12.2 AM050

12.2.1 General Information

The AM050 is a standard analog mixed module.

12.2.2 Order Data

Table 228: AM050 order data

12.2.3 Technical Data

Product ID	AM050
General information	
C-UL-US Listed	Yes
B&R ID Code	\$88
Slot Main Rack Expansion Rack	Yes Yes
Inputs Input Signal	4 0 -10 V
Outputs Output Signal	4 ±10 V

Table 229: AM050 technical data

Product ID	AM050	
Electrical Isolation Channel - PLC Channel - Channel	Yes No	
Operating Modes Normal Operation Special Operating Mode 1 Special Operating Mode 2	Cyclic measurement with optional averaging Direct software timing Software timing using a default time of 2000 - 65535 μs	
Conversion Time for all Channels Normal and Special Operation Normal Operation with Active Averaging	< 1 ms < 1.5 ms	
Power Consumption 5 V 24 V Total	Max. 1.5 W Max. 5 W Max. 6.5 W	
Analog Inputs		
Input Signal Nominal Min./Max.	0 to +10 V -20 to +20 V	
Conversion Procedure	Successive approximation	
Digital Converter Resolution	12-bit	
Output Format	INT \$0000 - \$7FF8 (1 LSB = \$0008 = 2.441 mV)	
Non-Linearity	±1 LSB	
Differential Input Resistance	2 ΜΩ	
Input Filter	Low pass 1st order / cut-off frequency: 450 Hz	
Basic Accuracy at 25° C	±0.1% ¹⁾	
Offset Drift	Max. ±0.0025% /° C ¹⁾	
Gain Drift	Max. ±0.0075% /° C ²⁾	
Repeat Precision	±0.025% ¹⁾	
Cross-Talk between Channels	-66 dB	
Common-Mode Rejection DC 50 Hz	50 dB 45 dB	
Maximum Modulation Compared to Ground Potential	±50 VDC	
Common Mode Modulation Capability between Two Channels	±10 VDC	
Analog Outputs		
Output signal	±10 V	
Digital Converter Resolution	12-bit	
Output Format	INT \$8080 - \$7F80 (1 LSB = \$0010 = 4.90 mV)	
Non-Linearity	±1 LSB	
Load	Min. 1 kΩ	

Table 229: AM050 technical data (cont.)

Product ID	AM050
Short-circuit-proof	Current limit -15 mA to -30 mA / +15 mA to +30 mA
Output Filter	Low pass 1st order / cut-off frequency: 1 kHz
Basic Accuracy at 25° C Offset Total	$^{\pm 0.025\%}_{\pm 0.15\%}$ $^{1)}_{^{1)}}$
Offset Drift	Max. ±0.0015% /° C ¹⁾
Gain Drift	Max. ±0.0050% /° C ²⁾
Error caused by Load Change	Max. 0.013% (from 10 ΜΩ -> 1 kΩ, resistive)
Repeat Precision	±0.025% ¹⁾
Switch On/Off Behavior	Internal enable relay, default setting: Short circuit
Mechanical Characteristics	
Dimensions	B&R 2005 single-width

Table 229: AM050 technical data (cont.)

1) Refers to the measurement range.

2) Refers to the current measurement value.

12.2.4 Status LEDs

Image	LED	Description
	RUN	A lit RUN LED indicates the analog/digital converter and digital/analog converter are running.
	MODE	The MODE LED flashes briefly if a start pulse is detected in one of the two special operating modes.
RUN MODE		

Table 230: AM050 status LEDs

12.2.5 Pin Assignments

	Connection	Assignment
	1	+ Input 1
	2	- Input 1
	3	+ Input 2
	4	- Input 2
	5	+ Input 3
	6	- Input 3
	7	+ Input 4
	8	- Input 4
9	9	Shield
	10	Shield
12 2 2 2 2 3	11	Shield
	12	Shield
16 Ø	13	+ Output 1
18	14	- Output 1
	15	+ Output 2
TB170	16	- Output 2
	17	+ Output 3
	18	- Output 3
	19	+ Output 4
	20	- Output 4

Table 231: AM050 pin assignment

Signal Cable Connection

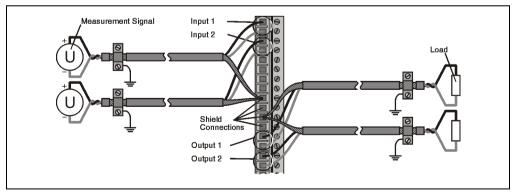


Figure 145: AM050 signal cable connection

Chapter 3 B&R 2005 Modules

Shielded cabling should be used for the mixed module's analog input and output signal cables. The shield is grounded for two inputs/outputs using one of the terminal block shield connections provided.

For EMC reasons, it is recommended to short circuit the inputs which are not used.

Minus connections for the analog outputs are switched over 22 Ω to the internal ground. A floating connection is recommended for large cable lengths. The potential displacement between minus connections is allowed to be a maximum of 4 V.

The four shielded connections are of the same value and each connected via 100 Ω resistors with ground ($\frac{1}{2}$, that means: a spring contact and a mounting rail).

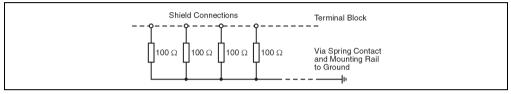


Figure 146: AM050 shielded connection

12.2.6 Input Circuit Diagram

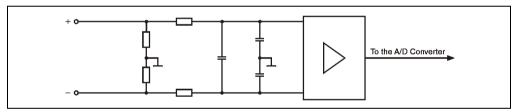


Figure 147: AM050 input circuit diagram

12.2.7 Output Circuit Diagram

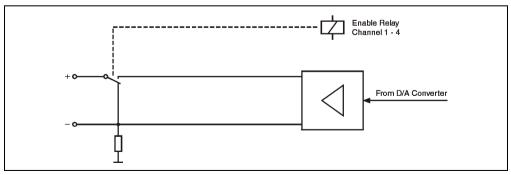


Figure 148: AM050 output circuit diagram

12.2.8 Operating Modes

Three operating modes are available:

- Normal operation (default setting)
- Special Operating Mode 1: Direct software timing
- Special Operating Mode 2: Software timing using default time

Change of Operating Mode

- Normal operation is set during power-on or after a reset. The enable relay releases the outputs approximately 300 ms after a reset.
- Changing from normal operation to one of the special operating modes is possible at any time. To do this, the mode register 2 must be set to the respective value. When a change in operating mode is carried out, it is acknowledged in status register 2, the register which displays the current operating mode.
- However changing from one of the special operating modes to another operating mode is not possible.

Normal Operation

Normal operation is set after power-on.

Analog Inputs

All channels are converted cyclically and data is deposited in the dual ported RAM in the agreed INT format. The conversion time for all channels is <1 ms.

Averaging can only be switched on in cyclic operation, using mode register 1. The conversion time increases slightly to <1.5 ms, due to the higher computing time needed.

Analog Outputs

All values are read, and written on the analog output channels. The update time for the analog outputs should be considered in the above listed conversion times for the analog inputs.

381

Chapter 3 B&R 2005 Modules

Special Operating Mode 1: Direct software timing

Mode register 2 must be set to the following value : %00010000

In this operating mode, the conversion cycle is started on the module by the application program, which sets bit 7 from mode register 8 to 0 (start pulse).

All analog output values are then immediately read and written on the output channels. Finally, the conversion of all four input channels is carried out so that it does not react to another start pulse. The end of the cycles is registered by setting bit 7 in the status register 2.

Application example: Data acquisition (without jitter) in high-speed task classes (e.g. for a controller).

Mode Register 8	Analog Mixed Module	Time
Write access with bit 7 = 0 (start pulse)	Module in delay loop	t_0
	Bit 7 in the status register 2 = 0	t_0 + 20 to 40 µs
	Analog output values read from the DPR (start)	1)
	Analog output values read from the DPR (end)	1)
	Update analog outputs 1 - 4	t_ao = t_0 + 328.5 to 330 µs
	Start measurement input channel 1	t_ao + 1 * 85 μs
	Start measurement input channel 2	t_ao +2 * 85 μs
	Start measurement input channel 3	t_ao +3 * 85 μs
	Start measurement input channel 4	t_ao +4 * 85 μs
	Write measurements in the DPR (start up)	1)
	Write measurements in the DPR (end)	1)
	Bit 7 in the status register 2 = 1(cycle end)	t_0 + 900 μs
The next start pulse is possible	Module in delay loop	

Table 232: AM050 Special Operating Mode 1: Direct software timing

 Bus accesses on the module can lead to interruptions in the reading of analog output values from the dual ported RAM (DPR) and/or the writing of the measurements in the dual ported RAM. Therefore, it is recommended that handling of affected I/O variables in the special operating modes should only be made by the "Direct_IO" FBKs.

%00110000

Special Operating Mode 2: Software timing using default time

Mode register 2 must be set to the following value :

The procedure is similar to special operating mode 1. However, in special operating mode 2 there is the option to set the time when the next conversion cycle should be ended. The default time is entered in μ s as UINT in mode register 7 + 8. This write access works in the same way as a start pulse (independent of bit 7 in the mode register 8). Further write accesses are ineffective until the end of the cycles.

The reading of analog output values and the conversion of all eight channels is not started immediately but rather 1000 μ s before the end of the default time. The end of the cycles is registered by setting bit 7 in the status register 2. Unlike special operating mode 1, the time scale is left unchanged.

Value range for the default times: 2000 to 65535 µs

- Application example: equidistant data acquisition for controllers in normal task classes with the option of calculating the measurement time in the main CPU (e.g. using the timer function "TIM_musec" or "TIM_ticks" -> user program).
- Example: Task 1 has a cycle time of 10 ms in task class 1. At the end of the cycles, current analog values must be available for the next cycle.

The "TIM_musec" function measures the current time period. If the measurement results in 2 ms, then the analog conversion must be completed in 8 ms. Defining the default time carried out with the "IO_data" function. The value 8000 is written in mode registers 7 + 8.

If the time measured in the next cycle results in e.g. 2.2 ms, then the value 7800 must be written in mode registers 7 + 8.

Mode Registers 7 + 8	Analog Mixed Module	Time
Default time written in μs as UINT	Module in delay loop	t_0
	Bit 7 in the status register $2 = 0$	t_0 + 20 to 40 μs
	Delay Loop	Depends on t_pre
	Starting internal cycles	t_St = t_pre - 1000 μs
	Analog output values read from the DPR (start)	1)
	Analog output values read from the DPR (end)	1)
	Update analog outputs 1 - 4	t_ao = t_St + 328.5 to 330 µs
	Start measurement input channel 1	t_ao + 1 * 85 µs
	Start measurement input channel 2	t_ao +2 * 85 μs
	Start measurement input channel 3	t_ao +3 * 85 μs
	Start measurement input channel 4	t_ao +4 * 85 μs
	Write measurements in the DPR (start up)	1)
	Write measurements in the DPR (end)	1)

Table 233: AM050 Special Operating Mode 2: Software timing using default time

Mode Registers 7 + 8	Analog Mixed Module	Time
	Bit 7 in the status register 2 = 1(cycle end)	t_pre - 100 μs
	Time entry sequence	t_pre
The next start pulse is possible	Module in delay loop	

Table 233: AM050 Special Operating Mode 2: Software timing using default time (cont.)

 Bus accesses on the module can lead to interruptions in the reading of analog output values from the dual ported RAM (DPR) and/or the writing of the measurements in the dual ported RAM. Therefore, it is recommended that handling of affected I/O variables in the special operating modes should only be made by the "Direct_IO" FBKs.

12.2.9 Relationship between Converter Value and Input / Output Signals

Input Voltage 0 - 10 V

The converter value (INT format) changes in increments of 8 (0, 8, 16, etc.).

Input Voltage	Converter Value			
Input Voltage	Hexadecimal	Decimal		
Error Status	\$8000	-32768		
≤0 V	\$0000	0		
2.441 mV	\$0008	8		
9.997 V	\$7FF0	32752		
≥10 V	\$7FF8	32760		

Table 234: AM050 Relationship between input voltage and converter value

12.2.10 Output Voltage ±10 V

The converter value (INT format) changes in increments of 16 (..., -32, -16, 0, 16, 32, etc.).

Conv	Output Voltage		
Hexadecimal	Decimal	Output Voltage	
≤\$8080	-32640	-10 V	
\$FFF0	-16	-4.901 mV	
\$0000	0	0 V	
\$0010	16	4.901 mV	
≥\$7F80	32640	10 V	

Table 235: AM050 Relationship between output voltage and converter value

12.2.11 Variable Declarations

The variable declaration is made in B&R Automation Studio™:

Function		Variable Declarations			
	Scope	Data Type	Length	Module Type	Chan.
Single analog input (Channel x)	tc_global	INT	1	Analog In	1 4
Single analog output (channel x)	tc_global	INT	1	Analog Out	1 4
Mode register 1	tc_global	USINT	1	Status Out	0
Mode register 2	tc_global	USINT	1	Status Out	1
Mode registers 7 + 8 Special operating mode 2 "Software Timing using Default Values"	tc_global	UINT	1	Status Out	6
Mode Register 8 Start pulse in the special operating mode 1 "Direct Software Timing"	tc_global	USINT	1	Status Out	7
Status register 1	tc_global	USINT	1	Status In	0
Status register 2	tc_global	USINT	1	Status In	1

Table 236: AM050 variable declaration

Mode Register 1

Bits 0 and 2 - 7 must be assigned with 0.

Mode Register 1	Bit	Description
	7	0
	6	0
	5	0
	4	0
	3	0
	2	0
	1	AV - Averaging switched on
	0	0
0 0 0 0 0 0 0		
7 0		

Averaging

Averaging can be activated during normal operation. It should be noted that the conversion time increases to <1.5 ms.

AV= 0 Averaging switched off (default setting)

AV = 1 Averaging switched on

When this option is switched on, the average value is generated and transferred to the central unit. The calculation is formulated as follows:

New Average Value = Old Average Value + New Value

The positive limit for averaging is \$7FF7 instead \$7FF8.

Mode Register 2

Bits 0 and -3 as well as 6 and 7 must be assigned with 0.

N	Mode Register 2							Bit	Description
								7	0
								6	0
								5	SWT_TIM - Software timing using default time
								4	SWT_DIR - Direct software timing
								3	0
								2	0
								1	0
								0	0
0	0			0	0	0	0		

SWT_DIR 0 Normal operation (default setting)

0

1 Special operating mode 1 (Direct Software Timing)

SWT_TIM SWT_TIM is only active if SWT_DIR is set to 1!

0 Operating mode dependent on SWT_DIR (default setting)

1 Special operating mode 2 (software timing using default times)

Changing from one of the special operating modes to another operating mode is not possible!

7

Mode Register 7 + 8 (UINT)

When using special operating mode 2 "Software Timing using Default Times", the time is defined in μ s in both of these registers. The conversion cycle of all analog inputs and analog outputs must be completed when this time has passed.

Value range: 2000 to 65535 µs

Mode Register 8

Bits 0 - 6 must be assigned with 0.

Mode Register 8	Bit	Description
	7	TRIGn - Start pulse
	6	0
	5	0
	4	0
	3	0
	2	0
	1	0
	0	0
00000000		
7 0		

TRIGn TRIGn is only active in "Direct Software Timing" operating mode (SWT_DIR to 1, SWT_TIM to 0) A write access with TRIGn = 0 triggers a conversion cycle. A write access with TRIGn = 1 is ignored.

Status Register 1

S	Status Register 1							Bit	Description
								7	x
								6	x
								5	x
								4	x
								3	x
								2	x
								1	AV - Averaging switched on
								0	I_ERR - Module error
х	х	х	х	х	х				

I_ERR 0..... Data values in the dual ported RAM (DPR) correspond to definitions 1..... An internal error exists. Please contact B&R.

MW Averaging in normal operation is active (mode register 1 settings are repeated)

Status Register 2

0

7

Status F	Reg	iste	er 2			Bit	Description
						7	SWT_RDY - Software timed measurement is completed
						6	x
						5	SWT_TIM - Software timing using default time
						4	SWT_DIR - Direct software timing
						3	x
						2	x
						1	x
						0	x
х		х	х	х	х		
7		-			0		

SWT_DIR SWT_DIR and SWT_TIM indicate the operating mode in which in the module can be found.

SWT_TIM

SWT_RDY SWT_RDY is only active if a special operating mode is set.

0Measurement or waiting loop is running

1The last cycle is completed