Mitgeltende Dokumente

Weiterführende und ergänzende Informationen sind den folgenden gelisteten Dokumenten zu entnehmen.

Mitgeltende Dokumente

Dokumentname	Titel
MAX20	X20 System Anwenderhandbuch
MAEMV	Installations- / EMV-Guide

1.2 Coated Module

Coated Module sind X20 Module mit einer Schutzbeschichtung der Elektronikbaugruppe. Die Beschichtung schützt X20c Module vor Betauung und Schadgasen.

Die Elektronik der Module ist vollständig funktionskompatibel zu den entsprechenden X20 Modulen.

In diesem Datenblatt werden zur Vereinfachung nur Bilder und Modulbezeichnungen der unbeschichteten Module verwendet.

Die Beschichtung wurde nach folgenden Normen qualifiziert:

- Betauung: BMW GS 95011-4, 2x 1 Zyklus
- Schadgas: EN 60068-2-60, Methode 4, Exposition 21 Tage

1.2.1 Anlauftemperatur

Die Anlauftemperatur beschreibt die minimal zulässige Umgebungstemperatur im spannungslosen Zustand zum Zeitpunkt des Einschaltens des Coated Moduls. Diese darf bis zu -40°C betragen. Im laufenden Betrieb gelten weiterhin die Bedingungen laut Angabe in den technischen Daten.

Information:

Es ist unbedingt darauf zu achten, dass es im geschlossenen Schaltschrank zu keiner Zwangskühlung durch Luftströmungen, wie z. B. durch den Einsatz eines Lüfters oder Lüftungsschlitze, kommt.

1.3 Bestelldaten

Bestellnummer	Kurzbeschreibung
	Temperaturmessung
X20AT6402	X20 Temperatur-Eingangsmodul, 6 Eingänge Thermoelement, Typ J, K, N, S, B, R, Auflösung 0,1/0,01°C
X20cAT6402	X20 Temperatur-Eingangsmodul, beschichtet, 6 Eingänge Thermoelement, Typ J, K, N, S, B, R, Auflösung 0,1/0,01°C
	Erforderliches Zubehör
	Busmodule
X20BM11	X20 Busmodul, 24 VDC codiert, interne I/O-Versorgung durchverbunden
X20BM15	X20 Busmodul, mit Knotennummernschalter, 24 VDC codiert, interne I/O-Versorgung durchverbunden
X20cBM11	X20 Busmodul, beschichtet, 24 VDC codiert, interne I/O-Versorgung durchverbunden
	Feldklemmen
X20TB12	X20 Feldklemme, 12-polig, 24 VDC codiert

Tabelle 1: X20AT6402, X20cAT6402 - Bestelldaten

1.4 Modulbeschreibung

Das Modul ist mit 6 Eingängen für J, K, N, S, B und R Thermoelementfühler ausgestattet. Im Modul ist eine Klemmentemperaturkompensation integriert.

- · 6 Eingänge für Thermoelemente
- Für Fühlertypen J, K, N, S, B, R
- · Zusätzlich direkte Rohwertmessung
- Integrierte Klemmentemperaturkompensation
- · Filterzeit einstellbar
- · Auflösung einstellbar

Funktionen:

- Fühlertyp und Messbereich
- Eingangsfilter
- Überwachen des Eingangssignals

Fühlertyp und Messbereich

Das Modul wird mit Thermoelementfühler verwendet. Für vom Modul nicht unterstützte Fühlertypen ist das Modul mit einer Rohwertmessung ausgestattet.

Eingangsfilter

Für alle analogen Eingänge gemeinsam kann ein Eingangsfilter parametriert werden.

Überwachen des Eingangssignals

Das Eingangssignal der analogen Eingänge wird auf oberen und unteren Grenzwert, sowie auf Drahtbruch überwacht.

2 Technische Beschreibung

2.1 Technische Daten

Bestellnummer	X20AT6402 X20cAT6402		
Kurzbeschreibung	AZUATUTUZ AZUATUTUZ		
I/O-Modul	6 Eingänge für Thermoelemente		
Allgemeines	o Emgango la Promocioniono		
B&R ID-Code	0x1BA9		
Statusanzeigen	I/O-Funktion pro Kanal, Betriebszustand, Modulstatus		
Diagnose	, , , , , , , , , , , , , , , , , , , ,		
Modul Run/Error	Ja, per Status-LED und SW-Status		
Eingänge	Ja, per Status-LED und SW-Status		
Leistungsaufnahme	(1), (2), (2), (3), (3), (4), (4), (4), (4), (4), (4), (4), (4		
Bus	0,01 W		
I/O-intern	0,91 W		
Zusätzliche Verlustleistung durch Aktoren (ohmsch)	-		
[W]			
Zulassungen			
CE	Ja		
UKCA	Ja		
ATEX	Zone 2, II 3G Ex nA nC IIA T5 Gc		
	IP20, Ta (siehe X20 Anwenderhandbuch)		
UL	FTZÚ 09 ATEX 0083X cULus E115267		
OL	Industrial Control Equipment		
HazLoc	cCSAus 244665		
. Idaaa	Process Control Equipment		
	for Hazardous Locations		
	Class I, Division 2, Groups ABCD, T5		
DNV	Temperature: B (0 to 55 °C)		
	Humidity: B (up to 100%) Vibration: B (4 g)		
	EMC: B (bridge and open deck)		
LR	ENV1		
KR	Ja		
ABS	Ja		
BV	EC33B		
	Temperature: 5 - 55 °C		
	Vibration: 4 g		
540	EMC: Bridge and open deck		
EAC	Ja		
KC	Ja -		
Temperatureingänge Thermoelemente Eingang	Thermoelement		
Digitale Wandlerauflösung	16 Bit		
Filterzeit	Zwischen 1 ms und 66,7 ms einstellbar		
Wandlungszeit	Zwischen i nis und 60,7 nis enistembal		
1 Kanal	80,4 ms bei 50 Hz Filter		
n Kanäle	(n + 1) x 40,2 ms bei 50 Hz Filter		
Ausgabeformat	INT		
Messbereich			
Fühlertemperatur			
Typ J: Fe-CuNi	-210 bis 1200°C		
Typ K: NiCr-Ni	-270 bis 1372°C		
Typ N: NiCrSi-NiSi	-270 bis 1300°C (Rev. ≥D0)		
Typ S: PtRh10-Pt	-50 bis 1768°C		
Typ B: PtRh30-PtRh6	0 bis 1820°C		
Typ R: PtRh13-Pt	-50 bis 1664°C		
Klemmentemperatur	-25 bis 85°C		
Rohwert	±65,534 mV		
Klemmentemperaturkompensation	Intern		
Fühlernorm	EN 60584		
Auflösung			
Fühlertemperatur	1 LSB = 0,1°C oder 0,01°C		
Klemmentemperatur	1 LSB = 0,1°C		
Rohwertausgabe je nach Verstärkung	1 LSB = 1 μV oder 2 μV		

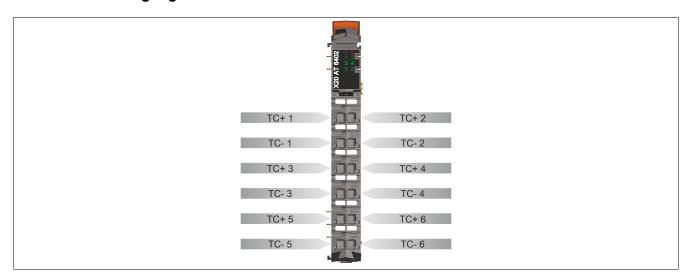
Tabelle 2: X20AT6402, X20cAT6402 - Technische Daten

Bestellnummer	X20AT6402	X20cAT6402			
Normierung					
Typ J: Fe-CuNi	-210,0 bis 1200,0°C oder -210,00 bis 1200,00°C				
Typ K: NiCr-Ni	-270,0 bis 1372,0°C oder -270,00 bis 1372,00°C				
Typ N (Rev. ≥D0)	-270,0 bis 1302,0°C oder -270,00 bis 1302,00°C				
Typ S: PtRh10-Pt	-270,0 bis 1300,0 C oder -270,00 bis 1300,00 C -50,0 bis 1768,0°C oder -50,00 bis 1768,00°C				
Typ B: PtRh30-PtRh6	0 bis 1820,0°C ode				
Typ R: PtRh13-Pt	-50,0 bis 1664,0°C ode				
Klemmentemperatur	-25,0 bis 85,0°C ode	r -25,00 bis 85,00 C			
Überwachung		004			
Bereichsunterschreitung	0x8				
Bereichsüberschreitung	0x7				
Drahtbruch	0x7				
offene Eingänge	0x7				
allgemeiner Fehler	0x8				
Wandlungsverfahren	Sigma				
Linearisierungsmethode	Inte	ern			
Zulässiges Eingangssignal	max.	±5 V			
Eingangsfilter	Tiefpass 1. Ordnung	Eckfrequenz 500 Hz			
max. Fehler bei 25°C					
Gain	0,06	% ¹⁾			
Offset					
Typ J: Fe-CuNi	0,04	% ²)			
Typ K: NiCr-Ni	0,05				
Typ N (Rev. ≥D0)	0,05				
Typ S: PtRh10-Pt	0,03				
Typ B: PtRh30-PtRh6	0,13				
Typ R: PtRh13-Pt	0,09				
max. Gain-Drift	0,01 %	6/°C 1)			
max. Offset-Drift					
Typ J: Fe-CuNi	0,0019				
Typ K: NiCr-Ni	0,0024	%/°C ²⁾			
Typ N (Rev. ≥D0)	0,0029	%/°C ²⁾			
Typ S: PtRh10-Pt	0,0079 %/°C ²⁾				
Typ B: PtRh30-PtRh6	0,0114	%/°C ²⁾			
Typ R: PtRh13-Pt	0,0074 %/°C ²⁾				
Nichtlinearität	±0,00	1% ²⁾			
Gleichtaktunterdrückung					
DC	>70	dB			
50 Hz	>70	dB			
Gleichtaktbereich	±15				
Übersprechen zwischen den Kanälen	<-70				
Isolationsspannung	1-10	, d.b			
zwischen Kanal und Bus	500	V			
	500	v eff			
Genauigkeit Klemmentemperaturkompensation		h 40			
bei künstlicher Konvektion	±4°C nac				
bei natürlicher Konvektion	±2°C nac	th 10 min			
Elektrische Eigenschaften					
Potenzialtrennung	Kanal zu B				
	Kanal zu Kana	I nicht getrennt			
Einsatzbedingungen					
Einbaulage					
waagrecht	J				
senkrecht	J	а			
Aufstellungshöhe über NN (Meeresspiegel)					
0 bis 2000 m	Keine Einschränkung				
>2000 m	Reduktion der Umgebungstemperatur um 0,5°C pro 100 m				
Schutzart nach EN 60529 IP20					
Umgebungsbedingungen					
Temperatur					
Betrieb					
waagrechte Einbaulage	0 bis 55°C -25 bis 60°C				
senkrechte Einbaulage	0 bis 50°C -25 bis 50°C -25 bis 50°C				
-	0 NI2 00 C	-20 DIS 30 C			
Derating Aplantomporatur	- 1000				
Anlauftemperatur	- 40 hir	Ja, -40°C			
Lagerung	-40 bis 85°C				
Transport	-40 bis 85°C				

Tabelle 2: X20AT6402, X20cAT6402 - Technische Daten

Bestellnummer	X20AT6402	X20cAT6402		
Luftfeuchtigkeit				
Betrieb	5 bis 95%, nicht kondensierend Bis 100%, kondensierend			
Lagerung	5 bis 95%, nicht kondensierend			
Transport	5 bis 95%, nicht kondensierend			
Mechanische Eigenschaften				
Anmerkung	Feldklemme 1x X20TB12 gesondert bestellen Feldklemme 1x X20TB12 gesondert besteller			
	Busmodul 1x X20BM11 gesondert bestellen Busmodul 1x X20cBM11 gesondert bestellen			
Rastermaß	12,5 *0,2 mm			

Tabelle 2: X20AT6402, X20cAT6402 - Technische Daten


- Bezogen auf den aktuellen Messwert. Bezogen auf den gesamten Messbereich. 1) 2)

2.2 Status-LEDs

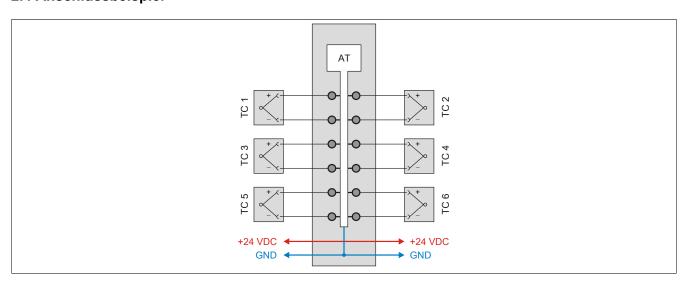
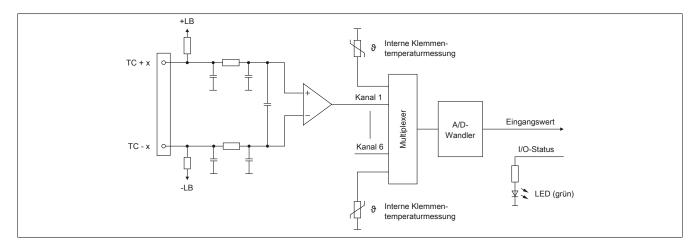
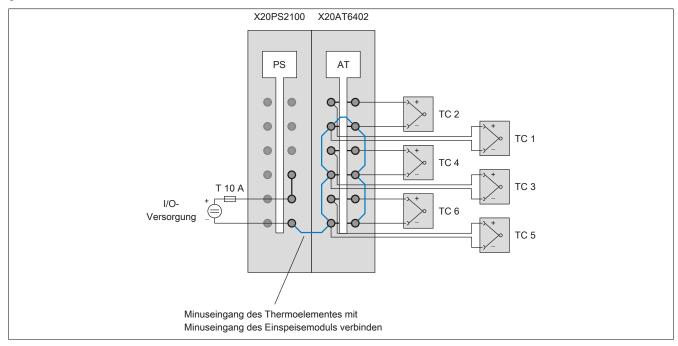

Für die Beschreibung der verschiedenen Betriebsmodi siehe X20 System Anwenderhandbuch, Abschnitt "Zusätzliche Informationen - Diagnose-LEDs".

Abbildung	LED	Farbe	Status	Beschreibung
	r	r Grün		Modul nicht versorgt
			Single Flash	Modus RESET
			Blinkend	Modus PREOPERATIONAL
			Ein	Modus RUN
0 AT 6402 9 E L 1 9 P R 7 B	e F	Rot	Aus	Modul nicht versorgt oder alles in Ordnung
			Ein	Fehler- oder Resetzustand
			Single Flash	Warnung/Fehler eines I/O-Kanals. Über- oder Unterlauf der Analogeingänge.
	e + r	Rot ein / grüne	r Single Flash	Firmware ist ungültig
X20	1 - 6 Grün Au	Aus	Der Eingang ist ausgeschaltet	
-			Blinkend	Überlauf, Unterlauf oder Drahtbruch
			Ein	Der Analog-/Digitalwandler läuft, Wert ist in Ordnung


2.3 Anschlussbelegung

2.4 Anschlussbeispiel



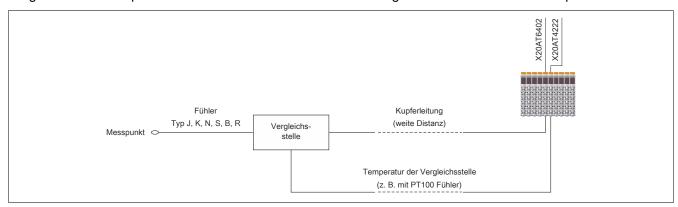
2.5 Eingangsschema

2.6 Keramische Heizelemente mit integrierten Thermoelementen

Es wird empfohlen, den Minuseingang des Thermoelementes mit dem Minuseingang des Einspeisemoduls zu verbinden. Dadurch können mögliche Messfehler, verursacht durch Brummspannungseinkopplungen in das Messsignal, vermieden werden.

2.7 Externe Vergleichsstelle

Allgemeines


Dem Modul kann zur Messwertkorrektur ein externer Vergleichsstellentemperaturwert vorgegeben werden. Dadurch ist die Einrichtung einer externen Vergleichsstelle möglich. Zur Messwertkorrektur wird für alle Kanäle derselbe externe Vergleichsstellentemperaturwert verwendet.

Für folgende Anwendungen ist eine externe Vergleichsstelle sinnvoll:

- · Bei großen Distanzen zwischen Steuerung und Messpunkt
- · Zur Erhöhung der Genauigkeit

Überbrückung großer Distanzen

Bei großen Distanzen zwischen Steuerung und Messpunkt wird die Einrichtung einer externen Vergleichsstelle empfohlen. Dabei wird die Thermoelementspannung von der externen Vergleichsstelle mit Kupferkabeln an die Klemme der X20AT6402 geführt. Die an der externen Vergleichsstelle (z. B. mit PT100 - X20AT4222) gemessene Temperatur wird im I/O-Bereich des Moduls X20AT6402 hinterlegt. Aus der gemessenen Spannung und dem Vergleichsstellentemperaturwert bildet die X20AT6402 intern die gesuchte Thermoelementtemperatur.

Erhöhung der Genauigkeit

Zur Erhöhung der Genauigkeit wird die Einrichtung einer externen Vergleichsstelle empfohlen. Der Aufbau der externen Vergleichsstelle erfolgt wie oben beschrieben. Insbesondere in folgenden Fällen ist die Installation einer externen Vergleichsstelle ratsam:

- Neben der X20AT6402 steckt ein Modul das mehr Leistung als 1 W aufnimmt
- Neben der X20AT6402 steckt kein Modul
- · Bei stark schwankenden Umgebungsbedingungen (Luftzug, Temperatur)

3 Funktionsbeschreibung

3.1 Fühlertyp und Messbereich

Das Modul ist für verschiedene Fühlertypen ausgelegt. Wegen der unterschiedlichen Abgleichwerte ist die Einstellung des Fühlertyps erforderlich.

Werte	Information
1	Fühlertyp J
2	Fühlertyp K
3	Fühlertyp S
4	Fühlertyp N
6	Rohwert ohne Linearisierung und Klemmentemperaturkompensation: Auflösung 1,0625 µV bei einem Messbereich von ±35 mV
7	Rohwert ohne Linearisierung und Klemmentemperaturkompensation: Auflösung 2,125 μV bei einem Messbereich von ±70 mV
64	Fühlertyp R
72	Fühlertyp B

Damit dem Anwender immer ein definierter Ausgabewert zur Verfügung steht, ist folgendes zu beachten:

- Bis zur ersten Wandlung wird je nach Auflösung 0x8000 oder 0x80000000 ausgegeben.
- Nach Umschaltung des Fühlertyps wird bis zur ersten Wandlung je nach Auflösung 0x8000 oder 0x80000000 ausgegeben.
- Nach Umschaltung des Fühlertyps von Rohwert- auf "Typ x"-Messung wird je nach Auflösung 0x7FFF oder 0x7FFFFFF ausgegeben, bis die internen Klemmentemperaturmessungen durchgeführt wurden (siehe "Eingangsschema" auf Seite 7). Zusätzlich wird das dem Kanal zugehörige StatusInput-Bit "Oberer Grenzwert überschritten" gesetzt.
- Wenn der Eingang nicht eingeschaltet ist, wird je nach Auflösung 0x8000 oder 0x80000000 ausgegeben.

Information:

Das Register ist unter "Fühlertyp" auf Seite 14 beschrieben.

3.2 Eingangsfilter

Eingangsfilter

Mit dem Parameter Eingangsfilter wird die Filterzeit aller analogen Eingänge definiert.

Kennzahl	Filter	Filterzeit	Digitale Wandlerauflösung
0	15 Hz	66,7 ms	16 Bit
1	25 Hz	40 ms	16 Bit
2	30 Hz	33,3 ms	16 Bit
3	50 Hz	20 ms	16 Bit
4	60 Hz	16,7 ms	16 Bit
5	100 Hz	10 ms	16 Bit
6	500 Hz	2 ms	16 Bit
7	1000 Hz	1 ms	16 Bit

Information:

Das Register ist unter "Eingangsfilter und Umgebungsbedingungen" auf Seite 13 beschrieben.

3.3 Überwachen des Eingangssignals

Die Eingänge des Moduls werden überwacht. Eine Änderung des Überwachungsstatus wird aktiv als Fehlermeldung abgesetzt.

Bitwert	Information
00	Kein Fehler
01	Unterer Grenzwert unterschritten
10	Oberer Grenzwert überschritten
11	Drahtbruch

Analogwert begrenzen

Zusätzlich zur Statusinformation wird im Fehlerzustand der Analogwert auf folgende Werte fixiert:

Fehlerzustand	Digitaler Wert bei Fehler
Drahtbruch	Auflösung 0,1°C: +32767 (0x7FFF)
	Auflösung 0,01°C: +2.147.483.647 (0x7FFFFFF)
Oberer Grenzwert überschritten	Auflösung 0,1°C: +32767 (0x7FFF)
	Auflösung 0,01°C: +2.147.483.647 (0x7FFFFFF)
Unterer Grenzwert unterschritten	Auflösung 0,1°C: -32767 (0x8001)
	Auflösung 0,01°C: -2.147.483.647 (0x80000001)
Ungültiger Wert	Auflösung 0,1°C: -32768 (0x8000)
	Auflösung 0,01°C: -2.147.483.648 (0x80000000)

Information:

Das Register ist unter "Status der Eingänge" auf Seite 15 beschrieben.

4 Inbetriebnahme

4.1 Verwendung des Moduls am Bus Controller

Das Funktionsmodell 254 "Bus Controller" wird defaultmäßig nur von nicht konfigurierbaren Bus Controllern verwendet. Alle anderen Bus Controller können, abhängig vom verwendeten Feldbus, andere Register und Funktionen verwenden.

Für Detailinformationen siehe X20 Anwenderhandbuch (ab Version 3.50), Abschnitt "Zusätzliche Informationen - Verwendung von I/O-Modulen am Bus Controller".

4.1.1 CAN-I/O Bus Controller

Das Modul belegt an CAN-I/O 2 analoge logische Steckplätze.

4.2 Rohwertmessung

Wenn ein anderer Fühlertyp als J, K, N, S, B oder R verwendet wird, muss an zumindest einem Eingang die Klemmentemperatur gemessen werden. Anhand dieses Werts muss der Anwender eine Klemmentemperaturkompensation durchführen.

4.3 Umgebungsbedingungen

Die Einstellung der Umgebungsbedingungen dient zur Anpassung der internen Klemmentemperaturkennlinien an die Art und Menge der eingestrahlten Wärmemenge auf das Modul.

Als Kennwert für die Auswahl dient die Leistungsaufnahme der unmittelbar links und rechts am X2X Link gesteckten Module. Die Leistungsaufnahme kann aus den technischen Daten des entsprechenden Moduls entnommen werden. Es wird der höhere Wert zur Einstellung herangezogen.

4.4 Wandlungszyklus konfigurieren

Die zeitliche Abstimmung der Messwerterfassung erfolgt über die Wandlerhardware. Jeden Wandelzyklus werden alle eingeschalteten Eingänge gewandelt. Zusätzlich erfolgt die Messung einer Klemmentemperatur (nicht im Funktionsmodell 1).

Falls ein Eingang nicht benötigt wird, kann er ausgeschaltet werden, wodurch sich die Refreshzeit verringert. Die Abschaltung kann auch vorübergehend erfolgen. Die Messung der Klemmentemperatur wird im Funktionsmodell 1 abgeschaltet.

4.4.1 Wandlungszeit

Die Wandlungszeit hängt von der Anzahl der Kanäle und vom Funktionsmodell ab. Bei den in der Tabelle angeführten Formeln entspricht "n" der Anzahl der eingeschalteten Kanäle.

Funktionsmodell Wandlungszeit	
Modell 0 - n Kanäle	(n + 1) · (2 · Filterzeit + 200 μs)
Modell 1 - n Kanäle	n · (2 · Filterzeit + 200 μs)
Modell 1 - 1 Kanal	Entspricht der Filterzeit

Beispiele

Die Eingänge werden mit einem 50 Hz Filter gefiltert.

	Beis	piel 1	Beispiel 2		
	Funktionsmodell 0	Funktionsmodell 1	Funktionsmodell 0	Funktionsmodell 1	
Eingeschaltete Eingänge	1	1	1 - 6	1 - 6	
Wandlungszeit für Eingänge	40,2 ms	20 ms	241,2 ms	241,2 ms	
Wandlungszeit für Klemmentemperatur	40,2 ms	-	40,2 ms	-	
Wandlungszeit gesamt	80,4 ms	20 ms	281,4 ms	241,2 ms	

5 Registerbeschreibung

5.1 Allgemeine Datenpunkte

Neben den in der Registerbeschreibung beschriebenen Registern verfügt das Modul über zusätzliche allgemeine Datenpunkte. Diese sind nicht modulspezifisch, sondern enthalten allgemeine Informationen wie z. B. Seriennummer und Hardware-Variante.

Die allgemeinen Datenpunkte sind im X20 System Anwenderhandbuch, Abschnitt "Zusätzliche Informationen - Allgemeine Datenpunkte" beschrieben.

5.2 Funktionsmodell 0 - Standard

Die Auflösung von 0,1 oder 0,01°C ist in der Konfiguration einstellbar.

Register	Name	Datentyp	Lesen		Schreiben	
			Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguratio	n					
24	ConfigOutput01 (Eingangsfilter/Umgebungsbedingungen)	USINT				•
26	ConfigOutput02 (Fühlertyp)	USINT				•
27	ConfigOutput03 (Kanaldeaktivierung)	USINT				•
Kommunikat	ion					
0	Temperature01	INT	•			
2	Temperature02	INT	•			
4	Temperature03	INT	•			
6	Temperature04	INT	•			
8	Temperature05	INT	•			
10	Temperature06	INT	•			
28	IOCycleCounter	USINT	•			
30	StatusInput01	USINT	•			
31	StatusInput02	USINT	•			
22	CompensationTemperature	INT		•		
40	Temperature01_H_Res	DINT	•			
44	Temperature02_H_Res	DINT	•			
48	Temperature03_H_Res	DINT	•			
52	Temperature04_H_Res	DINT	•			
56	Temperature05_H_Res	DINT	•			
60	Temperature06 H Res	DINT	•			

5.3 Funktionsmodell 1 - Externe Vergleichsstellentemperatur

Die Auflösung von 0,1 oder 0,01°C ist in der Konfiguration einstellbar.

Register	Name	Datentyp	Lesen		Schreiben	
			Zyklisch	Azyklisch	Zyklisch	Azyklisch
Konfiguration	1					
24	ConfigOutput01 (Eingangsfilter/Umgebungsbedingungen)	USINT				•
26	ConfigOutput02 (Fühlertyp)	USINT				•
27	ConfigOutput03 (Kanaldeaktivierung)	USINT				•
Kommunikati	on					
12	ExternalCompensationTemperature	INT			•	
0	Temperature01	INT	•			
2	Temperature02	INT	•			
4	Temperature03	INT	•			
6	Temperature04	INT	•			
8	Temperature05	INT	•			
10	Temperature06	INT	•			
28	IOCycleCounter	USINT	•			
30	StatusInput01	USINT	•			
31	StatusInput02	USINT	•			
40	Temperature01_H_Res	DINT	•			
44	Temperature02_H_Res	DINT	•			
48	Temperature03_H_Res	DINT	•			
52	Temperature04_H_Res	DINT	•			
56	Temperature05_H_Res	DINT	•			
60	Temperature06_H_Res	DINT	•			

5.4 Funktionsmodell 254 - Bus Controller

Register	Offset1)	Name	Datentyp	Le	Lesen		Schreiben	
				Zyklisch	Azyklisch	Zyklisch	Azyklisch	
Konfiguration								
24	-	ConfigOutput01 (Eingangsfilter/Umgebungsbedingungen)	USINT				•	
26	-	ConfigOutput02 (Fühlertyp)	USINT				•	
27	-	ConfigOutput03 (Kanaldeaktivierung)	USINT				•	
Kommunikatio	on							
0	0	Temperature01	INT	•				
2	2	Temperature02	INT	•				
4	4	Temperature03	INT	•				
6	8	Temperature04	INT	•				
8	10	Temperature05	INT	•				
10	12	Temperature06	INT	•				
28	-	IOCycleCounter	USINT		•			
30	-	StatusInput01	USINT		•			
31	-	StatusInput02	USINT		•			
22	-	CompensationTemperature	INT		•			

¹⁾ Der Offset gibt an, wo das Register im CAN-Objekt angeordnet ist.

5.5 Konfiguration

5.5.1 Eingangsfilter und Umgebungsbedingungen

Name:

ConfigOutput01

Mit diesem Register werden Eingangsfilter und Umgebungsbedingungen konfiguriert. Für Details siehe "Eingangsfilter" auf Seite 9 und "Umgebungsbedingungen" auf Seite 11.

Datentyp	Werte	Bus Controller Default
USINT	Siehe Bitstruktur	3

Bitstruktur:

Bit	Beschreibung	Wert	Information
0 - 3	Eingangsfilter	0000	15 Hz
		0001	25 Hz
		0010	30 Hz
		0011	50 Hz (Bus Controller Default)
		0100	60 Hz
		0101	100 Hz
		0110	500 Hz
		0111	1000 Hz
		1000 bis 1111	Nicht erlaubt
4 - 7	Umgebungsbedingungen	0000	Standard, keine Anpassungsrechnung (Bus Controller Default)
		0001	Leistungseinstrahlung weniger 0,2 W
		0010	Leistungseinstrahlung weniger 1 W
		0011	Leistungseinstrahlung mehr als 1 W
		0100 bis 1111	Nicht erlaubt

5.5.2 Fühlertyp

Name:

ConfigOutput02

Das Modul ist für verschiedene Fühlertypen ausgelegt. Wegen der unterschiedlichen Abgleichwerte ist die Einstellung des Fühlertyps erforderlich.

Datentyp	Werte	Information
USINT	0	Wandlung ausgeschaltet
	1	Fühlertyp J (Bus Controller Default)
	2	Fühlertyp K
	3	Fühlertyp S
	4	Fühlertyp N
	5	Wandlung ausgeschaltet
	6	Rohwert ohne Linearisierung und Klemmentemperaturkompensation:
		Auflösung 1,0625 μV bei einem Messbereich von ±35 mV
	7	Rohwert ohne Linearisierung und Klemmentemperaturkompensation:
		Auflösung 2,125 μV bei einem Messbereich von ±70 mV
	8 - 63	Wandlung ausgeschaltet
	64	Fühlertyp R
	65 - 71	Wandlung ausgeschaltet
	72	Fühlertyp B
	73 - 255	Wandlung ausgeschaltet

5.5.3 Kanaldeaktivierung

Name:

ConfigOutput03

Per Defaulteinstellung sind alle Kanäle eingeschaltet. Um Zeit zu sparen, können einzelne Kanäle ausgeschaltet werden (siehe "Wandlungszeit" auf Seite 11).

Datentyp	Werte	Bus Controller Default
USINT	Siehe Bitstruktur	63

Bitstruktur:

Bit	Beschreibung	Wert	Information
0	Kanal 1	0	Ausgeschaltet
		1	Eingeschaltet (Bus Controller Default)
5	Kanal 6	0	Ausgeschaltet
		1	Eingeschaltet (Bus Controller Default)
6 - 7	Reserviert	0	

5.6 Kommunikation

5.6.1 Analoge Eingänge (Auflösung = 0,1°C)

Name:

Temperature01 bis Temperature06

Bei einer Auflösung von 0,1°C enthalten diese Register den analogen Eingangswert je nach eingestelltem Fühlertyp:

Datentyp	Werte	Eingangssignal
INT	-2100 bis +12000 (für -210,0 °C bis +1200,0 °C)	Typ J (FeCuNi)
	-2700 bis +13720 (für -270,0 °C bis +1372,0 °C)	Typ K (NiCrNi)
	-2700 bis +13000 (für -270,0 °C bis +1300,0 °C)	Typ N (NiCrSi)
	-500 bis +17680 (für -50,0 °C bis +1768,0 °C)	Typ S (PtRhPt)
	0 bis +18200 (für 0 °C bis +1820,0 °C)	Typ B (PtRhPt)
	-500 bis +16640 (für -50,0 °C bis +1664,0 °C)	Typ R (PtRhPt)
	-32768 bis +32767	Rohwert ohne Linearisierung und
		Klemmentemperaturkompensation:
		Auflösung 1,0625 μV bei einem Messbereich von ±35 mV
	-32768 bis +32767	Rohwert ohne Linearisierung und
		Klemmentemperaturkompensation:
		Auflösung 2,125 μV bei einem Messbereich von ±70 mV

5.6.2 Analoge Eingänge (Auflösung = 0,01°C)

Name:

Temperature01_H_Res bis Temperature06_H_Res

Bei einer Auflösung von 0,01°C enthalten diese Register den analogen Eingangswert je nach eingestelltem Fühlertyp:

Datentyp	Werte	Eingangssignal
DINT	-21000 bis +120000 (für -210,00 °C bis +1200,00 °C)	Typ J (FeCuNi)
	-27000 bis +137200 (für -270,00 °C bis +1372,00 °C)	Typ K (NiCrNi)
	-27000 bis +130000 (für -270,00 °C bis +1300,00 °C)	Typ N (NiCrSi)
	-5000 bis +176800 (für -50,00 °C bis +1768,00 °C)	Typ S (PtRhPt)
	0 bis +182000 (für 0 °C bis +1820,00 °C)	Typ B (PtRhPt)
	-5000 bis +166400 (für -50,00 °C bis +1664,00 °C)	Typ R (PtRhPt)
	-2.147.483.648 bis 2.147.483.647	Rohwert ohne Linearisierung und
		Klemmentemperaturkompensation:
		Auflösung 0,10625 μV bei einem Messbereich von ±35 mV
	-2.147.483.648 bis 2.147.483.647	Rohwert ohne Linearisierung und
		Klemmentemperaturkompensation:
		Auflösung 0,2125 μV bei einem Messbereich von ±70 mV

5.6.3 I/O-Zykluszähler

Name:

IOCycleCounter

Der Zykluszähler wird erhöht, nachdem alle Eingangsdaten aktualisiert wurden.

Datentyp	Werte	Information
USINT	0 bis 255	Umlaufender Zähler

5.6.4 Status der Eingänge

Die Eingänge des Moduls werden überwacht. Eine Änderung des Überwachungsstatus wird aktiv als Fehlermeldung abgesetzt und im Fehlerfall der Analogwert auf festgesetzte Werte fixiert. Für Details siehe "Überwachen des Eingangssignals" auf Seite 10.

5.6.4.1 Status der Eingänge 1 bis 4

Name:

StatusInput01

In diesem Register ist der Status der analogen Eingänge 1 bis 4 abgebildet.

USINT Siehe Bitstr	struktur

Bitstruktur:

Wert	Information
00	Kein Fehler
01	Unterer Grenzwert unterschritten
10	Oberer Grenzwert überschritten
11	Drahtbruch
х	Werte: Siehe Kanal 1
х	Werte: Siehe Kanal 1
х	Werte: Siehe Kanal 1
	00 01 10 11 x

5.6.4.2 Status der Eingänge 5 bis 6

Name:

StatusInput02

In diesem Register ist der Status der analogen Eingänge 5 bis 6 abgebildet.

Datentyp	Werte
USINT	Siehe Bitstruktur

Bitstruktur:

Bit	Beschreibung	Wert	Information
0 - 1	Kanal 5	00	Kein Fehler
		01	Unterer Grenzwert unterschritten
		10	Oberer Grenzwert überschritten
		11	Drahtbruch
2 - 3	Kanal 6	х	Werte: Siehe Kanal 5
4 - 7	Reserviert	0	

5.6.5 Auslesen der internen Vergleichsstellentemperatur

Name:

CompensationTemperature

In diesem Register wird die interne Vergleichsstellentemperatur gespeichert.

Datentyp	Werte	Information
INT	-250 bis 850	Interne Vergleichsstellentemperatur (PT1000): -25,0 bis 85,0°C

5.6.6 Vorgabe der externen Vergleichsstellentemperatur

Name:

ExternalCompensationTemperature

In diesem Register wird die externe Vergleichsstellentemperatur vorgegeben.

Datentyp	Werte	Information
INT	-250 bis 850	Externe Vergleichsstellentemperatur: -25,0 bis 85,0°C

5.7 Minimale Zykluszeit

Die minimale Zykluszeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, ohne dass Kommunikationsfehler auftreten. Es ist zu beachten, dass durch sehr schnelle Zyklen die Restzeit zur Behandlung der Überwachungen, Diagnosen und azyklischen Befehle verringert wird.

Minimale Zykluszeit	
150 µs	

5.8 Minimale I/O-Updatezeit

Die minimale I/O-Updatezeit gibt an, bis zu welcher Zeit der Buszyklus heruntergefahren werden kann, so dass in jedem Zyklus ein I/O-Update erfolgt.

Bei den in der Tabelle angeführten Formeln entspricht 'n' der Anzahl der eingeschalteten Kanäle.

Funktionsmodell 0		
n Eingänge	(n + 1) · (2 x Filterzeit + 200 μs)	
Funktionsmodell 1		
1 Eingang	Entspricht der Filterzeit	
n Eingänge	n · (2 x Filterzeit + 200 μs)	