
Ethernet POWERLINK

Communication Profile Specification

EPSG DS 301 V1.5.1

EPSG Draft Standard 301

Ethernet POWERLINK

Communication Profile Specification

Version 1.5.1

© B&R

(B&R Industrial Automation GmbH)

2023

EPSG DS 301 V1.5.1 -2-

B&R Industrial Automation GmbH

POWERLINK-Office

B&R Straße 1

5142 Eggelsberg

Austria

powerlink.office@br-automation.com

www.br-automation.com/en/technologies/powerlink/

The EPSG Draft Standard 301 “Ethernet Powerlink Communication Profile Specification” has been
provided by Ethernet POWERLINK Standardisation Group (hereinafter referred to as “EPSG”). As a
consequence of the EPSG being dissolved from March 31st, 2023, B&R Industrial Automation GmbH
will – as the formal successor of EPSG regarding the rights and content – make the Ethernet
Powerlink Communication Profile Specification available as open source on it’s own website subject to
the conditions mentioned in the disclaimer under clause Pre. 1 of this document. B&R Industrial
Automation GmbH especially disclaims liability for any personal injury, property or other damage, of
any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other EPSG Standard document.

EPSG DS 301 V1.5.1 -3-

Pre. 1 Disclaimer
Use of this EPSG Standard is wholly voluntary. The EPSG disclaims liability for any personal injury,
property or other damage, of any nature whatsoever, whether special, indirect, consequential, or
compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any
other EPSG Standard document.

The EPSG does not warrant or represent the accuracy or content of the material contained herein,
and expressly disclaims any express or implied warranty, including any implied warranty of
merchantability or fitness for a specific purpose, or that the use of the material contained herein is free
from patent infringement. EPSG Standards documents are supplied “AS IS”.

The existence of an EPSG Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to the scope of the EPSG
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is
subject to change brought about through developments in the state of the art and comments received
from users of the standard. Users are cautioned to check to determine that they have the latest edition
of any EPSG Standard.

In publishing and making this document available, the EPSG is not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Nor is the EPSG undertaking to
perform any duty owed by any other person or entity to another. Any person utilizing this, and any
other EPSG Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as
they relate to specific applications. When the need for interpretations is brought to the attention of the
EPSG, the group will initiate action to prepare appropriate responses. Since EPSG Standards
represent a consensus of concerned interests, it is important to ensure that any interpretation has also
received the concurrence of a balance of interests. For this reason, the EPSG and it’s members are
not able to provide an instant response to interpretation requests except in those cases where the
matter has previously received formal consideration.

Comments for revision of EPSG Standards are welcome from any interested party, regardless of
membership affiliation with the EPSG. Suggestions for changes in documents should be in the form of
a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be sent to the address given on the page before.

Pre 1.1 Patent notice
Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. B&R shall not be responsible for
identifying patents for which a license may be required by an EPSG standard or for conducting
inquiries into the legal validity or scope of those patents that are brought to its attention.

EPSG DS 301 V1.5.1 -4-

Pre. 2 History
Vers. State Date Author / Company Description

1.0.0 DS 2006-04-18 Knopke et al. Lenze et al. DS version created from working documents

1.0.1 WDP 2008-01-30 Kirchmayer B&R et al. WDP version created from DS 1.0.0
Changes from TWG meetings in 6/07 and
10/07.

1.0.2 WDP 2008-06-13 Kirchmayer B&R et al. Changes from TWG meetings in 2/07 and 2/08.

1.0.3 WDP 2008-07-23 Kirchmayer B&R et al. Changes from TWG meeting in 6/08.

1.0.4 WDP 2008-09-05 Kirchmayer B&R et al. Objects used in EPSG DS 302-A are marked
as reserved.

Feedback from certification meeting

1.0.4 DSP 2008-09-08 Kirchmayer B&R et al. Status changes to Draft Standard Proposal

1.0.5 DSP 2008-10-17 Kirchmayer B&R et al. Feedback from TWG conference call in 10/08

1.1.0 DS 2008-10-22 Kirchmayer B&R et al. DS version created from DSP 1.0.5
Minor layout changes

1.1.1 WDP 2010-01-13 Kirchmayer B&R et al. WDP version created from DS 1.1.0
Changes from TWG meeting in 6/09
Feedback from ITEI (China)

1.1.2 WDP 2010-08-04 Kirchmayer B&R et al. Changes from TWG meeting in 3/10

1.1.3 WDP 2011-08-12 Kirchmayer B&R et al. Changes from TWG meeting in 9/10
Refer ot IEC instead of IAONA standards

1.1.4 WDP 2012-08-30 Kirchmayer B&R et al. Changes from TWG meeting in 10/11

1.1.5 WDP 2013-02-27 Kirchmayer B&R et al. Changes from TWG meeting in 9/12
Contribution list removed

PDO mapping attribute of 1F8Ch is Opt

1.1.6 WDP 2013-04-30 Kirchmayer B&R et al. Changes from TWG meeting in 3/13
Reference to polling order corrected in 4.2.4.4
Maximum SDO payload size corrected
No PReq to CN in NMT_CS_STOPPED
corrected

1.1.7 WDP 2013-06-11 Kirchmayer B&R et al. Changes from TWG telco in 5/13,
Clarify Tab. 53, Replace Sender/Receiver by
Client/Server in Fig. 45 to Fig. 54

1.1.7 DSP 2013-06-11 Kirchmayer B&R Status change to DSP

1.2.0 DS 2013-12-18 Kirchmayer B&R Changes from TWG meeting in 12/13
Update of references to other standards
Status change to DS

1.2.0 DS 2014-05-28 Kirchmayer B&R Typos corrected

1.2.1 WDP 2014-09-25 Kirchmayer B&R Changes from TWG meeting 06/14

1.2.2 WDP 2015-09-25 Kirchmayer B&R Changes from TWG meeting 06/15

1.2.3 DSP 2015-12-16 Kirchmayer B&R Changes from TWG meeting 12/15
Status change to DSP

1.3.0 DS 2016-03-23 Kirchmayer B&R Status change to DS

1.3.0a DS 2016-11-23 Kirchmayer B&R Typos and other corrections

1.3.1 WDP 2016-12-19 Kirchmayer B&R Changes from TWG meeting 9/16

1.3.2 WDP 2017-05-22 Kirchmayer B&R Changes from TWG meeting 5/17,

Typos and NMT_EPLNodeID_TYPE corrected

1.3.3 WDP 2017-08-18 Kirchmayer B&R Changes from TWG meeting 7/17

1.3.4 DSP 2018-08-18 Kirchmayer B&R Changes from TWG meeting 3/18

Status change to DSP

1.4.0 DS 2018-11-13 Kirchmayer B&R Changes from TWG meeting 10/18

Status change to DS

1.4.1 WDP 2021-08-21 Kirchmayer B&R Remove default values from 1F93h si1
(NodeID_U8) and si3 (SWNodeID_U8)

Missing text in Fig. 62 completed

Typos and update of referenced versions

Remove dates/versions from references

1.5.0 DS 2021-09-22 Kirchmayer B&R Status change to DS

1.5.1 DS 2023-04-06 Kirchmayer B&R © B&R due to dissolution of the EPSG

EPSG DS 301 V1.5.1 -5-

Pre. 3 Change Record
The changes based on the last valid Communication Profile Specification (EPSG DS 301 V1.5.0a) are
tracked in a separate change record. Hereby the change record provides a detailed history from the
last draft standard to the current one.

EPSG DS 301 V1.5.1 -6-

Pre. 4 Content
Pre. 1 Disclaimer 3
Pre 1.1 Patent notice 3
Pre. 2 History 4
Pre. 3 Change Record 5
Pre. 4 Content 6
Pre. 5 Tables 15
Pre. 6 Figures 18
Pre. 7 Definitions and Abbreviations 20
Pre 7.1 Definitions 20
Pre 7.2 Abbreviations 22
Pre. 8 References 24
1 Introduction 25
1.1 Slot Communication Network Management 25
1.2 POWERLINK key features 25
1.3 Integration 26
1.4 Modular Machines 27
2 Modelling 28
2.1 Reference Model 28
2.1.1 Application Layer 28
2.1.1.1 Service Primitives 28
2.1.1.2 Application Layer Service Types 29
2.2 Device Model 29
2.2.1 General 29
2.2.2 The Object Dictionary 30
2.2.2.1 Index and Sub-Index Usage 32
2.3 Communication Model 32
2.3.1 Master/Slave relationship 32
2.3.2 Client/Server relationship 33
2.3.3 Producer/Consumer relationship - Push/Pull model 33
2.3.4 Superimposing of Communication Relationships 34
3 Physical Layer 35
3.1 Topology 35
3.1.1 Hubs 35
3.1.2 Switches 35
3.2 Network Guidelines 35
3.2.1 Jitter 36
3.3 Ports and Connectors 36
3.3.1 RJ-45 36
3.3.2 M12 36
3.3.3 Crossover Pin Assignment 37
3.3.3.1 RJ45 to RJ45 37
3.3.3.2 M12 to M12 37
3.3.3.3 M12 to RJ45 38
3.4 Cables (recommendation) 38
4 Data Link Layer 39
4.1 Modes of Operation 39
4.2 POWERLINK Mode 39
4.2.1 Introduction 39
4.2.2 POWERLINK Nodes 39
4.2.2.1 POWERLINK Managing Node 39
4.2.2.2 POWERLINK Controlled Node 40
4.2.2.2.1 Isochronous CN 40
4.2.2.2.2 Async-only CN 40
4.2.3 Services 40
4.2.4 POWERLINK Cycle 40
4.2.4.1 Isochronous POWERLINK Cycle 41
4.2.4.1.1 Isochronous phase 41
4.2.4.1.1.1 Multiplexed Timeslots 42
4.2.4.1.2 Asynchronous phase 43
4.2.4.1.2.1 Asynchronous Scheduling 44
4.2.4.1.2.2 Distribution of the Asynchronous phase 44
4.2.4.1.2.3 Asynchronous Transmit Priorities 44
4.2.4.1.3 Idle Phase 47
4.2.4.2 Reduced POWERLINK Cycle 47
4.2.4.3 POWERLINK Cycle Timing 47
4.2.4.3.1 POWERLINK Cycle Timing Error Handling 55
4.2.4.4 Multiplexed Slot Timing 58
4.2.4.5 CN Cycle State Machine 58

EPSG DS 301 V1.5.1 -7-

4.2.4.5.1 Overview 58
4.2.4.5.2 States 59
4.2.4.5.3 Events 59
4.2.4.5.4 Dependance of the NMT_CS on the DLL_CS 59
4.2.4.5.4.1 State NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE, NMT_CS_BASIC_ETHERNET,

NMT_CS_PRE_OPERATIONAL_1 60
4.2.4.5.4.1.1 Transitions in other NMT states 60
4.2.4.5.4.2 State NMT_CS_PRE_OPERATIONAL_2, NMT_CS_READY_TO_OPERATE,

NMT_CS_OPERATIONAL, NMT_CS_STOPPED 61
4.2.4.5.4.2.1 Transitions 61
4.2.4.6 MN Cycle State Machine 63
4.2.4.6.1 Overview 63
4.2.4.6.2 States 63
4.2.4.6.3 Events 63
4.2.4.6.4 Usage of the NMT_MS state by the DLL_MS 64
4.2.4.6.4.1 State NMT_GS_INITIALISATION, NMT_MS_NOT_ACTIVE 64
4.2.4.6.4.2 NMT_MS_BASIC_ETHERNET 64
4.2.4.6.4.3 State NMT_MS_PRE_OPERATIONAL_1 64
4.2.4.6.4.3.1 Transitions 65
4.2.4.6.4.4 State NMT_MS_OPERATIONAL, NMT_MS_READY_TO_OPERATE and

NMT_MS_PRE_OPERATIONAL_2 66
4.2.4.6.4.4.1 Transitions 66
4.2.5 Recognizing Active Nodes 68
4.3 Basic Ethernet Mode 68
4.4 MAC Addressing 69
4.4.1 MAC Unicast 69
4.4.2 MAC Multicast 69
4.4.3 MAC Broadcast 69
4.5 POWERLINK Addressing 69
4.6 Frame Structures 70
4.6.1 Integration with Ethernet 70
4.6.1.1 POWERLINK Frame 70
4.6.1.1.1 POWERLINK Basic Frame 70
4.6.1.1.2 Start of Cycle (SoC) 72
4.6.1.1.3 PollRequest (PReq) 73
4.6.1.1.4 PollResponse (PRes) 74
4.6.1.1.5 Start of Asynchronous (SoA) 75
4.6.1.1.5.1 RequestedServiceID s 75
4.6.1.1.6 Asynchronous Send (ASnd) 76
4.6.1.1.6.1 ServiceID values 76
4.6.1.2 Non-POWERLINK Frames 77
4.6.1.3 Transfer Protection 77
4.7 Error Handling Data Link Layer (DLL) 77
4.7.1 Possible Error Sources and Error Symptoms 77
4.7.2 Error Handling Table for CN 78
4.7.3 Error Handling Table for MN 79
4.7.4 Error Handling Registration 80
4.7.4.1 Threshold counters 81
4.7.4.2 Cumulative Counter 81
4.7.5 Physical Layer Error Sources 81
4.7.5.1 Loss of Link 81
4.7.5.2 Incorrect physical Ethernet operating mode 82
4.7.5.3 Rx MAC buffer overflow / Tx MAC buffer underrun 82
4.7.5.4 Transmission / CRC Errors 83
4.7.6 Communication Error Symptoms detected by the MN 83
4.7.6.1 Timing Violation 83
4.7.6.1.1 Slot Time Exceeded 83
4.7.6.1.1.1 Case 1-2 Frame received in time 84
4.7.6.1.1.2 Case 3 Loss of PRes: Frame not received 84
4.7.6.1.1.3 Case 4-6 Late PRes: Frame received in foreign slot (also collisions) 84
4.7.6.2 Loss of PRes 85
4.7.6.3 Late PRes 86
4.7.6.4 Cycle Time Exceeded 87
4.7.6.5 Collisions 88
4.7.6.6 Invalid Formats 89
4.7.6.7 POWERLINK Address Conflicts 89
4.7.6.8 Multiple MNs on a single POWERLINK Network 90
4.7.6.9 Loss of StatusResponse 90
4.7.7 Communication Error Symptoms detected by the CN 91
4.7.7.1 Collisions 91
4.7.7.2 Invalid Formats 92
4.7.7.3 Loss of Frames 92
4.7.7.3.1 Loss of SoC 93
4.7.7.3.2 Loss of SoA 93
4.7.7.3.3 Loss of PReq 94

EPSG DS 301 V1.5.1 -8-

4.7.7.3.4 SoC Jitter out of Range 94
4.7.8 DLL Error Handling Objects 95
4.7.8.1 Object 1C00h: DLL_MNCRCError_REC 95
4.7.8.2 Object 1C01h: DLL_MNCollision_REC 96
4.7.8.3 Object 1C02h: DLL_MNCycTimeExceed_REC 97
4.7.8.4 Object 1C03h: DLL_MNLossOfLinkCum_U32 98
4.7.8.5 Object 1C04h: DLL_MNCNLatePResCumCnt_AU32 98
4.7.8.6 Object 1C05h: DLL_MNCNLatePResThrCnt_AU32 99
4.7.8.7 Object 1C06h: DLL_MNCNLatePResThreshold_AU32 99
4.7.8.8 Object 1C07h: DLL_MNCNLossPResCumCnt_AU32 100
4.7.8.9 Object 1C08h: DLL_MNCNLossPResThrCnt_AU32 100
4.7.8.10 Object 1C09h: DLL_MNCNLossPResThreshold_AU32 101
4.7.8.11 Object 1C0Ah: DLL_CNCollision_REC 102
4.7.8.12 Object 1C0Bh: DLL_CNLossSoC_REC 103
4.7.8.13 Object 1C0Ch: DLL_CNLossSoA_REC 104
4.7.8.14 Object 1C0Dh: DLL_CNLossPReq_REC 105
4.7.8.15 Object 1C0Eh: DLL_CNSoCJitter_REC 106
4.7.8.16 Object 1C0Fh: DLL_CNCRCError_REC 107
4.7.8.17 Object 1C10h: DLL_CNLossOfLinkCum_U32 108
4.7.8.18 Object 1C12h: DLL_MNCycleSuspendNumber_U32 108
4.7.8.19 Object 1C13h: DLL_CNSoCJitterRange_U32 108
4.7.8.20 Object 1C14h : DLL_CNLossOfSocTolerance_U32 108
4.7.8.21 Object 1C15h: DLL_MNLossStatusResCumCnt_AU32 109
4.7.8.22 Object 1C16h: DLL_MNLossStatusResThrCnt_AU32 109
4.7.8.23 Object 1C17h: DLL_MNLossStatusResThreshold_AU32 110
4.7.8.24 Object 0424h: DLL_ErrorCntRec_TYPE 110
5 Network / Transport Layer 111
5.1 Internet Protocol (IP) 111
5.1.1 IP Host Requirements 111
5.1.1.1 Nodes without IP Communication 111
5.1.1.2 Minimum Requirements for SDO Communication 111
5.1.1.2.1 IP Stack Requirements 111
5.1.1.2.2 UDP Requirements 111
5.1.1.3 Minimum Requirements for Standard IP Communication 111
5.1.1.3.1 IP Stack Requirements 112
5.1.2 IP Addressing 112
5.1.3 Address Resolution 112
5.1.4 Hostname 113
5.1.5 Object description 114
5.1.5.1 Object 1E4Ah: NWL_IpGroup_REC 114
5.1.5.2 Object 1E40h .. 1E49h: NWL_IpAddrTable_Xh_REC 115
5.1.5.3 Object 0425h: NWL_IpGroup_TYPE 116
5.1.5.4 Object 0426h: NWL_IpAddrTable_TYPE 116
5.2 POWERLINK compliant UDP/IP format 117
5.3 POWERLINK Sequence Layer 117
6 Application Layer 118
6.1 Data Types and Encoding Rules 118
6.1.1 General Description of Data Types and Encoding Rules 118
6.1.2 Data Type Definitions 118
6.1.3 Bit Sequences 119
6.1.3.1 Definition of Bit Sequences 119
6.1.3.2 Transfer Syntax for Bit Sequences 120
6.1.4 Basic Data Types 120
6.1.4.1 NIL 120
6.1.4.2 Boolean 120
6.1.4.3 Void 120
6.1.4.4 Bit 120
6.1.4.5 Unsigned Integer 121
6.1.4.6 Signed Integer 121
6.1.4.7 Floating-Point Numbers 122
6.1.4.8 MAC Address 122
6.1.4.9 IP address 123
6.1.5 Compound Data Types 123
6.1.6 Extended Data Types 124
6.1.6.1 Octet String 124
6.1.6.2 Visible String 124
6.1.6.3 Unicode String 124
6.1.6.4 Time of Day 124
6.1.6.5 Time Difference 124
6.1.6.6 Domain 124
6.1.6.7 Net Time 125
6.2 Object Dictionary 125
6.2.1 Object Dictionary Entry Definition 125
6.2.1.1 Sub-Index Definition 128
6.2.2 Data Type Entry Specification 129

EPSG DS 301 V1.5.1 -9-

6.2.2.1 Static Data Types 130
6.2.2.2 Complex Data Types 130
6.2.2.3 Extension for Multiple Device Modules 130
6.3 Service Data (SDO) 130
6.3.1 SDO Layer Model 131
6.3.1.1 SDO Hosting in Frames 131
6.3.2 SDO in Asynchronous Phase 131
6.3.2.1 SDO via UDP/IP 131
6.3.2.1.1 UDP Layer 132
6.3.2.2 SDO via POWERLINK ASnd 134
6.3.2.3 Asynchronous SDO Sequence Layer 134
6.3.2.3.1 Connection 135
6.3.2.3.1.1 Initialisation of Connection 135
6.3.2.3.1.2 Closing a connection 135
6.3.2.3.1.3 Data Transfer 136
6.3.2.3.1.4 Data Transfer with Delay 136
6.3.2.3.1.5 Sender History Full 137
6.3.2.3.2 Errors 137
6.3.2.3.2.1 Error: Loss of Frame with Data 138
6.3.2.3.2.2 Error: Loss of Acknowledge Frame 138
6.3.2.3.2.3 Error: Duplication of Frame 139
6.3.2.3.2.4 Error: Overtaking of Frames 139
6.3.2.3.2.5 Broken Connection 139
6.3.2.3.2.6 Error: Flooding with commands 140
6.3.2.4 Asynchronous SDO Command Layer 140
6.3.2.4.1 POWERLINK Command Layer Protocol 141
6.3.2.4.1.1 Download Protocol 143
6.3.2.4.1.2 Upload Protocol 144
6.3.2.4.1.3 Abort Transfer 145
6.3.2.4.2 Commands 146
6.3.2.4.2.1 SDO Protocol 146
6.3.2.4.2.1.1 Command: Write by Index 146
6.3.2.4.2.1.2 Command: Read by Index 147
6.3.2.4.2.1.3 Command: Write All by Index 147
6.3.2.4.2.1.4 Command: Read All by Index 148
6.3.2.4.2.1.5 Command: Write by Name 148
6.3.2.4.2.1.6 Command: Read by Name 149
6.3.2.4.2.2 File Transfer 149
6.3.2.4.2.2.1 Command: File Write 149
6.3.2.4.2.2.2 Command: File Read 150
6.3.2.4.2.3 Variable groups 150
6.3.2.4.2.3.1 Command: Write Multiple Parameter by Index 150
6.3.2.4.2.3.2 Write Multiple Parameter by Index Request 151
6.3.2.4.2.3.3 Write Multiple Parameter by Index Response 151
6.3.2.4.2.3.4 Command: Read Multiple Parameter by Index 152
6.3.2.4.2.3.5 Read Multiple Parameter by Index Request 152
6.3.2.4.2.3.6 Read Multiple Parameter by Index Response 153
6.3.2.4.2.4 Parameter Services 153
6.3.2.4.2.4.1 Command: Maximum Segment Size 153
6.3.3 SDO Embedded in PDO 154
6.3.3.1 Embedded Sequence Layer for SDO in PDO 155
6.3.3.1.1 Connection 156
6.3.3.1.1.1 Initialisation of Connection 156
6.3.3.1.1.2 Closing a connection 157
6.3.3.1.1.3 Data Transfer 158
6.3.3.1.2 Errors 159
6.3.3.1.2.1 Error: Request Lost 159
6.3.3.1.2.2 Error: Response Lost 160
6.3.3.1.3 Handling of Segmented Transfers 160
6.3.3.1.3.1 Segmented Download from Client to Server 160
6.3.3.1.3.2 Segmented Upload from Server to Client 161
6.3.3.2 Embedded Command Layer for SDO in Cyclic Data 161
6.3.3.2.1 Command Write by Index via PDO 161
6.3.3.2.2 Command Read by Index via PDO 162
6.3.3.3 Object Description 162
6.3.3.3.1 Object 1200h .. 127Fh: SDO_ServerContainerParam_XXh_REC 162
6.3.3.3.2 Object 1280h .. 12FFh: SDO_ClientContainerParam_XXh_REC 163
6.3.3.3.3 Object 0422h: SDO_ParameterRecord_TYPE 164
6.3.4 SDO Timeouts 164
6.3.4.1 Object 1300h: SDO_SequLayerTimeout_U32 164
6.3.4.2 Object 1301h: SDO_CmdLayerTimeout_U32 164
6.3.4.3 Object 1302h: SDO_SequLayerNoAck_U32 165
6.4 Process Data Object (PDO) 165
6.4.1 PDO Mapping Limitations 166
6.4.1.1 TPDO Mapping Limitations 166
6.4.1.2 RPDO Mapping Limitations 166

EPSG DS 301 V1.5.1 -10-

6.4.1.3 Further Limitations 167
6.4.2 PDO Mapping Version 167
6.4.3 SDO via PDO Container 168
6.4.4 Transmit PDOs 168
6.4.5 Receive PDOs 168
6.4.6 PDO via PReq 168
6.4.7 PDO via PRes 169
6.4.8 PDO Error Handling 169
6.4.8.1 Dynamic Errors 169
6.4.8.1.1 Incompatible Mapping 169
6.4.8.1.2 Unexpected End of PDO 169
6.4.8.2 Configuration Errors 170
6.4.9 Object Description 170
6.4.9.1 Object 1400h .. 14FFh: PDO_RxCommParam_XXh_REC 170
6.4.9.2 Object 1600h .. 16FFh PDO_RxMappParam_XXh_AU64 171
6.4.9.3 Object 1800h .. 18FFh PDO_TxCommParam_XXh_REC 172
6.4.9.4 Object 1A00h .. 1AFFh PDO_TxMappParam_XXh_AU64 173
6.4.9.5 Object 1C80h: PDO_ErrMapVers_OSTR 174
6.4.9.6 Object 1C81h: PDO_ErrShort_RX_OSTR 175
6.4.9.7 Object 0420h: PDO_CommParamRecord_TYPE 175
6.5 Error Signaling 175
6.5.1 Error Entry 177
6.5.2 Interface to Error Signaling 178
6.5.3 Processing of CN Error Information on the MN 178
6.5.4 Error Signaling Bits 178
6.5.5 Initialisation 179
6.5.5.1 Startup value and behaviour of the EC flag 179
6.5.6 Error Signaling with Preq and Pres frames 180
6.5.7 Error Signaling with Async-only CNs 181
6.5.8 Format of StatusResponse Data 181
6.5.8.1 Static Error Bit Field 181
6.5.8.2 Status and History Entries 181
6.5.9 Examples 182
6.5.9.1 Case 1 – Only Bit Field, No Status/History Entries 182
6.5.9.2 Case 2 – Status Entries 183
6.5.9.3 Case 3 – History Entries 184
6.5.9.4 Case 4 – Status and History Entries 184
6.5.10 Object descriptions 184
6.5.10.1 Object 1001h : ERR_ErrorRegister_U8 184
6.5.10.2 Object 1003h: ERR_History_ADOM 185
6.6 Program Download 185
6.6.1 Object Dictionary Entries on the CN 186
6.6.1.1 Object 1F50h: PDL_DownloadProgData_ADOM 186
6.6.1.2 Object 1F51h: PDL_ProgCtrl_AU8 186
6.6.1.3 Object 1F52h: PDL_LocVerApplSw_REC 187
6.6.1.4 Object 0427h: PDL_LocVerApplSw_TYPE 188
6.6.2 Object Dictionary Entries on the MN 188
6.6.2.1 Object 1F53h: PDL_MnExpAppSwDateList_AU32 189
6.6.2.2 Object 1F54h: PDL_MnExpAppSwTimeList_AU32 189
6.7 Configuration Management 190
6.7.1 Device Description 190
6.7.1.1 Local Storage on the Device 190
6.7.1.2 Central Storage on the MN 190
6.7.2 Device Configuration Storage 190
6.7.2.1 Device Configuration File Storage 191
6.7.2.2 Concise Configuration Storage 191
6.7.2.3 Check Configuration Process 191
6.7.2.4 Request Configuration 191
6.7.3 Object Dictionary Entries 192
6.7.3.1 Object 1020h: CFM_VerifyConfiguration_REC 192
6.7.3.2 Object 1021h: CFM_StoreDevDescrFile_DOM 193
6.7.3.3 Object 1022h: CFM_StoreDevDescrFormat_U16 193
6.7.3.4 Object 1F20h: CFM_StoreDcfList_ADOM 194
6.7.3.5 Object 1F21h: CFM_DcfStorageFormatList_AU8 194
6.7.3.6 Object 1F22h: CFM_ConciseDcfList_ADOM 195
6.7.3.7 Object 1F23h: CFM_StoreDevDescrFileList_ADOM 196
6.7.3.8 Object 1F24h: CFM_DevDescrFileFormatList_AU8 197
6.7.3.9 Object 1F25h: CFM_ConfCNRequest_AU32 197
6.7.3.10 Object 1F26h: CFM_ExpConfDateList_AU32 198
6.7.3.11 Object 1F27h: CFM_ExpConfTimeList_AU32 199
6.7.3.12 Object 1F28h: CFM_ExpConfIdList_AU32 199
6.7.3.13 Object 0435h: CFM_VerifyConfiguration_TYPE 200
6.8 Input from a Programmable Device 200
6.8.1 Basics 200
6.8.2 Dynamic index assignment 201

EPSG DS 301 V1.5.1 -11-

6.8.3 Object dictionary entries 201
6.8.3.1 Object 1F70h: INP_ProcessImage_REC 202
6.8.3.2 Object 0428h: INP_ProcessImage_TYPE 202
7 Network Management (NMT) 203
7.1 NMT State Machine 203
7.1.1 Overview 203
7.1.2 Common Initialisation NMT State Machine 203
7.1.2.1 States 203
7.1.2.1.1 NMT_GS_POWERED 203
7.1.2.1.1.1 NMT_GS_INITIALISATION 203
7.1.2.1.1.1.1 Sub-states 204
7.1.2.1.1.2 NMT_GS_COMMUNICATING 205
7.1.2.2 Transitions 205
7.1.3 MN NMT State Machine 207
7.1.3.1 Overview 207
7.1.3.2 States 207
7.1.3.2.1 NMT_MS_NOT_ACTIVE 207
7.1.3.2.2 NMT_MS_EPL_MODE 208
7.1.3.2.2.1 NMT_MS_PRE_OPERATIONAL_1 208
7.1.3.2.2.2 NMT_MS_PRE_OPERATIONAL_2 208
7.1.3.2.2.3 NMT_MS_READY_TO_OPERATE 208
7.1.3.2.2.4 NMT_MS_OPERATIONAL 209
7.1.3.2.3 NMT_MS_BASIC_ETHERNET 209
7.1.3.3 Transitions 210
7.1.4 CN NMT State Machine 211
7.1.4.1 States 211
7.1.4.1.1 NMT_CS_NOT_ACTIVE 211
7.1.4.1.2 NMT_CS_EPL_MODE 212
7.1.4.1.2.1 NMT_CS_PRE_OPERATIONAL_1 212
7.1.4.1.2.2 NMT_CS_PRE_OPERATIONAL_2 212
7.1.4.1.2.3 NMT_CS_READY_TO_OPERATE 212
7.1.4.1.2.4 NMT_CS_OPERATIONAL 213
7.1.4.1.2.5 NMT_CS_STOPPED 213
7.1.4.1.3 NMT_CS_BASIC_ETHERNET 213
7.1.4.2 Transitions 214
7.1.4.3 States and Communication Object Relation 214
7.1.4.4 Relationship to other state machines 215
7.2 NMT Object Dictionary Entries 216
7.2.1 NMT General Objects 216
7.2.1.1 Identification 216
7.2.1.1.1 Object 1000h: NMT_DeviceType_U32 216
7.2.1.1.2 Object 1008h: NMT_ManufactDevName_VS 216
7.2.1.1.3 Object 1009h: NMT_ManufactHwVers_VS 217
7.2.1.1.4 Object 100Ah: NMT_ManufactSwVers_VS 217
7.2.1.1.5 Object 1018h: NMT_IdentityObject_REC 217
7.2.1.1.6 Object 1F82h: NMT_FeatureFlags_U32 218
7.2.1.1.7 Object 1F83h: NMT_EPLVersion_U8 220
7.2.1.2 Parameter Storage 220
7.2.1.2.1 Object 1010h: NMT_StoreParam_REC 220
7.2.1.2.2 Object 1011h: NMT_RestoreDefParam_REC 222
7.2.1.3 Communication Interface Description 224
7.2.1.3.1 Object 1F93h: NMT_EPLNodeID_REC 224
7.2.1.3.2 Object 1030h .. 1039h : NMT_InterfaceGroup_Xh_REC 225
7.2.1.3.3 Object 1F9Ah: NMT_HostName_VSTR 228
7.2.1.4 Node List 229
7.2.1.4.1 Object 1F81h: NMT_NodeAssignment_AU32 229
7.2.1.5 Timing 231
7.2.1.5.1 Object 1006h: NMT_CycleLen_U32 231
7.2.1.5.2 Object 1F98h: NMT_CycleTiming_REC 231
7.2.1.5.3 Object 1F9Bh: NMT_MultiplCycleAssign_AU8 234
7.2.1.5.4 Object 1016h: NMT_ConsumerHeartbeatTime_AU32 235
7.2.1.5.5 Object 1F8Dh: NMT_PresPayloadLimitList_AU16 236
7.2.1.6 NMT Service Interface 237
7.2.1.6.1 Object 1F9Eh: NMT_ResetCmd_U8 237
7.2.1.7 NMT Diagnostics 237
7.2.1.7.1 Object 1F8Ch: NMT_CurrNMTState_U8 237
7.2.2 NMT MN Objects 237
7.2.2.1 MN Start Up Behavior 237
7.2.2.1.1 Object 1F80h: NMT_StartUp_U32 237
7.2.2.1.2 Object 1F89h: NMT_BootTime_REC 239
7.2.2.2 NMT Master Network Node Lists 241
7.2.2.2.1 Object 1F84h: NMT_MNDeviceTypeIdList_AU32 241
7.2.2.2.2 Object 1F85h: NMT_MNVendorIdList_AU32 242
7.2.2.2.3 Object 1F86h: NMT_MNProductCodeList_AU32 243
7.2.2.2.4 Object 1F87h: NMT_MNRevisionNoList_AU32 243

EPSG DS 301 V1.5.1 -12-

7.2.2.2.5 Object 1F88h: NMT_MNSerialNoList_AU32 244
7.2.2.3 Timing 245
7.2.2.3.1 Object 1F8Ah: NMT_MNCycleTiming_REC 245
7.2.2.3.2 Object 1F8Bh: NMT_MNPReqPayloadLimitList_AU16 246
7.2.2.3.3 Object 1F92h: NMT_MNCNPResTimeout_AU32 247
7.2.2.3.4 Object 1F9Ch: NMT_IsochrSlotAssign_AU8 247
7.2.2.4 CN NMT State Surveillance 249
7.2.2.4.1 Object 1F8Eh: NMT_MNNodeCurrState_AU8 249
7.2.2.4.2 Object 1F8Fh: NMT_MNNodeExpState_AU8 249
7.2.2.5 NMT Service Interface 250
7.2.2.5.1 Object 1F9Fh: NMT_RequestCmd_REC 250
7.2.3 NMT CN Objects 251
7.2.3.1 CN StartUp Behaviour 251
7.2.3.1.1 Object 1F99h: NMT_CNBasicEthernetTimeout_U32 251
7.2.4 NMT Object Types 252
7.2.4.1 Object 0023h: IDENTITY 252
7.2.4.2 Object 0429h: NMT_ParameterStorage_TYPE 252
7.2.4.3 Object 042Bh: NMT_InterfaceGroup_TYPE 252
7.2.4.4 Object 042Ch: NMT_CycleTiming_TYPE 252
7.2.4.5 Object 042Eh: NMT_BootTime_TYPE 253
7.2.4.6 Object 042Fh: NMT_MNCycleTiming_TYPE 253
7.2.4.7 Object 0439h: NMT_EPLNodeID_TYPE 253
7.2.4.8 Object 043Ah: NMT_RequestCmd_TYPE 253
7.3 Network Management Services 254
7.3.1 NMT State Command Services 254
7.3.1.1 Implicit NMT State Command Services 254
7.3.1.1.1 Implicit NMT State Command Transmission 255
7.3.1.2 Explicit NMT State Command Services 255
7.3.1.2.1 Plain NMT State Command 256
7.3.1.2.1.1 NMT Reset Commands to the MN 258
7.3.1.2.2 Extended NMT State Command 258
7.3.1.2.3 POWERLINK Node List Format 258
7.3.2 NMT Managing Command Services 259
7.3.2.1 Service Descriptions 260
7.3.2.1.1 NMTNetHostNameSet 260
7.3.2.1.2 NMTFlushArpEntry 261
7.3.3 NMT Response Services 261
7.3.3.1 NMT State Response 261
7.3.3.2 IdentResponse Service 262
7.3.3.2.1 IdentResponse Frame 263
7.3.3.3 StatusResponse Service 265
7.3.3.3.1 StatusResponse Frame 265
7.3.4 NMT Info Services 266
7.3.4.1 Service Descriptions 267
7.3.4.1.1 NMTPublishConfiguredNodes 267
7.3.4.1.2 NMTPublishActiveNodes 267
7.3.4.1.3 NMTPublishPreOperational1 267
7.3.4.1.4 NMTPublishPreOperational2 268
7.3.4.1.5 NMTPublishReadyToOperate 268
7.3.4.1.6 NMTPublishOperational 268
7.3.4.1.7 NMTPublishStopped 268
7.3.4.1.8 NMTPublishNodeStates 268
7.3.4.1.9 NMTPublishEmergencyNew 269
7.3.4.1.10 NMTPublishTime 269
7.3.5 NMT Guard Services 269
7.3.5.1 Guarding CNs 269
7.3.5.1.1 Guarding Async-Only CNs 269
7.3.5.2 Guarding the MN 270
7.3.6 Request NMT Services by a CN 270
7.3.6.1 NMTRequest Frame 270
7.3.6.1.1 Invalid NMTRequests 270
7.3.7 NMT Services via Object Dictionary 271
7.3.7.1 NMT Reset Commands 271
7.3.7.2 NMT Requests to the MN 271
7.3.8 NMT Services via UDP/IP 271
7.4 Boot-up Managing Node 272
7.4.1 NMT_MS dependant Network Boot-up 272
7.4.1.1 Overview 272
7.4.1.2 NMT_MS_NOT_ACTIVE 272
7.4.1.3 NMT_MS_PRE_OPERATIONAL_1 273
7.4.1.4 NMT_MS_PRE_OPERATIONAL_2 274
7.4.1.5 NMT_MS_READY_TO_OPERATE 276
7.4.1.6 NMT_MS_OPERATIONAL 277
7.4.2 MN Boot-up Procedure on CN Level 279
7.4.2.1 Overview 279
7.4.2.2 Boot-up of optional and mandatory CNs 279

EPSG DS 301 V1.5.1 -13-

7.4.2.2.1 BOOT_STEP1 280
7.4.2.2.1.1 CHECK_IDENTIFICATION 281
7.4.2.2.1.2 CHECK_SOFTWARE 282
7.4.2.2.1.3 CHECK_CONFIGURATION 284
7.4.2.2.1.3.1 GET_IDENT 285
7.4.2.2.2 BOOT_STEP2 286
7.4.2.2.3 CHECK_COMMUNICATION 287
7.4.2.2.4 START_CN 288
7.4.2.2.5 START_ALL 289
7.4.2.2.6 CHECK_STATE 290
7.4.2.2.7 CHANGE_NMT_STATE 291
7.4.2.2.8 OPERATIONAL 291
7.4.2.2.9 ERROR_TREATMENT 291
7.4.3 Boot-up Errors 292
7.4.3.1 Bus activity 292
7.4.3.2 BOOT_STEP1 failed 293
7.4.3.3 BOOT_STEP2 failed 293
7.4.3.4 Boot-up in NMT_MS_READY_TO_OPERATE failed 293
7.4.3.5 Get Ident failed 293
7.4.3.6 Device Type Invalid 294
7.4.3.7 Vendor ID invalid 294
7.4.3.8 Configuration failed 294
7.4.3.9 Product Code invalid 294
7.4.3.10 Revision number invalid 295
7.4.3.11 Serial number invalid 295
7.4.3.12 NMT state invalid 295
7.4.3.13 Invalid Software 295
7.4.3.14 Invalid NMT state for SW update 296
7.4.3.15 SW update not allowed 296
7.4.3.16 SW update failed 296
7.4.4 Minimal Boot-up MN 297
7.4.5 Example Boot-up Sequence 298
7.4.6 Application Notes 298
8 Diagnostics 300
8.1 Diagnostic Object Dictionary Entries 300
8.1.1 Object 1101h: DIA_NMTTelegrCount_REC 300
8.1.2 Object 1102h: DIA_ERRStatistics_REC 302
8.1.3 Diagnostics Object Types 303
8.1.3.1 Object 0437h: DIA_NMTTelegrCount_TYPE 303
8.1.3.2 Object 0438h: DIA_ERRStatistics_TYPE 304
9 Routing 305
9.1 Routing Type 1 305
9.1.1 Core Tasks of a POWERLINK Router 305
9.1.2 Reference Model 306
9.1.3 Data Link Layer 306
9.1.3.1 DLL POWERLINK Interface 307
9.1.3.2 DLL interface to the external network 307
9.1.4 Network Layer 307
9.1.4.1 Communication between POWERLINK and the external network 307
9.1.4.2 IP Coupling 307
9.1.4.2.1 IP Routing 307
9.1.4.2.1.1 Configuration 308
9.1.4.2.1.1.1 SNMP 308
9.1.4.2.1.1.2 SDO 308
9.1.4.2.2 Network Address Translation (NAT) 308
9.1.4.2.2.1 Configuration 310
9.1.4.2.2.1.1 SNMP 310
9.1.4.2.2.1.2 SDO 310
9.1.5 Security 310
9.1.5.1 Packet Filter – Firewall 311
9.1.5.1.1 ACL – Filter Entries 312
9.1.5.1.2 Filter strategy 312
9.1.5.1.3 Configuration 312
9.1.5.1.3.1 SNMP 312
9.1.5.1.3.2 SDO 312
9.1.6 Additional Services of a POWERLINK Router 312
9.1.7 Object description 313
9.1.7.1 Object 1E80h: RT1_EplRouter_REC 313
9.1.7.2 Object 1E90h .. 1ECFh: RT1_IpRoutingTable_XXh_REC 313
9.1.7.3 Object 1D00h .. 1DFFh: RT1_NatTable_XXh_REC 315
9.1.7.4 Object 1E81h: RT1_SecurityGroup_REC 317
9.1.7.5 Object 1B00h .. 1BFFh: RT1_AclFwdTable_XXh_REC 317
9.1.7.6 Object 1ED0h .. 1EDFh: RT1_AclInTable_Xh_REC 320
9.1.7.7 Object 1EE0h .. 1EEFh: RT1_AclOutTable_Xh_REC 322
9.1.7.8 Router Type I Object Types 325

EPSG DS 301 V1.5.1 -14-

9.1.7.8.1 Object 0430h: RT1_EplRouter_TYPE 325
9.1.7.8.2 Object 0431h: RT1_IpRoutingTable_TYPE 325
9.1.7.8.3 Object 0432h: RT1_NatTable_TYPE 325
9.1.7.8.4 Object 0433h: RT1_SecurityGroup_TYPE 325
9.1.7.8.5 Object 0434h: RT1_AclTable_TYPE 325
9.1.8 POWERLINK Router MIB 326
9.2 Routing Type 2 326
10 Indicators 327
10.1 Indicator states and flash rates 327
10.2 Indicator Signaling 328
10.3 Recommended labelling 329
App. 1 Summary Object Library (normative) 330
App. 1.1 Object Dictionary Entries, sorted by index 330
App. 1.2 Object Dictionary Entries, sorted by name 336
App. 2 Device Description Entries (normative) 341
App. 3 Constant Value Assignments (normative) 345
App. 3.1 POWERLINK Message Type Ids 345
App. 3.2 AsyncSend Request Priorities 345
App. 3.3 ASnd ServiceIDs 345
App. 3.4 SoA RequestedServiceIDs 346
App. 3.5 Object Dictionary Object Types 346
App. 3.6 NMT States 346
App. 3.7 NMT Commands 347
App. 3.8 General Purpose Constants 348
App. 3.9 Error Code Constants 349
App. 3.10 SDO Abort Codes 351
App. 4 Data Sheet Requirements (normative) 352

EPSG DS 301 V1.5.1 -15-

Pre. 5 Tables
 Object dictionary structure 31
 Pin assignment RJ45 port 36
 Pin assignment IP67 port 37
 POWERLINK cycle timing parameters 54
 POWERLINK cycle timing verification: Error codes and handling 57
 Transitions for CN cycle state machine, states NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE,

NMT_CS_PRE_OPERATIONAL_1, NMT_CS_BASIC_ETHERNET 60
 Transitions for CN cycle state machine, states NMT_CS_OPERATIONAL, NMT_CS_PRE_OPERATIONAL_2,

NMT_CS_READY_TO_OPERATE 62
 Transitions for MN cycle state machine, state NMT_MS_PRE_OPERATIONAL_1 65
 Transitions for MN cycle state machine, states NMT_MS_OPERATIONAL, NMT_MS_READY_TO_OPERATE

and NMT_MS_PRE_OPERATIONAL_2 67
 Assigned multicast addresses 69
 POWERLINK Node ID assignment 70
 Ethernet POWERLINK frame structure 71
 Ethernet POWERLINK frame fields 71
 POWERLINK message types 71
 SoC frame structure 72
 SoC frame data fields 72
 PReq frame structure 73
 PReq frame data fields 73
 PRes frame structure 74
 PRes frame data fields 74
 SoA frame structure 75
 SoA frame data fields 75
 Definition of the RequestedServiceID in the SoA frame 76
 ASnd frame structure 76
 ASnd frame data fields 76
 ServiceID values in the ASnd frame 77
 CN error handling table 78
 MN error handling table 79
 IP parameters of a POWERLINK node 112
 POWERLINK compliant UDP/IP frame structure 117
 Transfer syntax for bit sequences 120
 Transfer syntax for data type UNSIGNEDn 121
 Transfer syntax for data type INTEGERn 122
 Transfer syntax of data type REAL32 122
 MAC address encoding, example 00-0A-86-xx-xx-xx shows a Lenze device 123
 IP address encoding, example shows the IP address of a POWERLINK MN 192.168.100.240 123
 Object type definitions 126
 Access attributes for data objects 127
 PDO mapping attributes for data objects 127
 Static data type object definition example 127
 Complex data type object definition example 128
 NumberOfEntries sub-index description example 128
 Record type object sub-index description example 128
 Array type object sub-index description example 129
 Structure of sub-index FFh 129
 Complex data type description example 130
 SDO via UDP/IP 132
 SDO via UDP/IP field interpretation 132
 UDP header 133
 SDO via POWERLINK ASnd 134
 SDO via ASnd field interpretation 134
 POWERLINK sequence layer in asynchronous data frame 134
 Fields of POWERLINK sequence layer in asynchronous data frame 135
 POWERLINK command layer 141
 POWERLINK command layer field interpretation 142
 Abort transfer frame 145
 Abort transfer frame field interpretation 145
 Command services and command ID 146
 Command: Write by Index request 147
 Write by Index request field interpretation 147
 Command: Read by Index Request 147
 Read by Index request field interpretation 147
 Command: Write All by Index request 147
 Write All by Index request field interpretation 148
 Command: Read All by Index Request 148
 Read All by Index request field interpretation 148
 Command: Write by Name request 148
 Write by Name request field interpretation 148
 Command: Read by Name request 149

EPSG DS 301 V1.5.1 -16-

 Read by Name request field interpretation 149
 Command: File Write request 150
 File Write request field interpretation 150
 Command: File Read request 150
 File Read request field interpretation 150
 Command: Write Multiple Parameter by Index Request 151
 Write Multiple Parameter by Index request field interpretation 151
 Command: Write Multiple Parameter by Index Response 151
 Write Multiple Parameter by Index response field interpretation 152
 Command: Read Multiple Parameter by Index request 152
 Read Multiple Parameter by Index request field interpretation 152
 Command: Read Multiple Parameter by Index response 153
 Read Multiple Parameter by Index response field interpretation 153
 Command: Maximum Segment Size 154
 Maximum Segment Size field interpretation 154
 SDO embedded in PDO 154
 SDO embedded in PDO field interpretation 155
 POWERLINK sequence layer for embedding of SDO in cyclic data 155
 Fields of POWERLINK sequence layer for embedding of SDO in cyclic data 156
 Command: Write by Index Request via PDO 161
 Command: Read by Index Request via PDO 162
 Structure of PDO Mapping version 167
 Structure of PDO Mapping Entry 172
 Internal bit mapping of PDO mapping entry 172
 Format of one entry 177
 Description of one entry 177
 Format of the field entry type 177
 Error signaling bits 178
 Static error bit field 181
 Abbreviations for the following examples 182
 PDL_ProgCtrl_AU8 sub-index value interpretation 187
 Device description file and device configuration storage formats 194
 Concise DCF stream format 196
 CNConfigurationRequest write access signature 198
 Structure of SelectedRange_U32 202
 Common initialisation NMT state transitions 206
 MN specific state transitions 210
 CN specific state transitions 214
 States and communication objects 215
 NMT_DeviceType_U32 value interpretation 216
 Structure of Revision number 218
 NMT_FeatureFlags_U32 interpretation 220
 NMT_EPLVersion_U8 encoding 220
 NMT_StoreParam_REC storage write access signature 221
 NMT_StoreParam_REC storage read access structure 222
 NMT_StoreParam_REC structure of read access 222
 NMT_RestoreDefParam_REC restoring write access signature 223
 NMT_RestoreDefParam_REC restoring default values read access structure 224
 NMT_RestoreDefParam_REC structure of restore read access 224
 NMT_NodeAssignment_AU32 interpretation 231
 HeartbeatDescription value interpretation 236
 NMT_StartUp_U32 interpretation 238
 Implicit NMT state commands 255
 NMT state command service, NMT managing command service and NMT info service structure of the NMT

Service Slot field 256
 NMT Service Slot fields of explicit NMT state command services 256
 Plain NMT state commands 257
 Extended NMT state commands 258
 POWERLINK node list: Node ID to bit assignment 259
 NMT Service Slot fields of NMT managing command services 260
 NMT managing command services 260
 NMTCommandData structure of NMTNetHostNameSet 260
 NMTCommandData data fields of NMTNetHostNameSet 260
 NMTFlushArpEntry ASnd service slot structure 261
 NMTCommandData data fields of NMTFlushArpEntry 261
 NMT Service Slot structure of IdentResponse 263
 NMT Service Slot data fields of IdentResponse 265
 NMT Service Slot structure of StatusResponse 265
 NMT Service Slot data fields of StatusResponse 266
 NMT Service Slot data fields of NMT managing info services 266
 NMT info services 267
 NMTCommandData structure of NMTPublishNodeStates 268
 NMTCommandData data fields of NMTPublishNodeStates 268
 NMTCommandData structure of NMTPublishTime 269
 NMTCommandData data fields of NMTPublishTime 269
 NMT Service Slot structure of NMTRequest 270

EPSG DS 301 V1.5.1 -17-

 NMT Service Slot data fields of an NMTRequest frame 270

EPSG DS 301 V1.5.1 -18-

Pre. 6 Figures
Fig. 1. Slot Communication Network Management (SCNM) 25
Fig. 2. Integration POWERLINK based machines into the IT infrastructure of end customer 27
Fig. 3. Typical centralized and decentralized controller structures 27
Fig. 4. Reference model 28
Fig. 5. Service types 29
Fig. 6. Device model 30
Fig. 7. Unconfirmed master slave communication 32
Fig. 8. Confirmed master slave communication 33
Fig. 9. Client/Server communication 33
Fig. 10. Push model 33
Fig. 11. Pull model 34
Fig. 12. Star topology and line topology 35
Fig. 13. RJ45 pin assignment (left: connector, right: port) 36
Fig. 14. IP67 port pin assignment. 37
Fig. 15. recommended RJ45 to RJ45 pin assignment 37
Fig. 16. not recommended RJ45 to RJ45 pin assignment 37
Fig. 17. M12 to M12 pin assignment 37
Fig. 18. M12 to RJ45 pin assignment 38
Fig. 19. POWERLINK Cycle 41
Fig. 20. POWERLINK - an isochronous process 41
Fig. 21. Multiplexed POWERLINK cycle 42
Fig. 22. Asynchronous scheduling 44
Fig. 23. Asynchronous transmit priority handling (Priority level PR: 7 = PRIO_NMT_REQUEST, 3 =

PRIO_GENERIC_REQUEST) 46
Fig. 24. Reduced POWERLINK cycle 47
Fig. 25. POWERLINK cycle timing, start phase and isochronous phase 48
Fig. 26. POWERLINK cycle timing, asynchronous phase, AsyncSend transmission by CN 49
Fig. 27. POWERLINK cycle timing, asynchronous phase, AsyncSend transmission by MN 49
Fig. 28. Multiple slot assignment 58
Fig. 29. CN cycle state machine, states NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE,

NMT_CS_PRE_OPERATIONAL_1, NMT_CS_BASIC_ETHERNET 60
Fig. 30. CN cycle state machine (DLL_CS), valid for NMT_CS_PRE_OPERATIONAL_2,

NMT_CS_READY_TO_OPERATE, NMT_CS states NMT_CS_OPERATIONAL 61
Fig. 31. MN cycle state machine, state NMT_MS_PRE_OPERATIONAL_1 65
Fig. 32. MN cycle state machine, States NMT_MS_OPERATIONAL, NMT_MS_READY_TO_OPERATE and

NMT_MS_PRE_OPERATIONAL_2 66
Fig. 33. Error registration 80
Fig. 34. Threshold counter 81
Fig. 35. Timeouts 84
Fig. 36. Timing violation 85
Fig. 37. Cycle time exceeded 87
Fig. 38. Construction of the IPv4 address 112
Fig. 39. POWERLINK frame structure 118
Fig. 40. POWERLINK compliant UDP/IP frame structure 118
Fig. 41. Legacy Ethernet frame structure 118
Fig. 42. SDO layer model 131
Fig. 43. POWERLINK SDO embedded in UDP/IP frame 132
Fig. 44. UDP socket 133
Fig. 45. Initialisation of a asynchronous connection 135
Fig. 46. Closing of asynchronous connection 135
Fig. 47. Normal asynchronous communication 136
Fig. 48. Delayed asynchronous communication 137
Fig. 49. Asynchronous communication when history buffer gets full 137
Fig. 50. Error loss of asynchronous frame 138
Fig. 51. Error loss of asynchronous acknowledge 138
Fig. 52. Error duplication of asynchronous frame 139
Fig. 53. Error asynchronous communication broken 140
Fig. 54. Error flooding with asynchronous commands 140
Fig. 55. Information structure of POWERLINK command layer 141
Fig. 56. Definition of segment size 142
Fig. 57. POWERLINK command layer: Typical download transfer 143
Fig. 58. POWERLINK command layer: Typical upload transfer 144
Fig. 59. Abort transfer 145
Fig. 60. Initialisation of embedded connection 156
Fig. 61. Closing of connection 157
Fig. 62. Normal embedded communication 158
Fig. 63. Error embedded request lost 159
Fig. 64. Error embedded response lost 160
Fig. 65. Embedded segmented download 160
Fig. 66. Embedded segmented upload 161
Fig. 67. Error signaling – Reference model 176
Fig. 68. Error signaling – Overview 176

EPSG DS 301 V1.5.1 -19-

Fig. 69. Error signaling initialisation 179
Fig. 70. Error signaling with Preq and Pres 180
Fig. 71. Error signaling for Async-only CNs and CNs in state NMT_CS_PRE_OPERATIONAL_1 181
Fig. 72. Common initialisation NMT state machine 204
Fig. 73. NMT state diagram of an MN 207
Fig. 74. State diagram of a CN 211
Fig. 75. NMT_RestoreDefParam_REC restore procedure 224
Fig. 76. POWERLINK communication slots 247
Fig. 77. Implicit NMT state command service protocol 255
Fig. 78. Explicit NMT state command service protocol 256
Fig. 79. NMT managing command service protocol 260
Fig. 80. NMT state response service protocol (isochronous CN) 261
Fig. 81. NMT state response service protocol (async-only CN) 262
Fig. 82. IdentResponse service protocol 262
Fig. 83. StatusResponse service protocol 265
Fig. 84. NMT info service protocol 266
Fig. 85. State NMT_MS_NOT_ACTIVE 272
Fig. 86. Detail state NMT_MS_PRE_OPERATIONAL_1 274
Fig. 87. Detail state NMT_MS_PRE_OPERATIONAL_2 275
Fig. 88. Detail state NMT_MS_READY_TO_OPERATE 276
Fig. 89. Detail state NMT_MS_OPERATIONAL 278
Fig. 90. Overview of the boot process in NMT super-state NMT_MS 279
Fig. 91. Network boot process dependencies to the NMT_MS for optional and mandatory CNs 280
Fig. 92. Sub-state BOOT_STEP1 281
Fig. 93. Sub-state CHECK_IDENTIFICATION[Node ID] 282
Fig. 94. Sub-state CHECK_SOFTWARE[Node ID] 283
Fig. 95. Sub-state CHECK_CONFIGURATION[Node ID] 284
Fig. 96. Sub-state GET_IDENT[Node ID] 285
Fig. 97. Sub-state BOOT_STEP2[Node ID] 286
Fig. 98. Sub-state CHECK_COMMUNICATION[Node ID] 287
Fig. 99. Sub-state START_CN[Node ID] 288
Fig. 100. Sub-state START_ALL 289
Fig. 101. Sub-state CHECK_STATE 290
Fig. 102. Sub-state CHANGE_NMT_STATE 291
Fig. 103. Sub-state ERROR_TREATMENT 292
Fig. 104. Minimal NMT boot-up process 297
Fig. 105. Boot procedure example for a single CN 298
Fig. 106. POWERLINK router, black box model 305
Fig. 107. Possible communication relations via a POWERLINK router 306
Fig. 108. POWERLINK router reference model 306
Fig. 109. Symmetrical n-to-n NAT 309
Fig. 110. NAT architecture 309
Fig. 111. Integration of NAT in the POWERLINK router 310
Fig. 112. Filter tables of the packet filter 311
Fig. 113. POWERLINK router type 2 326
Fig. 114. ERROR LED state machine 328

EPSG DS 301 V1.5.1 -20-

Pre. 7 Definitions and Abbreviations

Pre 7.1 Definitions

Ageing Ageing is a common mechanism to maintain (cache) tables. Entries
which are not used or refreshed are removed after a specified time.

Application Process The Application Process is the task on the Application Layer

Async-only CN An Async-only CN is operated in a way, that it isn’t accessed cyclically
in the isochronous slot by the MN. It is polled during the asynchronous
period by a StatusRequest message.

Asynchronous Data Data in a POWERLINK network which is not time critical. Within the
POWERLINK cycle there is a specific period reserved for
Asynchronous Data which is shared by all nodes. Each node connected
to the network can send asynchronous data by requesting it to the
Managing Node. The Managing Node keeps a list of all asynchronous
data requests and will subsequently grant the network access to one
node after the other.

Asynchronous Period The Asynchronous Period is the second part of the POWERLINK cycle,
starting with a Start of Asynchronous (SoA) frame.

Asynchronous Scheduling The MN’s asynchronous scheduler decides when a requested
asynchronous data transfer will happen.

Basic Ethernet Mode Basic Ethernet Mode provides the Legacy Ethernet communication.

CANopen CANopen is a network technology optimized for the usage in industrial
control environments, in machine internal networks and in embedded
systems (any control unit deeply "embedded" in a device with
electronics). The lower-layer implementation of CANopen is based
upon CAN (Controller Area Network).

Continuous Continuous is a POWERLINK communication class where isochronous
communication takes place every cycle (the opposite to multiplexed).

Controlled Node (CN) Node in a POWERLINK network without the abilty to manage the
SCNM mechanism.

Cycle State Machine The Cycle State Machine controls the POWERLINK cycle on the Data
Link Layer and is itself controlled by the NMT state machine defining
the current operating mode.

Cycle Time The time between two consecutive Start of Cycle (SoC) frames – i.e.
repeating – process. The Cycle Time includes the time for data
transmission and some idle time before the beginning of the next cycle.

Deterministic Communication Describes a communication process whose timing behaviour can be
predicted exactly. I.e. the time when a message reaches the recipient is
predictable.

Device Configuration File The configuration parameters of a specific device are stored in the
Device Configuration File (XDC).

Device Description File All device dependent information is stored in the Device Description File
(XDD) of each device.

Destination NAT (D-NAT) D-NAT (Destination- Network Address Translation) changes the
destination address of the IP / ICMP packet.

Domain In the context of CANopen: A Domain is a data object of arbitrary type
and length which can be transferred over a POWERLINK network.
In the context of internet protocols: A Domain is a part of the internet
name space which is supported by the Domain Name System (DNS).

Ethernet POWERLINK (EPL) An extension to Legacy Ethernet on layer 2, to exchange data under
hard real-time constraints. It was developed for deterministic data
exchange, short cycle time and isochronous operation in industrial
automation.

EPSG DS 301 V1.5.1 -21-

IdentRequest IdentRequests are POWERLINK frames sent by the MN in order to
identify active CNs waiting to be included into the network.

IdentResponse The IdentResponse is a special form of an ASnd frame in response to
an IdentRequest.

Idle Period The Idle Period is time interval remaining between the completed
asynchronous period and the beginning of the next cycle.

IEEE 1588 This standard defines a protocol enabling synchronisation of clocks in
distributed networked devices (e.g. connected via Ethernet).

Isochronous Pertains to processes that require timing coordination to be successful.
Isochronous data transfer ensures that data flows continously and at a
steady rate in close timing with the ability of connected devices.

Isochronous Data Data in a POWERLINK network which is to be transmitted every cycle
(or every nth cycle in case of multiplexed isochronous data).

Isochronous Period The Isochronous Period of a POWERLINK cycle offers deterministic
operation, i.e. it is reserved for the exchange of (continuous or
multiplexed) isochronous data.

Legacy Ethernet Ethernet as standardised in IEEE 802.3 (non-deterministic operation in
non-time-critical environments).

Managing Node (MN) A node capable to manage the SCNM mechanism in a POWERLINK
network.

Media Access Control (MAC) One of the sub-layers of the Data Link Layer in the POWERLINK
reference model that controls who gets access to the medium to send a
message.

Multiplexed Multiplexed is a POWERLINK communication class where cyclic
communication takes place in such a way that m nodes are served in s
cycles (the opposite to continuous).

Multiplexed CN A node which is allowed to send isochronous data every nth cycle.

Multiplexed Timeslot A slot destined to carry multiplexed isochronous data, i.e. the timeslot is
shared among multiple nodes.

NetTime The MN’s clock time is distributed to all CNs within the SoC frame.

Network Management (NMT) Network Management functions and services in the POWERLINK
model. It performs initialisation, configuration and error handling in a
POWERLINK network.

NMT State Machine The state machine controlling the overall operating mode and status of
a POWERLINK node.

Object Directory The repository of all data objects accessible over POWERLINK
communications.

PollRequest A PollRequest is a frame, which is used in the isochronous part of the
cyclic communication. The MN request with this frame the CN to send
its data.

PollResponse A PollResponse is a frame, which is used in the isochronous part of the
cyclic communication. The CN responses with this frame to a
PollRequest frame from an MN.

POWERLINK Command
Layer

The POWERLINK Command Layer defines commands to access
parameters of the object dictionary. This layer is on top of the
Sequence Layer and distinguishes between an expedited and a
segmented transfer.

POWERLINK Cycle Data exchange within a POWERLINK network is structured in fix
intervals, called cycles. The cycle is subdivided into the isochronous
and the asynchronous period and is organized by the MN.

POWERLINK Mode The POWERLINK Mode includes all NMT states in which POWERLINK
cycles are run.

POWERLINK Node ID Each POWERLINK node (MN, CN and Router) is addressed by an 8 bit
POWERLINK Node ID on the POWERLINK layer. This ID has only local
significance (i.e. it is unique within a POWERLINK segment).

EPSG DS 301 V1.5.1 -22-

Precision Time Protocol (PTP) IEEE 1588, Standard for a Precision Clock Synchronisation Protocol for
Networked Measurement and Control Systems

Process Data Object (PDO) Object for isochronous data exchange between POWERLINK nodes.

Reserved Reserved bits shall be set 0 by the sender. The receiver shall not
interpret such bits. It is not allowed to use reserved bits.
Their use is reserved for further development or by extensions of this
specification.

Router Type 1 A Type 1 POWERLINK Router is a coupling element in a network that
allows IP communication between a POWERLINK segment and any
other datalink layer protocol carrying IP e.g. legacy Ethernet,
POWERLINK etc. It is usually a separate network element acting as
Controlled Node within the POWERLINK segment.

Router Type 2 A Type 2 POWERLINK Router is a router between a POWERLINK
segment and a CANopen network.

Service Data Object (SDO) Peer to peer communication with access to the object dictionary of a
device.

Sequence Layer The POWERLINK Sequence Layer provides the service of a reliable
bidirectional connection that guarantees that no messages are lost or
duplicated and that all messages arrive in the correct order.

Slot Communication Network
Management (SCNM)

In a POWERLINK network, the managing node allocates data transfer
time for data from each node in a cyclic manner within a guaranteed
cycle time. Within each cycle there are slots for Isochronous Data, as
well as for Asynchronous Data for ad-hoc communication. The SCNM
mechanism ensures that there are no collisions during physical network
access of any of the networked nodes thus providing deterministic
communication via Legacy Ethernet.

Source NAT (S-NAT) S-NAT (Source - Network Address Translation) changes the source
address of the IP / ICMP packet.

StatusRequest A StatusRequest frame is a special SoA frame used to poll the status of
a node.

StatusResponse A StatusResponse frame is transmitted by a CN upon assignment of
the asynchronous slot via the StatusRequest in the SoA frame.

Pre 7.2 Abbreviations

ACL Access Control List

ARP Address Resolution Protocol

ASnd Asynchronous Send (POWERLINK frame type)

CAN Controller Area Network

CiA CAN in Automation

CN POWERLINK Controlled Node

DCF Device Configuration File

EIA Electronic Industries Association

EMC Electro Magnetic Compatibility

EPL Ethernet POWERLINK

EPSG Ethernet POWERLINK Standardisation Group

ICMP Internet Control Message Protocol

ID Identifier

IEC International Electrotechnical Comission

IEEE Institute of Electrical and Electronic Engineers

IP Internet Protocol

MAC Media Access Control

MIB Management Information Base

EPSG DS 301 V1.5.1 -23-

MN POWERLINK Managing Node

MS Multiplexed Slot (flag in POWERLINK frame)

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NAT Network Address Translation

NIL Not in List (Basic Data Type)

NMT Network Management

PDO Process Data Object

PR Priority (bit field in POWERLINK frame)

PReq PollRequest (POWERLINK frame type)

PRes PollResponse (POWERLINK frame type)

PS Prescaled Slot (flag in POWERLINK frame)

PTP Precision Time Protocol

RD Ready (flag in POWERLINK frame)

RFC Requests for Comments

RPDO Receive Process Data Object

RS Request to Send (flag in POWERLINK frame)

EA Exception Achnowledge (flag in POWERLINK frame)

SCNM Slot Communication Network Management

SDO Service Data Object

EN Exception New (flag in POWERLINK frame)

SNMP Simple Network Management Protocol

SoA Start of Asynchronous (POWERLINK frame type)

SoC Start of Cycle (POWERLINK frame type)

TCP Transmission Control Protocol

TIA Telecommunications Industry Association

TPDO Transmit Process Data Object

TTL Time to live

UDP User Datagram Protocol

VPN Virtual Private Network

XDC XML device configuration file

XDD XML device description file

EPSG DS 301 V1.5.1 -24-

Pre. 8 References
[1] EPSG Draft Standard 302-A (EPSG DS 302-A), Ethernet POWERLINK, Part A: High

Availability

[2] EPSG Draft Standard 302-B (EPSG DS 302-B), Ethernet POWERLINK, Part B: Multiple-ASnd

[3] EPSG Draft Standard 302-C (EPSG DS 302-C), Ethernet POWERLINK, Part C: PollResponse
Chaining

[4] EPSG Draft Standard 302-D (EPSG WDP 302-D), Ethernet POWERLINK, Part D: Multiple
PReq/PRes

[5] EPSG Draft Standard 302-E (EPSG WDP 302-E), Ethernet POWERLINK, Part E: Dynamic
Node Allocation

[6] EPSG Draft Standard 302-F (EPSG WDP 302-F), Ethernet POWERLINK, Part F: Modular
Device

[7] IEC 61918 Industrial communication networks – Installation of communication networks in
industrial premises

[8] IEC 61784-5-13 Industrial communication networks – Profiles – Part 5-13: Installation of
fieldbuses – Installation profiles for CPF 13

EPSG DS 301 V1.5.1 -25-

1 Introduction
Ethernet POWERLINK is a communication profile for Real-Time Ethernet (RTE). It extends Ethernet
according to the IEEE 802.3 standard with mechanisms to transfer data with predictable timing and
precise synchronisation. The communication profile meets timing demands typical for high-
performance automation and motion applications. It does not change basic principles of the Fast
Ethernet Standard IEEE 802.3 but extends it towards RTE. Thus it is possible to leverage and
continue to use any standard Ethernet silicon, infrastructure component or test and measurement
equipment like a network analyzer.

1.1 Slot Communication Network Management
POWERLINK provides mechanisms to achieve the following:

1. Transmit time-critical data in precise isochronous cycles. Data exchange is based on a
publish/subscribe relationship. Isochronous data communication can be used for exchanging
position data of motion applications of the automation industry.

2. Synchronise networked nodes with high accuracy.

3. Transmit less time-critical data asynchronously on request. Asynchronous data communication
can be used to transfer IP-based protocols like TCP or UDP and higher layer protocols such as
HTTP, FTP,…

POWERLINK manages the network traffic in a way that there are dedicated time-slots for isochronous
and asynchronous data. It takes care that always only one networked device gains access to the
network media. Thus transmission of isochronous and asynchronous data will never interfere and
precise communication timing is guaranteed. The mechanism is called Slot Communication Network
Management (SCNM). SCNM is managed by one particular networked device – the Managing Node
(MN) – which includes the MN functionality. All other nodes are called Controlled Nodes (CN).

Fig. 1. Slot Communication Network Management (SCNM)

1.2 POWERLINK key features
POWERLINK provides the following key features:

• Ease-of-Use to be handled by typical automation engineers without indepth Ethernet network
knowledge.

• Up to 240 networked real-time devices in one network segment

• Deterministic Communication Guaranteed

• Down to 100 µs cycle times

• Ultra-low jitter (down to <1µs) for precise synchronisation of networked devices

• Standard Compliant

EPSG DS 301 V1.5.1 -26-

• IEEE 802.3u Fast Ethernet

• IP based protocols supported (TCP, UDP,...)

• Integration with CANopen Profiles EN 50325-4 for device interoperability

• Implementation based on standard Ethernet Chips - No special ASICs necessary

• Direct peer-to-peer communication of all Nodes (Publish/subscribe)

• Hot Plugging

• Seamless IT-Integration – Routing of IP protocols

POWERLINK is based on the ISO/OSI layer model and supports Client/Server and Producer/
Consumer communications relationships.

The Ethernet POWERLINK Standardisation Group (EPSG) worked closely with the CiA (CAN in
Automation) organisation to integrate CANopen with POWERLINK. CANopen standards define widely
deployed communication profiles, device profiles and application profiles. These profiles are in use
millions of times all over the world. Integration of POWERLINK with CANopen combines profiles, high
performance data exchange and open transparent communication with TCP/UDP/IP protocols.

The POWERLINK communication profile is based on CANopen communication profiles DS301 and
DS302. Based on this communication profile, the multitude of CANopen device profiles can be used in
a POWERLINK environment without changes.

A main focus of POWERLINK is ease of use. Ethernet technology can be quite complex and confusing
for machine and plant manufacturers which are not necessarily networking experts. The following
features have been implemented:

• Easy wiring, flexible topologies (line structures, tree structures or star structures). The network
is adapting to the needs of the machine.

• Utilization of well known industrial infrastructure components

• Simple address assignment by switch is possible

• Easy replacement of devices in case of failure

• Straightforward network diagnostics

• Basic security features

• Simple engineering separated from end user IT infrastructure

• Easy integration of RTE network with IT infrastructure

1.3 Integration
The advantages listed before result from protecting the POWERLINK RTE network segment from
regular office and factory networks. This matches typical machine and plant concepts. Hard real time
requirements are met within the machine with POWERLINK. Full transparency to the factory network
and above is provided, yet it is taken care of protection against hacker attacks on machine level.
Modification efforts through machine integration into existing IT infrastructures are minimized. To
achieve this POWERLINK provides a private Class-C IP segment solution with fixed IP addresses. A
router establishes the connection to factory floor networks or company networks. NAT mechanisms
allow the assignment of any IP address to RTE networked nodes.

RTE based on POWERLINK is ideal to support modern modular machine concepts.
Producer/Consumer and Client/Server communication relationships, enable centralized master/slave
as well as decentral multimaster structures.

EPSG DS 301 V1.5.1 -27-

Fig. 2. Integration POWERLINK based machines into the IT infrastructure of end customer

1.4 Modular Machines

Fig. 3. Typical centralized and decentralized controller structures

A machine concept with autonomous machine modules is illustrated in Fig. 3. Every machine module
can be designed separetly whith its own internal communication relationships. The assembling of the
machine can be done in a flexible way by adding additional direct communication relationships
between machine modules.

Machine

Legacy
Ethernet Legacy

Ethernet

IP Address Translation
IP-Telegram Managing
Basic Security

Machine Ethernet POWERLINK
 (Protected Ethernet)

Machine

Machine Ethernet POWERLINK
 (Protected Ethernet)

Factory Floor Network and Company Network

MN Router

CN

CN

CN

Ethernet HUB

Ethernet
(POWERLINK + TCP/UDP/IP)

MN Router

CN

CN

CN

Ethernet HUB

Ethernet
(POWERLINK + TCP/UDP/IP)

Machine Module

MN
(PLC, IPC,

IDrive, HMI,…)

CN
(Drive,…)

CN
(IO, Drive,...)

Machine Module

CN
(PLC, IPC,
IDrive, …)

CN
(Drive, …)

CN
(IO, …)

Machine Module

CN
(IO, …)

logical communication
 Ethernet HUB

EPSG DS 301 V1.5.1 -28-

2 Modelling
POWERLINK-based networks use the following reference model, device model, and communication
model.

2.1 Reference Model

Fig. 4. Reference model

The communication concept can be described with reference to the ISO-OSI Reference Model (right-
hand side of Fig. 4).

2.1.1 Application Layer

The Application Layer comprises a concept to configure and communicate real-time-data as well as
the mechanisms for synchronisation between devices. The functionality the application layer offers to
an application is logically divided over different service objects (see SDO) in the application layer. A
service object offers a specific functionality and all related services.

Applications interact by invoking services of a service object in the application layer. To realize these
services, the service object exchanges data via the Network with (a) peer service object(s) via a
protocol. This protocol is described in the Protocol Specification of that service object.

2.1.1.1 Service Primitives

Service primitives are the means by which the application and the application layer interact. There are
four different primitives:

• a request is issued by the application to the application layer to request a service

• an indication is issued by the application layer to the application to report an internal event
detected by the application layer or indicate that a service is requested

POWERLINK Data Link Layer

IP

UDP TCP

POWERLINK Application Layer

PDO SDO Command

Object Dictionary

NMT

MAC

PHY Physical

Data Link

Network

Transport

Session / Present .

Application

HTTP
FTP

SDO Sequence

Device
Profile

Device
Profile

Device
Profile

Configuration
Manager

EPSG DS 301 V1.5.1 -29-

• a response is issued by the application to the application layer to respond to a previous
received indication

• a confirmation is issued by the application layer to the application to report the result of a
previously issued request.

2.1.1.2 Application Layer Service Types

Fig. 5. Service types

A service type defines the primitives that are exchanged between the application layer and the co-
operating applications for a particular service of a service object.

• A Local Service involves only the local service object. The application issues a request to its
local service object that executes the requested service without communicating with (a) peer
service object(s).

• An Unconfirmed Service involves one or more peer service objects. The application issues a
request to its local service object. This request is transferred to the peer service object(s) that
each pass it to their application as an indication. The result is not confirmed back.

• A Confirmed Service can involve only one peer service object. The application issues a request
to its local service object. This request is transferred to the peer service object that passes it to
the other application as an indication. The other application issues a response that is
transferred to the originating service object that passes it as a confirmation to the requesting
application.

• A Provider Initiated service involves only the local service object. The service object (being the
service provider) detects an event not solicited by a requested service. This event is then
indicated to the application.

Unconfirmed and confirmed services are collectively called Remote Services.

2.2 Device Model

2.2.1 General

A device is structured as follows (see Fig. 6):

• Communication – This function unit provides the communication objects and the appropriate
functionality to transport data items via the underlying network structure.

 Application X

request

Local Service

Application X

indication

Provider Initiated Service

Application X

indication

Unconfirmed Service

Application Y, Z, ..

indication

indication

Application X

indication

Confirmed Service

Application Y

response confirmation

request
request

EPSG DS 301 V1.5.1 -30-

• Object Dictionary – The Object Dictionary is a collection of all the data items that have an
influence on the behaviour of the application objects, the communication objects and the state
machine used on this device.

• Application – The application comprises the functionality of the device with respect to the
interaction with the process environment.

Thus the Object Dictionary serves as an interface between the communication and the application.
The complete description of a device’s application with respect to the data items in the Object
Dictionary is called the device profile.

Fig. 6. Device model

2.2.2 The Object Dictionary

The most important part of a device profile is the Object Dictionary. The Object Dictionary is
essentially a grouping of objects accessible via the network in an ordered, pre-defined fashion. Each
object within the dictionary is addressed using a 16-bit index.

The overall layout of the standard Object Dictionary is shown by Tab. 1. This layout closely conforms
to other industrial serial bus system concepts.

The Object Dictionary may contain a maximum of 65536 entries which are addressed through a 16-bit
index.

The Static Data Types at indices 0001h through 001Fh contain type definitions for standard data types
like BOOLEAN, INTEGER, floating point, string, etc. These entries are included for reference only;
they cannot be read or written.

 Application Object
Dictionary

Communication

State machine

Comm.
object

Comm.
object

Comm.
object

Comm.
object

Application
object

Entry 1

Entry 2

Entry n

:

Application
object

Application
object

Application
object

Process Bus system

EPSG DS 301 V1.5.1 -31-

Index Object

0000h not used

0001h .. 001Fh Static Data Types

0020h .. 003Fh Complex Data Types

0040h .. 005Fh Manufacturer Specific Complex Data Types

0060h .. 007Fh Device Profile Specific Static Data Types

0080h .. 009Fh Device Profile Specific Complex Data Types

00A0h .. 03FFh Reserved for further use

0400h – 041Fh POWERLINK Specific Static Data Types

0420h – 04FFh POWERLINK Specific Complex Data Types

0500h .. 0FFFh Reserved for further use

1000h .. 1FFFh Communication Profile Area

2000h .. 5FFFh Manufacturer Specific Profile Area

6000h .. 9FFFh Standardised Device Profile Area

A000h .. BFFFh Standardised Interface Profile Area

C000h .. FFFFh Reserved for further use

 Object dictionary structure

Complex Data Types at indices 0020h through 003Fh are pre-defined structures that are composed of
standard data types and are common to all devices.

Manufacturer Specific Complex Data Types at indices 0040h through 005Fh are structures composed
of standard data types but are specific to a particular device.

Device Profiles may define additional data types specific to their device type. The static data types
defined by the device profile are listed at indices 0060h - 007Fh, the complex data types at indices
0080h - 009Fh.

A device may optionally provide the structure of the supported complex data types (indices 0020h -
005Fh and 0080h - 009Fh) at read access to the corresponding index. Sub-index 0 provides the
number of entries at this index, and the following sub-indices contain the data type encoded as
UNSIGNED16 according to 6.1.4.5.

POWERLINK Specific Static Data Types shall be described at indices 0400h – 041Fh. These entries
are included for reference only; they cannot be read or written. POWERLINK Specific Complex Data
Types shall be described at indices 0420h – 04FFh

The Communication Profile Area at indices 1000h through 1FFFh contains the communication specific
parameters for the POWERLINK network. These entries are common to all devices.

The standardised device profile area at indices 6000h through 9FFFh contains all data objects common
to a class of devices that can be read or written via the network. The device profiles may use entries
from 6000h to 9FFFh to describe the device parameters and the device functionality. Within this range
up to 8 different devices can be described. In such a case the devices are denominated Multiple
Device Modules. Multiple Device Modules are composed of up to 8 device profile segments. In this
way it is possible to build devices with multiple functionality. The different device profile entries are
indexed at increments of 800h.

For Multiple Device Modules the object range 6000h to 9FFFh is sub-divided as follows:

• 6000h to 67FFh device 0

• 6800h to 6FFFh device 1

• 7000h to 77FFh device 2

• 7800h to 7FFFh device 3

• 8000h to 87FFh device 4

• 8800h to 8FFFh device 5

• 9000h to 97FFh device 6

• 9800h to 9FFFh device 7

EPSG DS 301 V1.5.1 -32-

The Object Dictionary concept caters for optional device features: a manufacturer does not have to
provide certain extended functionality on his devices but if he wishes to do so he must do it in a pre-
defined fashion.

Space is left in the Object Dictionary at indices 2000h through 5FFFh for truly manufacturer-specific
functionality.

2.2.2.1 Index and Sub-Index Usage

A 16-bit index is used to address all entries within the Object Dictionary. In the case of a simple
variable the index references the value of this variable directly. In the case of records and arrays,
however, the index addresses the whole data structure.

To allow individual elements of structures of data to be accessed via the network a sub-index is
defined. For single Object Dictionary entries such as an UNSIGNED8, BOOLEAN, INTEGER32 etc.
the value for the sub-index is always zero. For complex Object Dictionary entries such as arrays or
records with multiple data fields the sub-index references fields within a data-structure pointed to by
the main index. The fields accessed by the sub-index can be of differing data types.

2.3 Communication Model
The communication model specifies the different communication objects and services and the
available modes of frame transmission triggering.

The communication model only specifies the POWERLINK-specific communication objects of the
POWERLINK Mode and Basic Ethernet Mode (4.2 resp. 4.3). The mechanism for Legacy Ethernet
communication in Basic Ethernet mode is not within the scope of this specification.

The communication model supports the transmission of isochronous and asynchronous frames.
Isochronous frames are supported in POWERLINK Mode only, asynchronous frames in POWERLINK
Mode and Basic Ethernet Mode.

By means of isochronous frame transmission a network wide coordinated data acquisition and
actuation is possible. The isochronous transmission of frames is supported by the POWERLINK Mode
cycle structure. The system is synchronised by SoC frames. Asynchronous frames may be transmitted
in the asynchronous slot of POWERLINK Mode cycle upon transmission grant by the POWERLINK
MN, or at any time in Basic Ethernet Mode.

With respect to their functionality, three types of communication relationships are distinguished

• Master/Slave relationship (Fig. 7 and Fig. 8)

• Client/Server relationship (Fig. 9)

• Producer/Consumer relationship (Fig. 10 and Fig. 11)

2.3.1 Master/Slave relationship

Fig. 7. Unconfirmed master slave communication

data

 Master
Slaves

request indication

indication

indication

EPSG DS 301 V1.5.1 -33-

Fig. 8. Confirmed master slave communication

At any time there is exactly one device in the network serving as a master for a specific functionality.
All other devices in the network are considered as slaves. The master issues a request and the
addressed slave(s) respond(s) if the protocol requires this behaviour.

2.3.2 Client/Server relationship

This is a relationship between a single client and a single server. A client issues a request
(upload/download) thus triggering the server to perform a certain task. After finishing the task the
server answers the request.

Fig. 9. Client/Server communication

2.3.3 Producer/Consumer relationship - Push/Pull
model

The producer/consumer relationship model involves a producer and zero or more consumer(s). The
push model is characterized by an unconfirmed service requested by the producer. The pull model is
characterized by a confirmed service requested by the consumer.

Fig. 10. Push model

data

 Master Slave

confirmation response

Request

indication request

response data

 request data

 Client Server

confirmation response

indication request

data

 Producer Consumers

request
indication

indication

indication

EPSG DS 301 V1.5.1 -34-

Fig. 11. Pull model

2.3.4 Superimposing of Communication Relationships

POWERLINK collects more than one function into one frame (refer 4.6). It is therefore not usually
possible to apply a single communication relationship to the complete frame, but only to particulars
services inside the frame.

The PollResponse frame for example (refer 4.6.1.1.4) transmitted by the CN includes several services:

• Transmission of the current NMT state of the CN is the response part of a confirmed
master/slave relationship triggered by the MN.

• Request of the asynchronous slot is the request part of a client/server relationship.

• Transmission of PDO data occurs in conformance to a push model Producer/Consumer
relationship.

data

 Producer Consumers

response confirmation

Request

request indication

indication

request

indication

request

EPSG DS 301 V1.5.1 -35-

3 Physical Layer
POWERLINK is a protocol residing on top of the standard IEEE 802.3 MAC layer. The physical layer
is 100BASE-X (copper and fiber, see IEEE 802.3). Half-Duplex transmission mode shall be used.

Autonegotiation is not recommended.

POWERLINK uses Ethernet as it is, without any modifications. Hence any advancement in Ethernet
Technology can be exploited (e.g. Gigabit Ethernet).

3.1 Topology

3.1.1 Hubs

To fit POWERLINK jitter requirements it is recommended to use hubs to build a POWERLINK
network. Class 2 Repeaters shall be used in this case.

Hubs have the advantage of reduced path delay value (indicated by D_PHY_HubDelay_U32) and have
small frame jitter (indicated by D_PHY_HubJitter_U32).

Hubs may be integrated in the POWERLINK interface cards.

Hub integration shall be indicated by D_PHY_HubIntegrated_BOOL. The number of externally
accessible POWERLINK ports provided by a device shall be indicated by D_PHY_ExtEPLPorts_U8.

3.1.2 Switches

Switches may be used to build a POWERLINK network. The additional latency and jitter of switches
has to be considered for system configuration.

It has to be considered that any POWERLINK network constructed with anything but Class 2 Repeater
Devices does not conform to the POWERLINK standard as defined in this document.

3.2 Network Guidelines

.

Fig. 12. Star topology and line topology

POWERLINK does not cause collisions. This is why the most extreme topology guideline of the IEEE
standard (5120 ns maximum round trip signal runtime) does not apply.

Due to this leniency in the topology, line structures that are required in applications in the field are
made possible. Nodes may use integrated hubs, further simplifying construction in the field. A mixed
tree and line structure is available when a large number of nodes are being used.

Fiber optic transducers may be used. However, they should be tested to establish whether they cause
more jitter and latency than normal hubs. When designing the network infrastructure some timing
constraints shall be considered. The MN uses a timeout after sending a PollRequest Frame to detect
transmission errors and node failures. The round trip latency between the MN and a CN shall not
exceed the timeout value. The timeout value can be set for every single node.

EPSG DS 301 V1.5.1 -36-

3.2.1 Jitter

Every hub level introduces additional Jitter (equal or below 70 ns). Only the number of hub levels
between MN and most distanced CN is relevant. If the MN is located in the center of line or ar star
topology, the number of hub level between the most distanced CNs is irrelevant for synchronisation
jitter.

3.3 Ports and Connectors
To connect POWERLINK devices one of two types of connectors shall be used:

4. RJ-45: for light duty environments.

5. M12: for heavy duty environments.

Both types may be mixed on the same cable.

For further information please refer to IEC 61918 and IEC 61784-5-13.

3.3.1 RJ-45

Pin assignment as defined by EIA/TIA T568B.

The following is provided for convenience; please refer to the corresponding International Standards.

Fig. 13. RJ45 pin assignment (left: connector, right: port)

The pictures shows an RJ45 connector on the cable and a port (on the device or Hub).

The pin assignment on each node shall be that of a hub/switch port. Therefore the port pins are
assigned as follows:

Pin Wire color code Assignment 100BASE-TX

1 WHT/ORG Rx+

2 ORG Rx-

3 WHT/GRN Tx+

4 BLU

5 WHT/BLU

6 GRN Tx-

7 WHT/BRN

8 BRN

 Pin assignment RJ45 port

3.3.2 M12

For IP67 requirements. 4 pin D-coded as recommended in IEC 61076-2-101.

Male side is fitted on the cable, female on the device or hub.

The following is provided for convinience; please refer to the corresponding International Standard.

EPSG DS 301 V1.5.1 -37-

Fig. 14. IP67 port pin assignment.

Pin Wire color code Assignment 100BASE-TX

1 BLU/YEL Tx+

2 YEL/WHT Rx+

3 WHT/ORG Tx-

4 ORG/BLU Rx-

 Pin assignment IP67 port

3.3.3 Crossover Pin Assignment

The pin assignment shall be that of a crossover cable.

Therefore all devices can be interconnected by one type of cable. The pin assignment of a crossover
cable is defined as:

• Tx+ to Rx+

• Tx- to Rx-

• Rx+ to Tx+

• Rx- to Tx-

3.3.3.1 RJ45 to RJ45

Fig. 15. recommended RJ45 to RJ45 pin assignment

Fig. 16. not recommended RJ45 to RJ45 pin assignment

3.3.3.2 M12 to M12

1

2

3

4

1

2

3

4

Fig. 17. M12 to M12 pin assignment

1

4

3

2

Port (Female)

EPSG DS 301 V1.5.1 -38-

3.3.3.3 M12 to RJ45

Fig. 18. M12 to RJ45 pin assignment

3.4 Cables (recommendation)
Please refer to IEC 61918 and IEC 61784-5-13.

The following is provided for convenience; please refer to the corresponding International Standards.

To increase noise immunity only S/FTP or SF/FTP cables should be used (Cat5). The maximum cable
length (100 meters) predefined by Ethernet 100Base-TX shall apply.

The pin assignment shall be that of a crossover cable.

Regarding wiring and EMC measures, the IEC 61918 and IEC 61784-5-13 shall be considered.

1

2

3

4

1

2

3

4

5

6

7

8

EPSG DS 301 V1.5.1 -39-

4 Data Link Layer

4.1 Modes of Operation
Two operating modes are defined for POWERLINK networks:

• POWERLINK mode

In POWERLINK Mode network traffic follows the set of rules given in this standard for Real-time
Ethernet communication. Network access is managed by a master, the POWERLINK Managing
Node (MN). A node can only be granted the right to send data on the network via the MN. The
central access rules preclude collisions, the network is therefore deterministic in POWERLINK
Mode.

In POWERLINK Mode most communication transactions are via POWERLINK-specific
messages. An asynchronous slot is available for non-POWERLINK frames. UDP/IP is the
preferred data exchange mechanism in the asynchronous slot; however, it is possible to use
any protocol.

• Basic Ethernet mode

In Basic Ethernet Mode network communication follows the rules of Legacy Ethernet
(IEEE802.3). Network access is via CSMA/CD. Collisions occur, and network traffic is non-
deterministic.

Any protocol on top of Ethernet may be used in Basic Ethernet mode, the preferred
mechanisms for data exchange between nodes being UDP/IP and TCP/IP.

4.2 POWERLINK Mode

4.2.1 Introduction

POWERLINK Mode is based on the standard Ethernet CSMA/CD technique (IEEE 802.3) and thus
works on all Legacy Ethernet hardware.

Determinism is achieved with a pre-planned and organized message exchange: messages are
grouped in cycles, which are subdivided into the isochronous and the asynchronous phase.

Each node gets permission for sending its own frames by the POWERLINK MN. Therefore, no
collisions should occur and the collision-resolving re-transmission of messages defined by IEEE802.3,
which is responsible for the non-deterministic behavior of Legacy Ethernet, is not used.

4.2.2 POWERLINK Nodes

The node managing the permission to send messages to the Ethernet is called the POWERLINK
Managing Node (MN).

All other nodes transmit only within communication slots assigned by the MN. They are thus called
Controlled Nodes (CN).

4.2.2.1 POWERLINK Managing Node

Only the MN may send messages independently – i.e. not as a response to a received message.
Controlled Nodes shall be only allowed to send when requested to by the MN.

The Controlled Nodes shall be accessed cyclically by the MN. Unicast data shall be sent from the MN
to each configured CN (frame: PReq), which shall then publish its data via multicast to all other nodes
(frame: PRes).

Optionally, the MN may send a multicast Pres frame in the isochrononous phase (see Fig. 19). With
this frame the MN may publish its own data to all other nodes.

All available nodes in the network shall be configured on the MN.

Only one active MN is permitted in a POWERLINK network.

The ability of a node to perform MN functions shall be indicated by the device description entry
D_DLL_FeatureMN_BOOL.

EPSG DS 301 V1.5.1 -40-

4.2.2.2 POWERLINK Controlled Node

CNs shall be passive bus nodes. They shall only send when requested by the MN.

The ability of a node to perform CN functions shall be indicated by the device description entry
D_DLL_FeatureCN_BOOL.

4.2.2.2.1 Isochronous CN
Each isochronous CN shall receive a unicast PReq frame from the MN in the POWERLINK cycle and
shall send back a PRes frame to the MN. PReq and PRes frames may transport isochronous data.

CNs may be accessed every cycle or every nth cycle (multiplexed nodes, n > 1).

PReq can only be received by the specifically addressed CN. However, PRes frames shall be sent by
the CN as multicast messages, allowing all other CNs to monitor the data being sent.

Additional data from the MN may be received by a multicast PRes message transmitted by the MN.

Isochronous CNs shall request the right to transmit asynchronous data from the MN, if required.

The ability of a CN to perform isochronous communication shall be indicated by a feature flag in the
object dictionary entry NMT_FeatureFlags_U32 (1F82h) and the device description entry
D_NMT_Isochronous_BOOL.

No POWERLINK CN device shall rely on being polled as isochronous CN, when the network performs
the isochronous POWERLINK cycle (4.2.4.1), Async-only CN type communication shall be
guaranteed. Application level function limitations may occur when a device enabled to perform
isochronous functions is operated in Async-only mode.

4.2.2.2.2 Async-only CN
CNs may be operated in a way, that they aren’t accessed cyclically in the isochronous phase by the
MN.

The MN shall cyclically poll each async-only CN during the asynchronous phase with a StatusRequest
– a special form of the SoA frame. The CN shall respond with a StatusResponse, special form of
Asynchronous Send frame. The poll interval shall be at least C_NMT_STATREQ_CYCLE. It is
affected by the asynchronous scheduling and is thus non-deterministic.

Async-only CNs shall request the right to transmit asynchronous data from the MN, if required.

Async-only CNs shall actively communicate during the asynchronous phase only. Nevertheless, they
may listen to the multicast network traffic, transmitted by the MN and the isochronous CNs.

4.2.3 Services

POWERLINK provides three services:

• Isochronous Data Transfer

One pair of messages per node shall be delivered every cycle, or every nth cycle in the case of
multiplexed CNs.

Additionally, there may be one multicast PRes message from the MN per cycle.

Isochronous data transfer is typically used for the exchange of time critical data (real-time data).

• Asynchronous Data Transfer

There may be one asynchronous message per cycle. The right to send shall be assigned to a
requesting node by the MN via the SoA message.

Asynchronous data transfer is used for the exchange of non time-critical data.

• Synchronisation of all nodes

At the beginning of each isochronous phase, the MN transmits the multicast SoC message very
precisely to synchronise all nodes in the network.

4.2.4 POWERLINK Cycle

The POWERLINK cycle shall be controlled by the MN.

EPSG DS 301 V1.5.1 -41-

4.2.4.1 Isochronous POWERLINK Cycle

Isochronous data exchange between nodes shall occur cyclically. It shall be repeated in a fixed
interval, called POWERLINK cycle.

Fig. 19. POWERLINK Cycle

The following time phases exist within one cycle:

• Isochronous phase

• Asynchronous phase

• Idle phase

It is important to keep the start time of a POWERLINK cycle as exact (jitter-free) as possible. The
length of individual phases can vary within the preset phase of a POWERLINK cycle.

Fig. 20. POWERLINK - an isochronous process

The network shall be configured in a way that the preset cycle time is not exceeded. Adherence to the
cycle time shall be monitored by the MN.

All data transfers shall be unconfirmed, i.e. there is no confirmation that sent data has been received.
To maintain deterministic behavior, protecting the isochronous data (PReq and PRes) is neither
necessary nor desired. Asynchronous data may be protected by higher protocol layers.

4.2.4.1.1 Isochronous phase
At the beginning of a POWERLINK cycle, the MN shall send a SoC frame to all nodes via Ethernet
multicast. The send and receive time of this frame shall be the basis for the common timing of all the
nodes.

Only the SoC frame shall be generated on a periodic basis. The generation of all other frames shall be
event controlled (with additional time monitoring per node).

The MN shall start the isochronous data exchange after the SoC frame has been sent.

A PReq frame shall be sent to every configured and active node. The accessed node shall respond by
a PRes frame.

PReq shall be an Ethernet unicast frame. It is received by the target node only. PRes shall be sent as
an Ethernet multicast frame.

Both the PReq and the PRes frames may transfer application data. The MN only sends PReq data to
one CN per frame. PReq transfer is dedicated to data relevant for the addressed CN only.

In contrast, the PRes frame may be received by all nodes. This makes communication relationships
possible according to the producer/consumer model.

The PReq / PRes procedure shall be repeated for each configured and active isochronous CN.

Managing Node (MN)

Controlled Nodes (CN)

Isochronous Phase Asynchronous Phase

SoC

PReq
 to CN 1

PReq
 to CN 2

PRes
 from CN 1

PRes
 from CN 2

PRes
 from MN

SoA

AsyncSend

Id
le

 P
h
a
s
e

AsyncSend

POWERLINK Cycle Time POWERLINK Cycle Time POWERLINK Cycle Time

EPSG DS 301 V1.5.1 -42-

The MN may send a multicast PRes frame to all nodes. This frame is dedicated to transfer data
relevant for groups of CNs.

Support of PRes transmission by the MN is optional. The ability of an MN to transmit PRes shall be
indicated by the device description entry D_DLL_MNFeaturePResTx_BOOL. If the feature is provided,
transmission shall be enabled by NMT_NodeAssignment_AU32[C_ADR_MN_DEF_NODE_ID].Bit 12.

The isochronous phase shall be calculated from start of SoC to start of SoA.

The size of the POWERLINK cycle is predominantly affected by the size of the isochronous phase.
When configuring the POWERLINK cycle, the sum of the times required by the PReq / PRes accesses
to each configured CN shall be taken into account, i.e. the time needed to access all configured nodes
in one cycle has to be accounted for. Use of the multiplexed access technology (4.2.4.1.1.1) may
reduce the amount of time.

When operating the isochronous phase, the length of this phase may vary according to the number of
active CNs.

The order in which CNs are polled may be implementation specific or controlled by object
NMT_IsochrSlotAssign_AU8 if supported by the MN. An implementation should pack the performed
PReq / PRes packages to the begin of the isochronous phase. It should provide means to rearrange
the poll order, to avoid location of the nodes having the worst SoC latency time value
(D_NMT_CNSoC2PReq_U32) at the slot following SoC.

Isochronous phases may be counted by the device. If implemented, counting shall be performed on
base of transmitted or received SoC frames. The counter value may be accessed via
DIA_NMTTelegrCount_REC.IsochrCyc_U32.

4.2.4.1.1.1 Multiplexed Timeslots
POWERLINK supports CN communication classes, that determine the cycles in which nodes are to be
addressed.

• Continuous

Continuous data shall be exchanged in every POWERLINK cycle.

• Multiplexed

Multiplexed data to and from one CN shall not be exchanged in every POWERLINK cycle.

The accesses to the multiplexed CNs shall be dispersed to the multiplexed cycle that consists of
a number of POWERLINK cycles.

The dispersion allows the isochronous access to a large number of CNs without elongating the
POWERLINK cycle to an unacceptable amount. However, multiplexed CN access reduces the
poll frequency to the particular CN.

The configuration of the multiplexed cycle is shown in 4.2.4.4.

 Managing Node (MN)

Controlled Node (CN)

Isochronous Phase Isochronous Phase
Phase

SoC 1

Asynchronous
Phase

SoA

Idle
Phase

1

MN 2

2 Async
Send

Cyclic station Multiplexed station

SoC 1 SoA

Idle
Phase

1

MN 2

2 Async
Send

Multiplexed
Slot 1

Multiplexed
Slot 2

4

4

3

3 2

Multiplexed
Slot 1

Multiplexed
Slot 2

5

5

6

6

Multiplexed Cycle Time

1 - 6: PReq resp. PRes to/from CN 1 - 6

Fig. 21. Multiplexed POWERLINK cycle

Continuous and multiplexed access may be operated in parallel during one POWERLINK cycle. The
apportionment of the isochronous phase to continuous and multiplexed slots shall be fixed by
configuration (NMT_MultiplCycleAssign_AU8, NMT_IsochrSlotAssign_AU8).

Although the multiplexed nodes are not processed in each cycle, they can monitor the entire data
transfer of the continuous nodes because all PRes frames are sent as multicast frames.

EPSG DS 301 V1.5.1 -43-

E.g. in Motion Control, multiplexed timeslots can be used for a large number of slave axes to receive
position data from few master axes. The master axes are configured to communicate continuously,
accesses to the slave axes multiplexed. In this way, the master axes transmit their data to the
(monitoring) slave axes in each cycle, while the slave axes also take part in the communication in a
slower cycle.

The size of each particular multiplexed slot shall be equal to the maximum time necessary for the
PReq / PRes access of the CN assigned to the slot.

In case of MN cycle loss, the multiplexed access sequence shall be continued on a per time base,
after the cycle loss error phase is over. E.g. CNs shall be skipped to maintain time equidistance of
access to nodes not affected by the cycle loss.

The ability of an MN enabled node to perform control of multiplexed isochronous operation shall be
indicated by the device description entry D_DLL_MNFeatureMultiplex_BOOL. The ability of a CN
enabled node to be isochronously accessed in a multiplexed way shall be indicated by the device
description entry D_DLL_CNFeatureMultiplex_BOOL.

4.2.4.1.2 Asynchronous phase
In the asynchronous phase of the cycle, access to the POWERLINK network may be granted to one
CN or to the MN for the transfer of a single asynchronous message only.

There shall be two types of asynchronous frames available:

• The POWERLINK ASnd frame shall use the POWERLINK addressing scheme and shall be
sent via unicast or broadcast to any other node.

• A Legacy Ethernet message may be sent.

If no asynchronous message transmission request is pending at the MN scheduling queues
(4.2.4.1.2.1), the MN shall issue a SoA without assignment of the right to send to any node. No ASnd
frame will follow to the SoA frame in this case.

The MN shall start the asynchronous phase with the SoA. The SoA shall be used to identify CNs,
request status information of a CN, to poll async-only CNs and to grant the asynchronous transmit
right to one CN.

The SoA frame is the first frame in the asynchronous phase and is a signal to all CNs that all
isochronous data have been exchanged during the isochronous phase.

The asynchronous phase shall be calculated from the start of SoA to the end of the asynchronous
response. If no asynchronous response is allowed for any node, the asynchronous phase shall be
terminated by the end of SoA .

This definition is valid from the network’s point view. It may be different from the node’s application
point of view. Due to the AsyncSend addressing scheme, the asynchronous phase may be terminated
by the end of SoA on those nodes not being addressed, whereas it ends at the end of the
asynchronous response on the addressed nodes.

Asynchronous frames may be counted by the device. If implemented, received frames shall be
indicated by DIA_NMTTelegrCount_REC.AsyncRx_U32 and transmitted frames by
DIA_NMTTelegrCount_REC.AsyncTx_U32.

EPSG DS 301 V1.5.1 -44-

4.2.4.1.2.1 Asynchronous Scheduling

Fig. 22. Asynchronous scheduling

The MN handles scheduling of all asynchronous data transfers.

If a CN wants to send an asynchronous frame, it shall inform the MN via the PRes or the
StatusResponse frame.

The asynchronous scheduler of the MN shall determine in which cycle the right to send the
asynchronous frame will be granted. It shall guarantee that no send request will be delayed for an
indefinite amount of time, even if network load is high.

The MN shall select a node from all queued send requests (including its own). It shall send a SoA
frame with a Requested Service Target identifying which node is allowed to send an asynchronous
frame.

The MN shall manage the dispatching of the asynchronous phase using different queues:

• Generic transmit requests from the MN.

• IdentRequest frames from the MN to identify CNs

• StatusRequest frames to poll CNs

• Transmit requests from the CNs

4.2.4.1.2.2 Distribution of the Asynchronous phase
With the PRes, IdentResponse or StatusResponse RS flag (3 bits, see 4.6.1.1.4, 7.3.3.2.1, 7.3.3.3.1)
the CN shall indicate the number of send-ready packages in it’s queues.

An RS value of 0 (000b) shall indicate that the queues are empty and an RS value of 7 (111b) shall
indicate that 7 or more packages are queued.

The assignment of the asynchronous phase shall decrement the MN-administered number of frames
requested by the respective CN. If the MN queue length reached zero, no more further asynchronous
phases are assigned.

The algorithm that is used to assign the asynchronous phase when there are multiple requests
pending shall be manufacturer-specific.

4.2.4.1.2.3 Asynchronous Transmit Priorities
Asynchronous transmit requests may be prioritized by 3 PR bits in the PRes, the IdentResponse and
StatusResponse frame (see 4.6.1.1.4, 7.3.3.2.1, 7.3.3.3.1).

POWERLINK supports eight priority levels. Two of these levels are dedicated to POWERLINK
purpose:

IdentRequests
from MN

Requests from
CNs

Queue

Manager Async
Scheduler

Priority-controlled

StatusRequests
from MN

GenericRequests
from MN

EPSG DS 301 V1.5.1 -45-

• PRIO_NMT_REQUEST
This is the highest priority that shall be exclusively applied if a CN requests an NMT command
to be issued by the MN

• PRIO_GENERIC_REQUEST
Medium priority which is the standard priority level for non-NMT command requests. SDO via
asynchronous communication (see 6.3.2) requests shall apply this priority level. Application
requests may apply PRIO_GENERIC_REQUEST

The remaining priority levels above and below PRIO_GENERIC_REQUEST are available for
application purpose.

Requests with a high priority level shall be preferentially assigned by the MN compared to those with
low priority numeric value.

Requests of different priorities shall be handled by independent priority specific queues on the CN..

The PRes PR flags shall indicate the highest priority level containing pending requests. The RS flags
shall indicate the number of pending requests at the reported priority level. Lower priority request
indication shall be suspended until all high priority requests have been assigned.

Fig. 23 shows an example of priority related asynchronous request handling.

EPSG DS 301 V1.5.1 -46-

 MN CN

PReq
PRes (PR = 3 RS = 0)

Int . Queues
Prio 0 Prio 7 ...

0 0

Int . Tables

Node No . PR RS
3
..
7

0

0

Unspecified messages
ready to tranmsit

PReq

PRes (PR = 3 RS = 5)

Node No . PR RS
3
..
7

5

0

Schedule 5 unspec .
invites

PReq

PRes (PR = 3 RS = 5)

SoA

SoA

SoA (unspec . Invite)
ASnd (unspec .)

PReq

PRes (PR = 3 RS = 4)
Node No . PR RS

3
..
7

4

0

PReq

PRes (PR = 7 RS = 1)

Node No . PR RS
3
..
7

3

0

Node No . PR RS
3
..
7

2

1

Schedule 1 NMT
request invite

ASnd (unspec .)

ASnd (unspec .)

PReq

PRes (PR = 7 RS = 1)

ASnd (NMT)

SoA (unspec . Invite)

SoA (unspec . Invite)

SoA (NMT Invite)

PReq

PRes (PR = 3 RS = 4)

ASnd (unspec .)
SoA (unspec . Invite)

Unspecified message ready to
tranmsit

Node No . PR RS
3
..
7

2

0

Schedule 2 unspec .
invite

NMT command and
Unspec . Message ready to

tranmsit

Prio 3
0

...

Prio 0 Prio 7 ...
0 0

Prio 3
5

...

Prio 0 Prio 7 ...
0 0

Prio 3
5

...

Prio 0 Prio 7 ...
0 0

Prio 3
4

...

Prio 0 Prio 7 ...
0 1

Prio 3
4

...

Prio 0 Prio 7 ...
0 1

Prio 3
3

...

Prio 0 Prio 7 ...
0 0

Prio 3
4

...

Fig. 23. Asynchronous transmit priority handling
(Priority level PR: 7 = PRIO_NMT_REQUEST, 3 = PRIO_GENERIC_REQUEST)

EPSG DS 301 V1.5.1 -47-

4.2.4.1.3 Idle Phase
The Idle Phase is the remaining time interval between the end of the asynchronous phase and the
beginning of the next cycle.

During the Idle Phase, all network components shall “wait" for the beginning of the following cycle. The
duration of the Idle Phase may be 0, i.e. an implementation shall not rely on an existing or fixed Idle
Phase.

The idle phase shall be calculated from end of SoA or ASnd (see 4.2.4.1.2) to start of SoC.

4.2.4.2 Reduced POWERLINK Cycle

During system startup (NMT state NMT_MS_PRE_OPERATIONAL_1), a reduced POWERLINK Cycle
shall be applied to diminish network load, while the system is being configured via SDO
communication.

The Reduced POWERLINK Cycle shall consist of queued asynchronous phases only. The duration of
the asynchronous phase and thus the duration of the Reduced POWERLINK Cycle may vary from one
cycle to the next.

If a CN is assigned to send and there are no information about the length of the expected AsyncSend
frame available at the MN, the next Reduced POWERLINK Cycle shall not start until at least the
timeout given by the length of a maximum size ethernet frame
NMT_CycleTiming_REC.AsyncMTU_U16) plus the maximum response time to the SoA invite
message required by the CNs (NMT_CycleTiming_REC.ASndMaxLatency_U32) elapsed.

If the MN endues AsyncSend length information, i.e. if the MN assignes the Asynchronus Slot to itself
or if the MN is the target node of the asynchronous message, it may reduce the Reduce POWERLINK
cycle length (Fig. 24).

If there is no assignment to any node (MN included), the next Reduced POWERLINK Cycle may
follow without any timeout.

The assignment mechanism used for the asynchronous phase of the isochronous POWERLINK cycle
(4.2.4.1.2) shall also be applied to the Reduced POWERLINK Cycle.

Fig. 24. Reduced POWERLINK cycle

The Reduded POWERLINK Cycle shall be robust to collisions. Collisions shall be resolved by
CSMA/CD. In case of collision, the next Reduced POWERLINK Cycle shall start after a timeout given
by the double length of a maximum size ethernet frame (1518 Bytes).

4.2.4.3 POWERLINK Cycle Timing

Fig. 25, Fig. 26 and Fig. 27 show the timing of the isochronous POWERLINK cycle. The figures show
a system of three nodes. The MN is physically located between two isochronously accessed CNs.

The figures are a schematic approach. They are valid for the NMT states
NMT_MS_READY_TO_OPERATE and NMT_MS_OPERATIONAL or
NMT_CS_READY_TO_OPERATE and NMT_CS_OPERATIONAL. The amount of time shown does
not reflect the realistic timing relationships of a real system.

Fig. 25 shows the typical sequence of messages in the isochronous phase. The PRes frames from
one CN are received by the other CN (cross traffic). Fig. 26 depicts the timing of a transmission of an
asynchronous frame by a CN, Fig. 27 the less critical case of asynchronous transmission by the MN.

Managing Node (MN)

Controlled Nodes (CNs)

Asynchronous Phase

Id
le

 P
h

a
s
e

SoA

AsyncSend

Asynchronous Phase

Id
le

 P
h

a
s
e

SoA

AsyncSend

Asynchronous Phase

Id
le

 P
h

a
s
e

SoA AsyncSend

Async

Phase

Id
le

 P
h

a
s
e

SoA

Asynchronous Phase

Id
le

 P
h

a
s
e

SoA

AsyncSend

EPSG DS 301 V1.5.1 -48-

Tab. 4 provides the description of the timing parameters introduced by the figures, the source of the
data, special handling of the data and object dictionary entries containing the parameters.

The node located verifications proposed by Tab. 4 are optional on the node if not mentioned
otherwise. A POWERLINK network configuration tool shall perform all the verifications during
configuration process.

Application hint:
The timing parameters introduced by this chapter allows a sophisticated fine tuning of the cycle timing,
required by notably cycle time sensitive high end applications.
The majority of applications will apply default values for most of the parameters. Only a few variables
will remain to be setup to configure a typical POWERLINK network.

Fig. 25. POWERLINK cycle timing, start phase and isochronous phase

t c
y
c
le

_
C

N
1

t c
y
c
le

_
C

N
2

tSoC-PReq_CN2

CN2
MN Timing

Parameters

tPReq-PRes_CN1_MN

MN

t c
y
c
le

_
M

N

tPReq-PRes_CN2_MN

CN1
CN2 Timing
Parameters

CN1 Timing
Parameters

tPRes-PReq_CN2

tPRes-SoA_CN2

tSoA

S
o

C

S
o

C

S
o

C

tSoC

tSoC-PReq_MN

P
R

e
q

P
R

e
q

tPReq_CN1_MN

P
R

e
q

 not

addressed

tpropag_CN2

tSoC

tpropag_CN1

tSoC

tSoC-PReq_CN1

tPReq_CN1

tPReq-PRes_CN1

tPResTx_CN1

P
R

e
s

P
R

e
s

P
R

e
s

tPResRx_CN1_MN

tPRes-PReq_MN

tPReq_CN2_MN

P
R

e
s

tPResRx_CN1_CN2

P
R

e
q

P
R

e
q

tPReq_CN2

P
R

e
s

tPReq-PRes_CN2

tPRes_CN2_CN2

tPResRx_CN2_MN

P
R

e
s

tPRes-PRes_MN

tPResTx_MN

tPRes-SoA_MN

tSoA

P
R

e
s

P
R

e
s

P
R

e
s

S
o

A

S
o

A

tPResRx_MN_CN2

S
o

A

tPRes-SoA_CN1

tSoA

tPResRx_MN_CN1

tPResRx_CN2_CN1

tPRes-PRes_CN1

max. Distance

EPSG DS 301 V1.5.1 -49-

Hint: ASnd refers to POWERLINK ASnd frames and non-POWERLINK frames

Fig. 26. POWERLINK cycle timing, asynchronous phase, AsyncSend transmission by CN

Hint: ASnd refers to POWERLINK ASnd frames and non-POWERLINK frames

Fig. 27. POWERLINK cycle timing, asynchronous phase, AsyncSend transmission by MN

tidle_CN2

tASndRx-SoC_MN

tidle_MN

CN2 Timing
Parameters

CN1 Timing
Parameters

tSoC

max. Distance

tSoC

S
o

C

S
o

C

tASndRx

tSoA-ASndRx_MN

tSoA

MN Timing
Parameters

S
o

A

S
o

A

S
o

A

A
S

n
d

A
S

n
d

A
S

n
d

S

o
C

tSoA

tSoA

tASndRx

tASndTx

tSoC

tASndRx-SoC_CN2

tidle_CN1

CN2 MN CN1

t c
y
c
le

_
M

N

t c
y
c
le

_
C

N
2

tSoA-ASndTx_CN1

t c
y
c
le

_
C

N
1

tASndRx-SoC_CN1

 CN2 Timing
Parameters

CN1 Timing
Parameters

MN Timing
Parameters

tSoA

tSoA-ASndTx_MN

tASndTx

tidle_MN

tSoC

CN2 MN CN1

S
o

A

S
o

A

A
S

n
d

A
S

n
d

S
o

C

S
o

C

S
o

C

t c
y
c
le

_
M

N

t c
y
c
le

_
C

N
2

tSoA

tSoA-ASndRx_CN2

tASndRx

tidle_CN2

tASndRx-SoC_CN2

tSoC

t c
y
c
le

_
C

N
1

tSoA

tSoA-ASndRx_CN1

tASndRx

tidle_CN1

tASndRx-SoC_CN1

tSoC

S
o

A

A
S

n
d

tASndRx-SoC_MN

EPSG DS 301 V1.5.1 -50-

No Parameter Description Data Source Handling1 Index

1 tcycle_MN,
tcycle_CNn

length of POWERLINK isochronous
cycle

system configuration MN may verify before isochronous
access to CNn:
tcycle_MN = tcycle_CNn

NMT_CycleLen_U32

2 tSoC SoC frame time consumption constant
tSoC = C_DLL_T_MIN_FRAME +
C_DLL_T_PREAMBLE

-- --

3 tpropag_CNn signal propagation time MN → CNn
and vice versa

system configuration tpropag_CNn = (tPReq-PRes_CNn_MN –
tPReq-PRes_CNn) / 2

--

4 tSoC-PReq_MN delay between end of SoC
transmission and start of PReq
transmission

system configuration depends on implementation of NMT_MNCycleTiming_REC. WaitSoCPReq:

a. tSoC-PReq_MN = max
(tSoC-PReq_CNn , tSoC-PReqMin_MN)

b. tSoC-PReq_MN = tSoC-PReqMin_MN

a. NMT_MNCycleTiming_REC.
WaitSoCPReq

b. --

5 tSoC-PReqMin_MN MN minimum delay between end of
SoC transmission and start of PReq
transmission

MN device description
D_NMT_MNSoC2PReq_U32

tSoC-PReqMin_MN  C_DLL_T_IFG --

6 tSoC-PReq_CNn minimum delay required by CNn
between end of SoC reception and
start of PReq reception

CNn device description
D_NMT_CNSoC2PReq_U32

tSoC-PReq_CNn  C_DLL_T_IFG --

7 tPReq_CNn_MN

tPReq_CNn

time consumption of PReq frame to be
transmitted to CNn

tPReq_CNn_MN = (tPReqPL_CNn_MN +
C_DLL_T_EPL_PDO_HEADER +
C_DLL_T_ETH2_WRAPPER) * 8 *
C_DLL_T_BITTIME +
C_DLL_T_PREAMBLE

-- --

8 tPReqPL_CNn_MN payload of PReq frame to be
transmitted to CNn

system configuration MN may verify at start up:

tPReqPL_CNn_MN  tPReqPLMax_MN

MN may verify before isochronous
access to CNn:
tPReqPL_CNn_MN = tPReqPL_CNn

NMT_MNPReqPayloadLimitList_AU16
[NodeIDCNn]

9 tPReqPLMax_MN size of MN isochronous frame transmit
buffer (referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrTxMaxPayload_U16

10 tPReqPL_CNn payload of PReq frame expected by
CNn

system configuration CNn may verify at start up:

tPReqPL_CNn  tPReqPLMax_CNn

NMT_CycleTiming_REC.
PReqActPayloadLimit_U16

1 The node located verifications are optional if not mentioned otherwise. A configuration tool shall perform the verifications during network configuration process.

EPSG DS 301 V1.5.1 -51-

No Parameter Description Data Source Handling1 Index

11 tPReqPLMax_CNn size of CNn isochronous frame receive
buffer (referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrRxMaxPayload_U16

12 tPReq-PRes_CNn delay between end of PReq reception
and start of PRes transmission

system configuration tPReq-PRes_ CNn  C_DLL_T_IFG NMT_CycleTiming_REC.
PResMaxLatency_U32

13 tPResTx_CNn

tPResRx_CNn_MN

tPResRx_CNn_ CNm

time consumption of PRes to be
transmitted by CNn

tPResTx_CNn = (tPResPLTx_CNn +
C_DLL_T_EPL_PDO_HEADER +
C_DLL_T_ETH2_WRAPPER) * 8 *
C_DLL_T_BITTIME +
C_DLL_T_PREAMBLE

-- --

14 tPResPLTx_CNn payload of PRes to be transmitted by
CNn

system configuration CNn may verify at start up:

tPResPLTx_CNn  tPResPLTxMax_CNn

NMT_CycleTiming_REC.
PResActPayloadLimit_U16

15 tPResPLTxMax_CNn size of CNn PRes frame transmit buffer
(referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrTxMaxPayload_U16

16 tPReq-PRes_CNn_MN delay timeout between end of
transmission of PReq to CNn and start
of reception of PRes from CNn

system configuration if 1st device polled after SoC depends on
implementation of
NMT_MNCycleTiming_REC.
WaitSoCPReq
(cf. Tab. 4, Line 4):
a. tPReq-PRes_CNn_MN =

 tPReq-PRes_CNn +
 2 * tpropag_CNn

b. tPReq-PRes_CNn_MN =
 max (tSoC-PReq_CNn) +
 tPReq-PRes_CNn +
 2 * tpropag_CNn

else
tPReq-PRes_CNn_MN = tPReq-PRes_CNn

+ 2 * tpropag_CNn

used by CN response supervision of
Error Handling DLL

depends on implementation of
NMT_MNCycleTiming_REC.
WaitSoCPReq
(cf. Tab. 4, Line 4)

a. NMT_MNCNPResTimeout_AU32

[NodeIDCNn]

b. NMT_MNCNPResTimeout_AU32

[NodeIDCNn],

NMT_MNCycleTiming_REC.
WaitSoCPReq

17 tPResPLRx_CNn_MN payload of PRes frame from CNn
expected by MN

system configuration MN may verify at start up:

tPResPLRx_CNn_MN  tPResPLRxMax_MN

MN may verify before isochronous
access to CNn:
tPResPLRx_CNn_MN = tPResPLTx_CNn

NMT_PresPayloadLimitList_AU16

[NodeIDCNn]

EPSG DS 301 V1.5.1 -52-

No Parameter Description Data Source Handling1 Index

18 tPResPLRxMax_MN size of MN PRes frame receive buffer
(referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrRxMaxPayload_U16

19 tPResPLRx_CNm_CNn payload of PRes frame from CNm
expected by CNn

system configuration CNn may verify at start up:

tPResPLRx_CNm_CNn  tPResPLRxMax_CNn
2

and

tPResPLRx_CNm_CNn  tPResPLTx_CNm

NMT_PresPayloadLimitList_AU16

[NodeIDCNm]

20 tPResPLRxMax_CNn size of CNn PRes frame receive buffer
(referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrRxMaxPayload_U16

21 tPRes-PReq_MN delay between end of PRes reception
and start of PReq transmission

MN device description
D_NMT_MNPRes2PReq_U32

tPRes-PReq_MN  C_DLL_T_IFG --

22 tPRes-PReq_CNn minimum delay between end of PRes
reception and start of PReq reception

CNn implementation requirement every CN shall support
tPRes-PReq_MN = C_DLL_T_IFG

--

23 tPRes-PRes_MN delay between end of reception of
PRes from CNn and start of
transmission of PRes by MN

MN device description
D_NMT_MNPRes2PRes_U32

tPRes-PRes_MN  C_DLL_T_IFG --

24 tPRes-PRes_CNn minimum delay between end of
reception of PRes from CNn and start
of reception of PRes from MN 3

CNn implementation requirement every CN shall support
tPRes-PRes_MN = C_DLL_T_IFG

--

25 tPResTx_MN

tPResRx_MN_CNn
time consumption of PRes frame to be
transmitted by MN

tPResTx_MN_MN = (tPResPLTx_MN_MN +
C_DLL_T_EPL_PDO_HEADER +
C_DLL_T_ETH2_WRAPPER) * 8 *
C_DLL_T_BITTIME +
C_DLL_T_PREAMBLE

-- --

26 tPResPLTx_MN_MN payload of PRes frame to be
transmitted by MN

system configuration MN may verify at start up:

tPResPLTx_MN_MN  tPResPLTxMax_MN
NMT_PresPayloadLimitList_AU16

[NodeIDMN]

27 tPResPLTxMax_MN size of MN PRes frame transmit buffer
(referring to payload)

system configuration -- NMT_CycleTiming_REC.
IsochrTxMaxPayload_U16

28 tPResPLRx_MN_CNn payload of PRes frame from MN
expected by CNn

system configuration CNn may verify at start up:

tPResPLRx_MN_CNn  tPResPLRxMax_CNn
NMT_PresPayloadLimitList_AU16

[NodeIDMN]

2 see 7.2.1.5.5
3 For future development, CNs shall also support the reception of several PRes from other CNs without intermitting time gaps.

EPSG DS 301 V1.5.1 -53-

No Parameter Description Data Source Handling1 Index

29 tPRes-SoA_MN if PRes transmission by MN:
delay between end of PRes
transmission by MN and start of
transmission of SoA by MN

else
delay between end of reception of
PRes from CNn and start of
transmission of SoA by MN

MN device description
D_NMT_MNPResTx2SoA_U32
resp.
D_NMT_MNPResRx2SoA_U32

tPRes-SoA_MN  C_DLL_T_IFG --

30 tPRes-SoA_CNn minimum delay between end of
reception of PRes and start of
reception of SoA

CNn implementation requirement every CN shall support
tPRes-SoA_MN = C_DLL_T_IFG

--

31 tSoA SoA frame time consumption constant
tSoA = C_DLL_T_MIN_FRAME +
C_DLL_T_PREAMBLE

-- --

32 tSoA-AsndTx_CNn delay between end of SoA reception
and start of AsyncSend transmission

system configuration tSoA-AsndTx_CNn  C_DLL_T_IFG NMT_CycleTiming_REC.
ASndMaxLatency_U32

33 tASndTx

tASndRx

time consumption of asynchronous
frame to be transmitted

tASndTx = (tASndPLTx +
C_DLL_T_ETH2_WRAPPER) * 8 *
C_DLL_T_BITTIME +
C_DLL_T_PREAMBLE

-- --

34 tASndPLTx payload of asynchronous frame to be
transmitted

application Node shall verify:

tASndPLTx  tASndMTU_MN/CNn

--

35 tASndPLRx payload of received asynchronous
frame

application -- --

36 tASndMTU_MN/CNn maximum size of asynchronous frame
to be transmitted (referring to payload)

system configuration Node may verify:

tASndMTU_MN/CNn  tASndPLTxMax_MN/CNn

 and

tASndMTU_MN/CNn  tASndPLRxMax_MN/CNn

MN may verify:
tASndMTU_MN = tASndMTU_CNn

NMT_CycleTiming_REC.
AsyncMTU_U16

37 tASndPLTxMax_MN/CNn size of AsyncSend frame transmit
buffer (referring to payload)

system configuration -- NMT_CycleTiming_REC.
AsyncMTU_U16

38 tASndPLRxMax_MN/CNn size of MN AsyncSend frame receive
buffer (referring to payload)

system configuration -- NMT_CycleTiming_REC.
AsyncMTU_U16

EPSG DS 301 V1.5.1 -54-

No Parameter Description Data Source Handling1 Index

39 tSoA-AsndRx_MN delay timeout between end of
transmission of SoA and start of
reception of AsyncSend from that CN,
that requires the most time for signal
travel and response to SoA

system configuration tSoA-AsndRx_MN = max

(tSoA_AsndTx_CNn + 2 * tpropag_CNn)

used by CN response supervision of
Error Handling DLL in case of
SoA.StatusRequest or SoA.IdentRequest

NMT_MNCycleTiming_REC

40 tidle_MN, tidle_CNn idle time before next cycle system configuration, time
consumption by asynchronous traffic

MN may verify:

tidle_MN  tASndRx-SoC_MN

CNn may verify:

tidle_CNn  tASndRx-SoC_CNn

--

41 tASndRx-SoC_MN minimum delay between end of
reception of AsyncSend and start of
transmission of SoC

MN device description

D_NMT_MNASnd2SoC_U32

tASndRx-SoC_MN  C_DLL_T_IFG --

42 tASndRx-SoC_CNn minimum delay between end of
reception of AsyncSend and start of
reception of SoC

CNn implementation requirement every CN shall support
tASndRx-SoC_MN = C_DLL_T_IFG

--

43 tSoA-AsndTx_MN

tSoA-AsndRx_CN
delay between end of transmission of
SoA and start of transmission of
AsyncSend by MN

MN device description
D_NMT_MNSoA2ASndTx_U32

tSoA-AsndTx_MN  C_DLL_T_IFG --

 POWERLINK cycle timing parameters

Hint: Tab. 4 does not differentiate between frame size and the time required to transmit the frame. Both quantities shall be regarded to be equivalent. The
transmission time shall be calculated from the size by multiply with transmit time per byte.
When regarding the supporting indices, the frame type specific protocoll overhead in frame size shall be considered by time calculation (see 4.6).

EPSG DS 301 V1.5.1 -55-

4.2.4.3.1 POWERLINK Cycle Timing Error Handling
POWERLINK cycle timing may be safeguarded at runtime by the node located verifications claimed by Tab. 4. Tab. 5 provides error codes to be issued, when the
respective verification fails and the handling of the errors.

All errors shall be stored at the local error history (see 6.5). Errors identified by the CN shall be entered to the Emergency Queue of the Error Signaling. Mode of
all errors shall be 3h (refer 6.5.1). The errors shall be assigned to the POWERLINK profile (002h).

EPSG DS 301 V1.5.1 -56-

Tab. 4
No

Verification Error Code Error History
Additional Information

Error Handling

1 MN may verify before isochronous access to CNn:
tcycle_MN = tcycle_CNn

E_NMT_CYCLE_LEN CNn Node ID do not access CNn isochronously

8 MN may verify at start up:

tPReqPL_CNn_MN  tPReqPLMax_MN

E_NMT_PREQ_LIM -- do not change NMT state to
NMT_MS_PRE_OPERATIONAL_2

8 MN may verify before isochronous access to CNn:
tPReqPL_CNn_MN = tPReqPL_CNn

E_NMT_PREQ_CN CNn Node ID do not access CNn isochronously

10 CNn may verify at start up:

tPReqPL_CNn  tPReqPLMax_CNn

E_NMT_PREQ_LIM -- do not change NMT state to
NMT_CS_PRE_OPERATIONAL_2

14 CNn may verify at start up:

tPResPLTx_CNn  tPResPLTxMax_CNn

E_NMT_PRES_TX_LIM -- do not change NMT state to
NMT_CS_PRE_OPERATIONAL_2

16 see Error Handling DLL (see 4.7.6.3)

17 MN may verify at start up:

tPResPLRx_CNn_MN  tPResPLRxMax_MN

E_NMT_PRES_RX_LIM CNn Node ID do not change NMT state to
NMT_MS_PRE_OPERATIONAL_2

17 MN may verify before isochronous access to CNn:
tPResPLRx_CNn_MN = tPResPLTx_CNn

E_NMT_PRES_CN CNn Node ID do not access CNn isochronously

19 CNn may verify at start up:

tPResPLRx_CNm_CNn  tPResPLRxMax_CNn

and

tPResPLRx_CNm_CNn  tPResPLTx_CNm

E_NMT_PRES_RX_LIM CNm Node ID CNn: do not read PRes from CNm

26 MN may verify at start up:

tPResPLTx_MN_MN  tPResPLTxMax_MN
E_NMT_PRES_TX_LIM -- do not change NMT state to

NMT_MS_PRE_OPERATIONAL_2

28 CNn may verify at start up:

tPResPLRx_MN_CNn  tPResPLRxMax_CNn
E_NMT_PRES_RX_LIM MN Node ID CNn: do not read PRes from MN

34 Node shall verify:

tASndPLTx  tASndMTU_MN/CNn

E_NMT_ASND_TX_LIM -- do not transmit frame

36 Node may verify:

tASndMTU_MN/CNn  tASndPLTxMax_MN/CNn

 and

tASndMTU_MN/CNn  tASndPLRxMax_MN/CNn

E_NMT_ASND_MTU_LIM -- do not change NMT state to
NMT_MS_PRE_OPERATIONAL_2 or
NMT_CS_PRE_OPERATIONAL_2

36 MN may verify:
tASndMTU_MN = tASndMTU_CNn

E_NMT_ASND_MTU_DIF CNn Node ID do not change NMT state to
NMT_MS_PRE_OPERATIONAL_2 or
NMT_CS_PRE_OPERATIONAL_2

39 see Error Handling DLL (see 4.7.6.4)

EPSG DS 301 V1.5.1 -57-

Tab. 4
No

Verification Error Code Error History
Additional Information

Error Handling

40 MN may verify:

tidle_MN  tASndRx-SoC_MN

E_NMT_IDLE_LIM -- do not change NMT state to
NMT_MS_PRE_OPERATIONAL_2

40 CNn may verify:

tidle_CNn  tASndRx-SoC_CNn

E_NMT_IDLE_LIM -- do not change NMT stateto
NMT_CS_PRE_OPERATIONAL_2

 POWERLINK cycle timing verification: Error codes and handling

EPSG DS 301 V1.5.1 -58-

4.2.4.4 Multiplexed Slot Timing

Fig. 28. Multiple slot assignment

Fig. 28 demonstrates the assignment of the multiplexed slots to CNs. The multiplexed slots are
identified by “Mux 1” and “Mux 2”.

The assignment is controlled by the object dictionary entries
NMT_CycleTiming_REC.MultiplCycleCnt_U8 and NMT_MultiplCycleAssign_AU8.

NMT_CycleTiming_REC.MultiplCycleCnt_U8 defines the length of the multiplexed cycle in
POWERLINK cycle counts. If NMT_CycleTiming_REC.MultiplCycleCnt_U8 is zero, the multiplexed
access method shall not be applied, e.g. all CNs shall be accessed continuously.

The respective sub-index of NMT_MultiplCycleAssign_AU8 defines the cycle count inside the
multiplexed cycle, when the respective CN shall be polled by the MN. If the sub-index is zero, the CN
shall be accessed continuously.

The order in which the CNs are polled by the MN may be set up by object
NMT_IsochrSlotAssign_AU8.

The number of slots per isochronous cycle can not be programmed directly by the configuration. It is
derived from the maximum number of CN assignments that are cumulated to a cycle.

The following table shows the parameter values that contol the system in Fig. 28:

NMT_CycleTiming_REC.MultiplCycleCnt_U8 3

NMT_MultiplCycleAssign_AU8 [NodeIDa] 1

NMT_MultiplCycleAssign_AU8 [NodeIDb] 2

NMT_MultiplCycleAssign_AU8 [NodeIDc] 2

NMT_MultiplCycleAssign_AU8 [NodeIDd] 3

NMT_MultiplCycleAssign_AU8 [NodeIDx] 0

NMT_MultiplCycleAssign_AU8 [NodeIDy] 0

4.2.4.5 CN Cycle State Machine

4.2.4.5.1 Overview
The cycle state machine of the CN (DLL_CS) handles communication within a POWERLINK Cycle.
The DLL_CS tracks the order of the frames received within a cycle and reacts as described below.
The expected order of frame reception is dependant on the NMT_CS state (see 4.2.4.5.4)

If an error in the communication is detected by the DLL_CS, an error event to DLL Error Handling will
be generated. The DLL_CS will attempt to uphold communication regardless of any errors.

Node

d

Multiplexed

slot

assignment
--

SoC

MC-Flag

1

0

cycle

count
1 2 3

multiplexed cycle

3

next

multipl.

cycle

prev.

multipl.

cycle

Node

b

Node

c

Node

a

contin.

a
s
y
n
c
h
r.

p
h
a
s
e

M
u
x
 1

M
u
x
 2

isochr. phase

isochronous POWERLINK cycle

id
le

--

contin.

a
s
y
n
c
h
r.

p
h

a
s
e

M
u
x
 1

M
u
x
 2

isochr. phase

isochronous POWERLINK cycle

id
le

contin.

a
s
y
n
c
h
r.

p
h
a
s
e

M
u
x
 1

M
u
x
 2

isochr. phase

isochronous POWERLINK cycle

id
le

1

id
le

Node

x, y

Node

x, y

Node

x, y

S
o
C

S
o
C

S
o
C

S
o
C

EPSG DS 301 V1.5.1 -59-

4.2.4.5.2 States

• DLL_CS_NON_CYCLIC

This state means that the isochronous communication isn’t started yet or the connection was
lost. It depends on the current state of the NMT_CS, which events are processed and which will
be ignored.

• DLL_CS_WAIT_SOC

The state machine waits in this state after receiving the SoA frame until the beginning of the
next cycle (triggered by a SoC frame from the MN). Ethernet frames of any type may be
received between the SoA and the SoC frames (asynchronous phase).

• DLL_CS_WAIT_PREQ

After the beginning of the cycle, the state machine waits in this state for a PReq frame. After
PReq reception the CN shall respond with a PRes Frame. The CN may receive and process
PRes Frames from other CN whilst in this state.

• DLL_CS_WAIT_SOA

After reception of a PReq frame the state machine waits for the reception of a SoA frame.

Reception of a SoA frame confirms the end of the isochronous phase. The CN may receive and
process PRes Frames from other nodes whilst in this state.

4.2.4.5.3 Events

• DLL_CE_SOC

This Event signifies that a POWERLINK SoC frame was received from the MN. It marks the
beginning of a new cycle and simultaneously the beginning of the isochronous phase of the
cycle.

• DLL_CE_PREQ

This Event signifies that a POWERLINK PReq frame was received from the MN.

• DLL_CE_PRES

The CN may be configured to process the PRes frames of other CN’s (cross traffic). Every time
a PRes frame is received, a DLL_CE_PRES event is generated

• DLL_CE_SOA

This event signifies that a SoA frame was received from the MN. It marks the end of the
isochronous phase of the cycle and the beginning of the asynchronous phase.

• DLL_CE_ASND

This event signifies that an ASnd frame or a non POWERLINK frame has been received. Since
the frame types during the asynchronous phase are not limited to POWERLINK types, this
event is generated on reception of all legal Ethernet frames.

• DLL_CE_SOC_TIMEOUT

This event signifies that a SoC frame of the MN was lost. It occurs, when the SoC timeout
supervision detects a missed SoC frame.

4.2.4.5.4 Dependance of the NMT_CS on the DLL_CS
The state of the NMT_CS represents the network state and is used as a qualifier for certain transitions
of the DLL_CS. Because the NMT state influences the behaviour of the DLL_CS we could filter out the
relevant DLL_CS transitions for a single NMT state, so we see only DLL_CS transitions which are
possible in a distinct NMT state.

Notation comment:
For clarity purposes the NMT_CS states as conditions for DLL_CS transitions have been omitted.
Because of comprehension and clarity purposes, the relevant transitions of single NMT_CS states are
filtered out and displayed within an own diagram as an “operation mode” of the DLL_CS. Some

EPSG DS 301 V1.5.1 -60-

operation modes are nearly similar, so they are shown within a single figure and the differencies are
described in the transition table.

4.2.4.5.4.1 State NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE,
NMT_CS_BASIC_ETHERNET,
NMT_CS_PRE_OPERATIONAL_1

In this NMT states the DLL_CS is in state DLL_CS_NON_CYCLIC.

For description of these NMT states see 7.1.4.

Fig. 29. CN cycle state machine, states NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE,
NMT_CS_PRE_OPERATIONAL_1, NMT_CS_BASIC_ETHERNET

4.2.4.5.4.1.1 Transitions in other NMT states

DLL_CT6,
DLL_CT5

DLL_CE_* [] / NMT state specific reaction

The cycle state machine is not active in the NMT states NMT_GS_INITIALISATION,
NMT_CS_NOT_ACTIVE, NMT_CS_PRE_OPERATIONAL_1 and NMT_CS_BASIC_ETHERNET.
This means, after the initial transition to DLL_CS_NON_CYCLIC its state does not influence the

reaction of the CN. The reactions are defined by the state of the NMT_CS only. (see 7.1.4)

DLL_CT11 DLL_CE_* [] / NMT state specific reaction

This transition is triggered by the NMT state machine when changing from
NMT_CS_PRE_OPERATIONAL_1 to NMT_CS_PRE_OPERATIONAL_2 (NMT_CT4)

 Transitions for CN cycle state machine, states NMT_GS_INITIALISATION,
NMT_CS_NOT_ACTIVE, NMT_CS_PRE_OPERATIONAL_1,
NMT_CS_BASIC_ETHERNET

DLL_CS
NON_CYCLIC

DLL_CS_

WAIT_SOC

DLL_CS_

WAIT_PREQ

DLL_CS_

WAIT_SOA

(DLL_CT5)
mode specific

reaction

(DLL_CT6)
mode specific

reaction

DLL_CS_CYCLIC

(DLL_CT11)
mode specific

reaction

EPSG DS 301 V1.5.1 -61-

4.2.4.5.4.2 State NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE, NMT_CS_OPERATIONAL,
NMT_CS_STOPPED

Fig. 30. CN cycle state machine (DLL_CS), valid for NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE, NMT_CS states NMT_CS_OPERATIONAL

In the NMT_CS_OPERATIONAL and NMT_CS_READY_TO_OPERATE states, there are three
mandatory frames for a non-multiplexed node, which shall occur each cycle in the specified order:
SoC, PReq and SoA. If a node is accessed multiplexed, only the SoC and SoA frames are mandatory
for every cycle. The PReq frame is only mandatory in the multiplexed cycle the node was configured
for.

In the NMT_CS_PRE_OPERATIONAL_2 state, there are two mandatory frames, which shall occur
each cycle in the order SoC and SoA. The PReq frame may occur between SoC and SoA.
In the NMT_CS_PRE_OPERATIONAL_2 state the timeout detection of the SoC is disabled because
the node may not be configured yet.

The cycle state machine keeps track of all receive frames to detect frame losses. Receive frames shall
be accepted by the CN independent of the current cycle state machine state.

4.2.4.5.4.2.1 Transitions

DLL_CT1 DLL_CE_SOC [] / synchronise the start of cycle and generate a SoC trigger to the application

The occurrence of the SoC event indicates the beginning of a new POWERLINK cycle. The
asynchronous phase of the previous cycle ends and the isochronous phase of the next cycle begins.

DLL_CT2 DLL_CE_PREQ [] / Process the PReq frame and send a PRes frame

The PReq event occurs within the isochronous phase of communication.

DLL_CS_
WAIT_PREQ

DLL_CS_
WAIT_SOA

(DLL_CT8)
DLL_CE_SOA

(DLL_CT1)
DLL_CE_SOC

(DLL_CT2)
DLL_CE_PREQ

(DLL_CT3)
DLL_CE_SOA
DLL_CE_PREQ

DLL_CE_SOC_TIMEOUT

(DLL_CT4)
DLL_CE _PREQ
DLL_CE_PRES
DLL_CE_SOA

DLL_CE_ASND

(DLL_CT7)
DLL_CE_PRES
DLL_CE_SOC

DLL_CE_ASND

(DLL_CT9)
DLL_CE_SOC

(DLL_CT10)
DLL_CE_PRES
DLL_CE_ASND

DLL_CS_CYCLIC

DLL_CS_
WAIT_SOC

DLL_CE_SOC_TIMEOUT

DLL_CE_SOC_TIMEOUT

EPSG DS 301 V1.5.1 -62-

DLL_CT3 DLL_CE_SOA [] / process SoA, if allowed send an ASnd frame or a non POWERLINK frame
DLL_CE_SOC_TIMEOUT [CN NMT state != NMT_CS_PRE_OPERATIONAL_2] / Synchronise to the
next SoC, report error DLL_CEV_LOSS_SOC and DLL_CEV_LOSS_SOA
DLL_CE_PREQ [] / accept the PReq frame and send a PRes frame, report error
DLL_CEV_LOSS_SOC and DLL_CEV_LOSS_SOA

The DLL_CE_SOA event denotes the end of the isochronous phase and the beginning of the
asynchronous phase of the current cycle. If the SoA frame includes an invitation to the CN, the CN
may respond with one valid frame.
The occurrence of a DLL_CE_PREQ signifies that the expected SoA and SoC frames were lost. The
DLL Error Handling shall be notified.
In case of a DLL_CE_SOC_TIMEOUT event happened in NMT_CS_READY_TO_OPERATE or
NMT_CS_OPERATIONAL, SoA and SoC frames may have been lost. The DLL Error Handling shall

be notified.

DLL_CT4 DLL_CE_ASND [] / process frame
DLL_CE_PREQ [] / respond with PRes frame, report error DLL_CEV_LOSS_SOC
DLL_CE_PRES [] / report error DLL_CEV_LOSS_SOC
DLL_CE_SOA [] / report error DLL_CEV_LOSS_SOC
DLL_CE_SOC_TIMEOUT [CN NMT state != NMT_CS_PRE_OPERATIONAL_2] / report error
DLL_CEV_LOSS_SOC

If an ASnd frame has been received it shall be processed. The state shall not be changed. Although
only one asynchronous frame per cycle is allowed, the state machine of the CN does not limit the
amount of received frames within the asynchronous phase of the cycle.
If a SoA, PReq or PRes frame is received, there may be a loss of a SoC frame in between. The DLL
Error Handling shall be notified with the error DLL_CEV_LOSS_SOC. This event shall be triggered
once per cycle only.
In case of a DLL_CE_SOC_TIMEOUT event happened in NMT_CS_READY_TO_OPERATE or
NMT_CS_OPERATIONAL, SoA and SoC frames may have been lost. The DLL Error Handling shall
be notified.
If a PReq frame was received, the incoming data may be ignored and a PRes frame shall be sent.

DLL_CT7 DLL_CE_PRES [] / process PRes frames (cross traffic)
DLL_CE_SOC [] / synchronise to the cycle begin, report error DLL_CEV_LOSS_SOA

DLL_CE_ASND [] / report error DLL_CEV_LOSS_SOA

If a PRes frame of another CN was received (cross traffic), the PRes frame shall be processed (if
configured to do so). The CN waits for either a PRes from another CN (cross traffic) or a PReq frame.
The reaction to a SoC frame is state independent. The state machine synchronises to the start of a
new cycle.

ASnd frames and non POWERLINK frames shall be processed during the isochronous phase.

DLL_CT8 DLL_CE_SOA [CN NMT state = NMT_CS_STOPPED] / process SoA, if invited, transmit a legal
Ethernet frame
DLL_CE_SOA [CN = multiplexed] / process SoA; if invited, transmit a legal Ethernet frame
DLL_CE_SOA [CN != multiplexed] / process SoA; if invited, transmit a legal Ethernet frame,
additionally report error DLL_CEV_LOSS_PREQ
DLL_CE_SOC_TIMEOUT [CN NMT state != NMT_CS_PRE_OPERATIONAL_2] / Synchronise on
the next SoC, report error DLL_CEV_LOSS_SOC and DLL_CEV_LOSS_SOA

If the CN is in the NMT_CS_OPERATIONAL or NMT_CS_READY_TO_OPERATE the CN will
assume a LOSS_OF_PREQ if the number of cycles since the last PReq is greater than that
expected. (1 for non multiplexed CNs, n for multiplexed CNs where n is
NMT_CycleTiming_REC.MultiplCycleCnt_U8)
In case of a DLL_CE_SOC_TIMEOUT event happened in NMT_CS_READY_TO_OPERATE;
NMT_CS_OPERATIONAL or NMT_CS_STOPPED, SoA and SoC frames may have been lost. On
non-stopped and non-multiplexed nodes or if a multiplexed node should have been requested this
cycle, the PRes frame was additionally lost. The DLL Error Handling shall be notified.

DLL_CT9 DLL_CE_SOC [] / synchronise on the SoC, report error DLL_CEV_LOSS_SOA

The reaction on reception of a SoC is independent of the NMT state, the state machine assumes that
an expected frame was lost and (re-)synchronises on the SoC.

DLL_CT10 DLL_CE_PRES [] / process PRes frames (cross traffic)
DLL_CE_ASND [] / report error DLL_CEV_LOSS_SOA

The CN may process PRes of other CNs.
ASnd frames and non POWERLINK frames shall be accepted during the isochronous phase.

 Transitions for CN cycle state machine, states NMT_CS_OPERATIONAL,
NMT_CS_PRE_OPERATIONAL_2, NMT_CS_READY_TO_OPERATE

Common issues:

EPSG DS 301 V1.5.1 -63-

• Loss of frames will be detected when an unexpected frame was received or the
DLL_CE_SOC_TIMEOUT occurs.

• The Cycle State machine informs the NMT_CS of an error, which will then be processed by the
NMT_CS (see 7.1.4).

• DLL_CEV_LOSS_SOA and DLL_CEV_LOSS_PREQ are optional and may be omitted if not
supported by the DLL Error Handling

• The DLL error handling shall be notified only once for every real error event although the same
error may be detected more often in a cycle.
e.g. DLL_CEV_LOSS_SOC in DLL_CT4

4.2.4.6 MN Cycle State Machine

4.2.4.6.1 Overview
The cycle state machine of the MN (DLL_MS) shall manage the communication within a POWERLINK
cycle.

The DLL_MS generates the flow of the frames during a POWERLINK cycle and monitors the reaction
of the CNs. The flow order is NMT_MS state dependent (see 4.2.4.6.4).

Usually the CNs are synchronised by the reception of the SoC. This means the most significant
parameter for the synchronisation of the POWERLINK network is the timing accuracy of the event
DLL_ME_SOC_TRIG.

If an error in the communication is detected by the DLL_MS, an error event to DLL Error Handling will
be generated.

4.2.4.6.2 States

• DLL_MS_NON_CYCLIC

This state means that the cyclic communication is not started yet or was stopped by the
NMT_MS state machine (NMT state NMT_MS_PRE_OPERATIONAL_1). The state machine
waits here until the NMT state changes to NMT_MS_PRE_OPERATIONAL_2. It depends on
the current NMT state, which events will be processed and which will be ignored.

• DLL_MS_WAIT_SOC_TRIG

If the communication of the cycle is finished, the state machine remains in this state until the
next cycle begins with a DLL_ME_SOC_TRIG.

• DLL_MS_WAIT_PRES

After the sending of the PReq frame the state machine waits in this state for a response. The
waiting time is limited by a timeout.

• DLL_MS_WAIT_ASND

If a SoA with an Invite is sent, the state machine waits in this state until the asynchronous phase
ends with the event DLL_ME_SOC_TRIG.

In DLL_MS_NON_CYCLIC the event DLL_ME_SOA_TRIG shall be generated instead of
DLL_ME_SOC_TRIG.

If a ASnd is expected and the timeout NMT_MNCycleTiming_REC.AsyncSlotTimeout_U32
occurs, the error DLL_MEV_SOA_TIMEOUT shall be generated.

• DLL_MS_WAIT_SOA

If a SoA with an Invite is sent that is not to be answered, the MN waits in this state until the
timeout of the async phase elapsed or any Ethernet frame was received before the next
reduced POWERLINK cycle starts.

4.2.4.6.3 Events
The DLL_MS is triggered by events which are generated by an event handler. The DLL_MS has an
interface to:

• the hardware

• the NMT state machine

EPSG DS 301 V1.5.1 -64-

The event handler should serialize the events (it’s possible that a timeout occurs simultaneously with
an Ethernet frame receiving). The implementation of the interface to the hardware is out of the scope
of this specification.

• DLL_ME_PRES

This event signifies that a PRes frame was received.

• DLL_ME_PRES_TIMEOUT

This event is produced when the PRes frame was not (or not completely) received within a
preconfigured time.

• DLL_ME_ASND

This event means that an ASnd frame or an non POWERLINK frame was received.

• DLL_ME_ASND_TIMEOUT

This event is produced when the ASnd frame was not (or not completely) received within a
preconfigured time.

• DLL_ME_SOC_TRIG

This event triggers emission of the SoC frame and starts a new POWERLINK cycle. The timing
accuracy determines the synchronisation accuracy of the POWERLINK network.

• DLL_ME_SOA_TRIG

This event means that a new reduced POWERLINK cycle shall start. The event can either be
generated cyclically or directly after the reception of a requested ASnd message to continue the
reduced POWERLINK cycle as fast as possible.

4.2.4.6.4 Usage of the NMT_MS state by the DLL_MS
The state of the NMT_MS represents the network state and is used as a condition in some transitions
of the DLL_MS. Relevant DLL_MS transitions for a single NMT state could be filtered out.

A notation comment:

The transitions of DLL_MS could be displayed within a single diagram where the states of the
NMT_MS are conditions for the transitions. Because of comprehension and clarity purposes, the
relevant transitions of single NMT_MS states are filtered out and displayed within an own diagram as
an “operation mode” of the DLL_MS.

4.2.4.6.4.1 State NMT_GS_INITIALISATION, NMT_MS_NOT_ACTIVE
In these states the MN cycle state machine is not active. This means, prior to the initial transition to
DLL_MS_NON_CYCLIC its state does not influence the reaction of the MN. The reactions are defined
by the state of the NMT_MS.

4.2.4.6.4.2 NMT_MS_BASIC_ETHERNET
In this state the cycle state machine is not active. This means, prior to the initial transition to
DLL_MS_NON_CYCLIC its state does not influence the reaction of the MN. The reactions are defined
by the state of the NMT_MS.

4.2.4.6.4.3 State NMT_MS_PRE_OPERATIONAL_1
In the NMT_MS_PRE_OPERATIONAL_1 state, the cycle state machine of the MN generates the
Reduced POWERLINK Cycle and observes the behaviour of the CNs. Error handling is described in
chapter 4.6. The DLL_MS is in the DLL_MS_NON_CYCLIC mode.

EPSG DS 301 V1.5.1 -65-

Fig. 31. MN cycle state machine, state NMT_MS_PRE_OPERATIONAL_1

4.2.4.6.4.3.1 Transitions

DLL_MT10 DLL_ME_SOA_TRIG [async_in != 0 & no resp. expected] / send SoA with Invite
DLL_ME_SOA_TRIG [async_in = 0 & async_out != 0] / send SoA with Invite to MN and send ASnd
or non POWERLINK frame
DLL_ME_SOA_TRIG [async_in = 0 & async_out = 0] / send SoA

If there is an asynchronous transmission request from a CN, the MN sends a SoA message with
Invite. The next reduced POWERLINK cycle shall start after the asynchronous slot timeout elapsed
or any frame is received.
If there is outgoing asynchronous MN communication to be done in the current cycle, the MN sends
this frame directly after the SoA frame with an Invite to the MN itself. The next reduced
POWERLINK cycle shall start after transmission of the ASnd or non POWERLINK frame.
If there is no Invite for a CN and no ASnd or non POWERLINK frame from MN the next

DLL_ME_SOA_TRIG shall be generated after the asynchronous slot timeout.

DLL_MT11 DLL_ME_SOA_TRIG [async_in != 0 & resp. expected] / send SoA with Invite

After sending the SoA invite message to the CN, the MN changes to the state
DLL_MS_WAIT_ASND to detect transmission timeouts.

DLL_MT12 DLL_ME_SOA_TRIG | DLL_ME_ASND_TIMEOUT [async_in = 0] / send SoA, ASnd if available
DLL_ME_SOA_TRIG | DLL_ME_ASND_TIMEOUT [async_in != 0 & no resp. expected] / send SoA

with Invite

The waiting time ends with either a DLL_ME_SOA_TRIG or a DLL_ME_ASND_TIMEOUT
(configurable via NMT_MNCycleTiming_REC.AsyncSlotTimeout_U32). If a certain CN shall be
invited, the MN sends a SoA containing an invite for the node. If there is no CN to be invited, the
MN sends a SoA. If there is outgoing asynchronous communication to be done in the current cycle,
the MN sends this frame after the SoA frame. Afterwards the state changes to
DLL_MS_WAIT_SOA.
The error event DLL_MEV_ASND_TIMEOUT shall be generated.

DLL_MT13 DLL_ME_SOA_TRIG | DLL_ME_ASND_TIMEOUT [async_in != 0 & resp. expected] / send SoA
with Invite, report error DLL_MEV_ASND_TIMEOUT

A SoA message containing an Invite for a CN is transmitted. The MN stays in the state
MS_WAIT_ASND as an answer of the CN is expected.
The timeout event DLL_ME_ASND_TIMEOUT (configurable via
NMT_MNCycleTiming_REC.AsyncSlotTimeout_U32) shall generate DLL_MEV_ASND_TIMEOUT.

 Transitions for MN cycle state machine, state NMT_MS_PRE_OPERATIONAL_1

Abbreviations used in the transition table:

• „no resp. expected" means that there is no answer expected upon the async invite of the MN
(e.g. unicast message exchange)

• „async_in != 0" means that an invite must be sent in this cycle and an ASnd or a non
POWERLINK frame could be received.

• “async_out != 0” means that an ASnd must be send in this cycle after a SoA was sent.

Common issues:

• DLL_MEV_ASND_TIMEOUT is optional and may be omitted if not supported by the DLL Error
Handling

• If a StatusRequest was sent and the asynchronous slot time expires without receiving a
StatusResponse frame the DLL Error Handling will be notified with the error
DLL_MEV_LOSS_STATUSRESPONSE.

DLL_MS_

WAIT_SOA

DLL_MS_

WAIT_ASND

(DLL_MT11)

DLL_ME_SOA_TRIG

(DLL_MT10)

DLL_ME_SOA_TRIG

(DLL_MT13)

DLL_ME_ASND_TIMEOUT

DLL_ME_SOA_TRIG

DLL_MS_NON_CYCLIC

(DLL_MT12)

DLL_ME_ASND_TIMEOUT

DLL_ME_SOA_TRIG

EPSG DS 301 V1.5.1 -66-

4.2.4.6.4.4 State NMT_MS_OPERATIONAL,
NMT_MS_READY_TO_OPERATE and
NMT_MS_PRE_OPERATIONAL_2

In the NMT_MS_OPERATIONAL, NMT_MS_READY_TO_OPERATE and
NMT_MS_PRE_OPERATIONAL_2 state, the cycle state machine of the MN generates the
POWERLINK Cycle and observes the behaviour of the CNs. Error handling is described in chapter
4.6.

Fig. 32. MN cycle state machine, States NMT_MS_OPERATIONAL,
NMT_MS_READY_TO_OPERATE and NMT_MS_PRE_OPERATIONAL_2

4.2.4.6.4.4.1 Transitions

DLL_MT0 DLL_ME_SOC_TRIG [] / go to state DLL_MS_WAIT_SOC_TRIG

If the NMT state machine of the MN (NMT_MS) changes the mode to
NMT_MS_PRE_OPERATIONAL_2 the DLL_MS shall start the cycle timer (value configurable by
NMT_CycleLen_U32), which generates the DLL_ME_SOC_TRIG. The DLL_MS shall prepare the
system for the start of the first cycle.

DLL_MT1 DLL_ME_SOC_TRIG [isochr != 0] / send SoC, PReq

Immediately after DLL_ME_SOC_TRIG event occurred a SoC frame is sent, the communication with
the NMT state machine will be done. If there are isochronous frames to send, the first PReq will be
sent and a timer will be started to observe the response time (configurable via
NMT_MNCNPResTimeout_AU32[Node ID]).

DLL_MT2 DLL_ME_PRES [isochr != 0] / send next PReq
DLL_ME_PRES_TIMEOUT [isochr != 0] / send next PReq, report error DLL_MEV_LOSS_PRES

The waiting time ends with either a DLL_ME_PRES or a DLL_ME_PRES_TIMEOUT. The MN sends
the next PReq if more frames in the isochronous queue exist. The state does not change.

(DLL_MT2)
DLL_ME_PRES

DLL_ME_PRES_TIMEOUT

(DLL_MT7)
DLL_ME_SOC_TRIG

(DLL_MT0)
DLL_ME_SOC_TRIG

(DLL_MT4)
DLL_ME_PRES

DLL_ME_PRES_TIMEOUT

(DLL_MT6)
DLL_ME_SOC_TRIG

DLL_MS_NON_CYCLIC

DLL_MS_
WAIT_SOC_TRIG

DLL_MS_
WAIT_PRES

DLL_MS_
WAIT_ASND

(DLL_MT1)
DLL_ME_SOC_TRIG

(DLL_MT3)
DLL_ME_PRES

DLL_ME_PRES_TIMEOUT

DLL_MS_CYCLIC

(DLL_MT9)
DLL_ME_SOC_TRIG (DLL_MT8)

DLL_ME_SOC_TRIG
DLL_ME_ASND

(DLL_MT5)
DLL_ME_SOC_TRIG

EPSG DS 301 V1.5.1 -67-

DLL_MT3 DLL_ME_PRES [isochr = 0 & async_in = 0] / send PRes [isochr_out != 0], SoA and ASnd [async_out
!= 0]
DLL_ME_PRES_TIMEOUT [isochr = 0 & async_in = 0] / send PRes [isochr_out != 0], SoA and ASnd

[async_out != 0], report error DLL_MEV_LOSS_PRES

The isochronous phase ends with either a DLL_ME_PRES or a DLL_ME_PRES_TIMEOUT
(configurable via NMT_MNCNPResTimeout_AU32[Node ID]). If there is no more communication to
be done (neither isochronous nor asynchronous), the MN sends a SoA frame and changes the state
to DLL_MS_WAIT_SOC_TRIG.
If there is outgoing asynchronous communication to be done in the current cycle, the MN sends this
frame after the SoA.

DLL_MT4 DLL_ME_PRES [isochr = 0 & async_in != 0] / send PRes [isochr_out != 0] and SoA with Invite

DLL_ME_PRES_TIMEOUT [isochr = 0 & async_in != 0] / send PRes [isochr_out != 0] and SoA with

Invite, report error DLL_MEV_LOSS_PRES

The isochronous phase ends with either a DLL_ME_PRES or a DLL_ME_PRES_TIMEOUT
(configurable via NMT_MNCNPResTimeout_AU32[Node ID]).
If the MN is configured to send a PRes this frame shall be sent before the SoA.
If the scheduled asynchronous communication for the current cycle is directed from the CN to the MN
or another CN, an invite within the SoA frame will be send.

DLL_MT5 DLL_ME_SOC_TRIG [isochr = 0 & async_in = 0] / send SoC, PRes [isochr_out != 0], SoA and ASnd
[async_out != 0]

Immediately after the DLL_ME_SOC_TRIG event (value configurable via NMT_CycleLen_U32) a
SoC frame will be sent, the communication with the NMT state machine will be done. If there is no
communication to be done, then a SoA frame is additionally sent. The state does not change.
If the MN is configured to send a PRes this frame shall be sent before the SoA.
If there is outgoing asynchronous communication to be done in the current cycle, the MN sends this
frame after the SoA frame and changes the state to DLL_MS_WAIT_SOC_TRIG.

DLL_MT6 DLL_ME_SOC_TRIG [isochr = 0 & async_in != 0] / send SoC, PRes [isochr_out != 0] and SoA with
Invite

Immediately after the DLL_ME_SOC_TRIG (value configurable via NMT_CycleLen_U32) a SoC
frame will be sent. Then, the communication with the NMT state machine will be done.
If the MN is configured to send a PRes this frame shall be sent before the SoA.
If there are only asynchronous frames to send, the SoA frame will be send. If the asynchronous
communication is directed to a CN, an ASnd frame will be sent additionaly.

DLL_MT7 DLL_ME_SOC_TRIG [isochr = 0 & async_in = 0] / send SoC, PRes [isochr_out != 0], SoA and ASnd
[async_out != 0]

Immediately after the DLL_ME_SOC_TRIG event a SoC frame will be sent, the communication with
the NMT state machine will be done.
If the MN is configured to send a PRes this frame shall be sent before the SoA.
If there is no communication to be done, then a SoA frame is additionally sent. The state does not
change. If there is outgoing asynchronous communication to be done in the current cycle, the MN
sends this frame after the SoA.

DLL_MT8 DLL_ME_ASND [] / process the frame
DLL_ME_SOC_TRIG [isochr = 0 & async_in != 0] / send SoC and SoA with Invite

Immediately after the DLL_ME_SOC_TRIG a SoC frame will be sent. Then, the communication with
the NMT state machine will be done. If there are only asynchronous frames to send, the SoA frame
will be send. If the asynchronous communication is directed to a CN, an ASnd frame will be sent
additionally.

DLL_MT9 DLL_ME_SOC_TRIG [isochr != 0] / send SoC and PReq

Immediately after DLL_ME_SOC_TRIG event occurred (value configurable via NMT_CycleLen_U32)
a SoC frame is sent, the communication with the NMT state machine will be done. If there are
isochronous frames to send, the first PReq will be sent and a timer will be started to observe the
response time (configurable via NMT_MNCNPResTimeout_AU32[Node ID]).

 Transitions for MN cycle state machine, states NMT_MS_OPERATIONAL,
NMT_MS_READY_TO_OPERATE and NMT_MS_PRE_OPERATIONAL_2

Abbreviations used in the transition table:

• „isochr != 0" means that there are frames in the isochronous list, which must be send during the
current cycle.

• „isochr_out != 0” means that the MN is configured to send a PRes

• „async_in != 0" means that an invite must be sent in this cycle and an ASnd or a non
POWERLINK frame could be received.

EPSG DS 301 V1.5.1 -68-

• “async_out != 0” means that an ASnd must be send in this cycle after a SoA was sent.

The reaction on unexpected events is not described in the above figures and tables because of clarity
purposes. A general statement for these events can be given:

• The unexpected frame types and unexpected sender shall be accepted. The state does not
change. The PRes frames shall be passed to the NMT state machine, which may analyse this
frames (and e.g. remove the corresponding CN from the communication). The state machine
does not react in any other way to this event.

• If the DLL_MS receives frames, which can be sent by another MN only (SoC, SoA, PReq), it
shall notify the NMT state machine and the DLL Error Handling.

• If an unexpected internal event (e.g. timeout) occurs, an internal error will be assumed and the
NMT_MS will be notified.

• It could happen that the DLL_ME_SOC_TRIG occurs in states where it was not expected or
during transmission or reception of Ethernet frames. (e.g. malconfiguration of PRes timeouts).
In this case the DLL Error Handling will be notified with the error DLL_MEV_CYCLE_EXCEED

If a StatusRequest was sent and the asynchronous slot time expires without receiving a
StatusResponse frame the DLL Error Handling will be notified with the error
DLL_MEV_LOSS_STATUSRESPONSE.

4.2.5 Recognizing Active Nodes

The MN shall be configured with a list of all nodes on the network.

All configured nodes shall be marked as inactive when the MN boots. Configured but inactive CNs
shall be periodically accessed by an IdentRequest, a special form of the SoA frame. When a CN
receives an IdentRequest addressed to itself, it shall return an IdentResponse, a special form of an
ASnd frame, in the same asynchronous phase.

The CN shall be marked as active if the MN receives an IdentResponse from the CN. An active CN
may take part in the isochronous data transfer, e.g. it may be accessed via a PReq.

4.3 Basic Ethernet Mode
Network communication behaves according to the rules of the Legacy Ethernet (IEEE 802.3). The
network medium is accessed according to CSMA/CD.

The network communication is collision-prone and non-deterministic.

In the Basic Ethernet Mode any protocol on top of Legacy Ethernet can be used. Data between the
nodes are preferentially exchanged via UDP/IP and TCP/IP. The large extension of the maximum
topology of an Ethernet POWERLINK Network conflicts with the topology rules of IEEE 802.3. Due to
this fact, CSMA/CD might work poorly in large POWERLINK networks. Higher layer protocols shall be
applied to handle communication errors caused by collisions unresolved by CSMA/CD.

POWERLINK nodes shouldn’t operate in Basic Ethernet Mode, when the node is part of a automation
system. Basic Ethernet Mode is provided for point to point configurations, to be used for node setup
and service purpose only.

EPSG DS 301 V1.5.1 -69-

4.4 MAC Addressing
A POWERLINK node must support unicast, multicast and broadcast Ethernet MAC addressing in
accordance with IEEE802.3.

4.4.1 MAC Unicast

The high-order bit of the MAC address is 0 for ordinary addresses (unicast). The unicast addresses
used for POWERLINK shall be globally unique, or at least unique within the POWERLINK segment.

4.4.2 MAC Multicast

For group addresses the high-order bit of the MAC address is 1. Group addresses allow multiple
nodes to listen to a single address. When a frame is sent to a group address, all the nodes registered
for this group address receive it. Sending to a group of nodes is called multicast.

The following MAC-multicast addresses shall be used:

 MAC-Multicast address

Start of Cycle (SoC) C_DLL_MULTICAST_SOC

PollResponse (PRes) C_DLL_MULTICAST_PRES

Start of Asynchronous (SoA) C_DLL_MULTICAST_SOA

AsynchronousSend (ASnd) C_DLL_MULTICAST_ASND

Active Managing Node Indication (AMNI) used by EPSG DS302-A [1] C_DLL_MULTICAST_AMNI

 Assigned multicast addresses

4.4.3 MAC Broadcast

The address consisting of all 1 bits is reserved for broadcast.

4.5 POWERLINK Addressing
Each POWERLINK node (MN, CN and Router) has a unique Node ID within a POWERLINK segment.
The number 240 is permanently assigned to the MN. A node set to 240 Node ID operates as the MN,
if the node has MN functionality. Devices with pure CN function cannot be assigned the Node ID 240.
POWERLINK Node IDs 1-239 may used for the CNs. Tab. 11 shows the POWERLINK Node ID
assignment and allowed CN access options for the POWERLINK Node ID intervals.

The POWERLINK Node ID is either configured by the application process or is set on the device (e.g.
using address switches).

The terms unicast, multicast and broadcast refer to POWERLINK addresses if not otherwise
mentioned. If the POWERLINK broadcast address is used, the frame shall be sent with the dedicated
MAC multicast address (see Tab. 10). If no MAC multicast address is assigned to this type of
POWERLINK frame the MAC broadcast address shall be used instead.

POWERLINK dummy node shall be used to transmit messages addressing none of the existing node.
POWERLINK dummy Node ID shall never by occupied by an existing node. No node shall expect
valid data from the POWERLINK dummy node.

The self addressing Node ID shall never be assigned to any node. It may be used only by PDO
mapping to indicate reception and evaluation of a PDO transporting PRes frame, transmitted by the
receiving node itself.

Diagnostic device shall be a default node, available without any configuration. It’s default access
options shall be optional and async only. By configuration isochronous operation may be declared.

A device may support less than the maximum number of regular CNs defined by this specification.
The number of supported regular CNs may be provided by the device description entry
D_NMT_MaxCNNumber_U8. The upper limit of the interval of POWERLINK Node IDs available for
regular CNs may be reduced by the device description entry D_NMT_MaxCNNodeID_U8.

If only D_NMT_MaxCNNumber_U8 is provided the Node IDs may be selected from the complete
interval 1 .. 239. If D_NMT_MaxCNNodeID_U8 is additionally provided, valid regular CN Node IDs
shall be selected from the interval 1 .. D_NMT_MaxCNNodeID_U8.

EPSG DS 301 V1.5.1 -70-

POWERLINK Node ID Description access options

0 C_ADR_INVALID Invalid no

1 .. 239 regular POWERLINK
CNs

no / mandatory / optional
isochronous / async only

240 C_ADR_MN_DEF_NODE_ID POWERLINK MN mandatory
isochronous

241 .. 250 Reserved.
Used by EPSG DS302-A [1]

no

251 C_ADR_SELF_ADR_NODE_ID POWERLINK pseudo
Node ID to be used by
a node to address
itself

no

252 C_ADR_DUMMY_NODE_ID POWERLINK dummy
node

no

253 C_ADR_DIAG_DEF_NODE_ID Diagnostic device optional
isochronous / async only

254 C_ADR_RT1_DEF_NODE_ID POWERLINK to
legacy Ethernet Router

no / mandatory / optional
isochronous

255 C_ADR_BROADCAST POWERLINK
broadcast

no

 POWERLINK Node ID assignment

4.6 Frame Structures

4.6.1 Integration with Ethernet

POWERLINK is a protocol residing on top of the standard 802.3 MAC layer.

POWERLINK messages shall be encapsulated in Ethernet II frames. The Ethernet Type (Ethertype)
field shall be set to 88ABh.

The length of the frame shall be restricted to the configured size. Otherwise the cycle time could not
be guaranteed. Ethernet frames shall not be shorter than the specified minimum of 64 octets.

4.6.1.1 POWERLINK Frame

To be independent of the underlying protocol, POWERLINK defines its own addressing scheme (refer
4.5) and header format.

4.6.1.1.1 POWERLINK Basic Frame
The POWERLINK Basic Frame format shall contain 5 fields:

• Reserved (1 bit)

• MessageType (7 bits)

• Destination node address (1 octet), POWERLINK addressing scheme (See 4.5)

• Source node address (1 octet), POWERLINK addressing scheme (See 4.5)

• Payload (n octets)

The POWERLINK Basic Frame format shall be encapsulated by the Ethernet II wrapper consisting of
14 octets of leading Ethernet header (Destination and Source MAC addresses, EtherType) and 4
octets of terminating CRC32 checksum.

EPSG DS 301 V1.5.1 -71-

 Bit Offset entry defined by

Octet Offset 4 7 6 5 4 3 2 1 0

0 .. 5 Destination MAC Address Ethernet type II

6 .. 11 Source MAC Address

12 .. 13 EtherType

14 res MessageType Ethernet
POWERLINK 15 Destination

16 Source

17 .. n Data

n+1 .. n+4 CRC32 Ethernet type II

C_DLL_MIN_PAYL_OFFSET+14 ≤ n ≤ C_DLL_MAX_PAYL_OFFSET+14

 Ethernet POWERLINK frame structure

The Ethernet POWERLINK defined part of the Ethernet frame shall be regarded to be the
POWERLINK frame.

Field Abbr. Description Value

Destination MAC
Address

dmac MAC address of the addressed node(s) see 4.4

Source MAC
Address

smac MAC address of the transmitting node see 4.4

EtherType etyp Ethernet message type C_DLL_ETHERTYPE_EPL

MessageType mtyp POWERLINK message type identification see Tab. 14

Destination dest POWERLINK Node ID of the addressed node(s) see 4.5

Source src POWERLINK Node ID of the transmitting node see 4.5

Data data Data depending on MessageType
shall be made up to C_DLL_MIN_PAYL_OFFSET bytes
by lower layer using padding bytes, if data length is
below this limit

refer below

CRC32 crc CRC32 checksum

 Ethernet POWERLINK frame fields

The following message types shall be applied:

Message Type ID / Abbr. MAC Transfer type

Start of Cycle SoC Multicast

PollRequest PReq Unicast

PollResponse PRes Multicast

Start of Asynchronous SoA Multicast

Asynchronous Send ASnd Multicast

 POWERLINK message types

Refer 4.4.2 for multicast addresses to be used by the respective message type.

Reserved values shall be set to 0.

4 Octet Offset refers to the start of the Ethernet frame.

EPSG DS 301 V1.5.1 -72-

4.6.1.1.2 Start of Cycle (SoC)

 Bit Offset

Octet Offset 5 7 6 5 4 3 2 1 0

0 res MessageType

1 Destination

2 Source

3 reserved

4 MC PS res res res res res res

5 res res res res

6 .. 13 NetTime / reserved

14 .. 21 RelativeTime / reserved

22 .. 45 reserved

 SoC frame structure

SoC shall be transmitted using a multicast MAC address (See 4.4.2).

Field Abbr Description Value

MessageType mtyp POWERLINK message type identification SoC

Destination dest POWERLINK Node ID of the addressed node(s) C_ADR_BROADCAST

Source src POWERLINK Node ID of the transmitting node C_ADR_MN_DEF_NODE_ID

Multiplexed
Cycle Completed

MC Flag: Shall be toggled when the final multiplexed cycle
has ended

Prescaled Slot PS Flag: Shall be toggled by the MN every n-th cycle (n is
configurable by
NMT_CycleTiming_REC.Prescaler_U16).
This prescaled signal is useful for “slow“ nodes, which
can not react every cycle (The SoC reception shall be

signalled to the application every n-th cycle).

NetTime time MN may distribute the starting time of the POWERLINK
cycle. NetTime shall be of data type NETTIME
NetTime transmission is optional. Support is indicated
by D_NMT_NetTime_BOOL. IEEE 1588 conform
distribution via NetTime is is indicated by
D_NMT_NetTimeIsRealTime_BOOL.

RelativeTime reltime MN may distribute a relative time, which is incremented
by the cycle time (NMT_CycleLen_U32) when a SoC is
generated. RelativeTime shall be set to 0 when NMT
state equals NMT_GS_INITIALISING. RelativeTime
shall be of data type UNSIGNED64. RelativeTime shall
be transmitted in µs.
RelativeTime transmission is optional. Support is
indicated by D_NMT_RelativeTime_BOOL.

 SoC frame data fields

5 Octet Offset refers to the start of the POWERLINK frame. Offset to the start of the Ethernet frame is
14 Octets.

EPSG DS 301 V1.5.1 -73-

4.6.1.1.3 PollRequest (PReq)

 Bit Offset

Octet Offset 6 7 6 5 4 3 2 1 0

0 res MessageType

1 Destination

2 Source

3 res

4 res res MS res res EA res RD

5 res7 res8 res res

6 PDOVersion

7 res

8 .. 9 Size

10 .. n Payload

n ≤ C_DLL_MAX_PAYL_OFFSET

 PReq frame structure

PReq shall be transmitted using the unicast MAC address of the CN (See 4.4.1).

Field Abbr Description Value

MessageType mtyp POWERLINK message type identification PReq

Destination dest POWERLINK Node ID of the addressed node(s) CN Node ID

Source src POWERLINK Node ID of the transmitting node C_ADR_MN_DEF_NODE_ID

Multiplexed
Slot

MS Flag: Shall be set in PReq frames to CNs that are served
by a multiplexed timeslot

Exception
Acknowledge

EA Flag: Error signaling, refer 6.5.2

Ready RD Flag: Shall be set if the transferred payload data are valid.
It shall be set by the application process of the MN. A CN

shall be allowed to accept data only when this bit is set.

PDOVersion pdov Shall indicate the version of the PDO encoding used by the
payload data, refer 6.4.2

Size size Shall indicate the number of payload data octets. 0 ..
C_DLL_ISOCHR_MAX_PAYL

Payload pl Isochronous payload data sent from the MN to the
addressed CN.
The lower layer shall be responsible for padding.
Payload to be used by PDO, refer 6.3.4

 PReq frame data fields

The PReq POWERLINK PDO message header consists of all components of the PReq Frame
besides the payload.

6 Octet Offset refers to the start of the POWERLINK frame. Offset to the start of the Ethernet frame is
14 Octets.
7 Used by EPSG DS302-A [1]
8 Used by EPSG DS302-A [1]

EPSG DS 301 V1.5.1 -74-

4.6.1.1.4 PollResponse (PRes)

 Bit Offset

Octet Offset 9 7 6 5 4 3 2 1 0

0 res MessageType

1 Destination

2 Source

3 NMTState

4 res res MS EN res res res RD

5 res10 res11 PR RS

6 PDOVersion

7 reserved

8 .. 9 Size

10 .. n Payload

n ≤ C_DLL_MAX_PAYL_OFFSET

 PRes frame structure

PRes shall be transmitted using the multicast MAC address (See 4.4.2).

Field Abbr Description Value

MessageType mtyp POWERLINK message type identification PRes

Destination dest POWERLINK Node ID of the addressed nodes C_ADR_BROADCAST

Source src POWERLINK Node ID of the transmitting node CN Node ID

NMTState stat Shall report the current status of the CN’s NMT state
machine

Multiplexed Slot MS Flag: Shall be set in PRes frames from CNs that are
served by a multiplexed timeslot. Based on this
information, other CNs can identify that the

transmitting CN is served by a multiplexed slot

Exception New EN Flag: Error signaling, refer 6.5.2

Ready RD Flag: Shall be set if the transferred payload data are
valid.
It shall be handled by the application process in the
CN. All other CNs and the MN shall be allowed to

accept data only if RD is set

Priority PR Flags: Shall indicate the priority of the frame in the
asynchronous send queue with the highest priority.
(See 4.2.4.1.2.2)

C_DLL_ASND_PRIO_NMTRQST,
C_DLL_ASND_PRIO_STD

RequestToSend RS Flags: Shall indicate the number of pending frames in
asynchronous send queue on the node. The value
C_DLL_MAX_RS shall indicate C_DLL_MAX_RS or
more requests, 0 shall indicate no pending requests

0 - C_DLL_MAX_RS

PDOVersion pdov Shall indicate the version of the PDO encoding used
by the payload data, refer 6.4.2

Size size Shall indicate the number of payload data octets 0 .. C_DLL_ISOCHR_MAX_PAYL

Payload pl Isochronous payload data sent from the node to the
POWERLINK network.
The lower layer shall be responsible for padding.
Payload to be used by PDO, refer 6.3.4

 PRes frame data fields

The PRes POWERLINK PDO message header consists of all components of the PRes Frame besides
the payload.

9 Octet Offset refers to the start of the POWERLINK frame. Offset to the start of the Ethernet frame is
14 Octets.
10 Used by EPSG DS302-A [1]
11 Used by EPSG DS302-A [1]

EPSG DS 301 V1.5.1 -75-

4.6.1.1.5 Start of Asynchronous (SoA)

 Bit Offset

Octet Offset 12 7 6 5 4 3 2 1 0

0 res MessageType

1 Destination

2 Source

3 NMTState

4 res res res res res EA/res ER/res res

5 res res res res

6 RequestedServiceID

7 RequestedServiceTarget

8 EPLVersion

9 .. 45 reserved

 SoA frame structure

SoA shall be transmitted using the multicast MAC address 3 (See 4.4.2).

Field Abbr Description Value

MessageType mtyp POWERLINK message type identification SoA

Destination dest POWERLINK Node ID of the addressed nodes C_ADR_BROADCAST

Source src POWERLINK Node ID of the transmitting node C_ADR_MN_DEF_NODE_ID

NMTState stat Shall report the current status of the MN’s NMT state
machine

Exception
Acknowledge

EA Flag: Error signaling, refer 6.5.2 EA bit shall be valid only, if
RequestedServiceID equals StatusRequest.

Exception
Reset

ER Flag: Error signaling, refer 6.5.2 ER bit shall be valid only, if
RequestedServiceID equals StatusRequest.

Requested
ServiceID

svid Shall indicate the asynchronous service ID dedicated to the
SoA and to the following asynchronous slot (refer below).
NO_SERVICE shall indicate that the asynchronous slot is

not assigned.

see Tab. 23

Requested
ServiceTarget

svtg Shall indicate the POWERLINK address of the node, which
is allowed to send.
C_ADR_INVALID shall indicate the asynchronous slot is
not assigned.

EPLVersion eplv Shall indicate the current POWERLINK Version of the MN
(See Tab. 112).

 SoA frame data fields

RequestedServiceID and RequestedServiceTarget are combined to a AsyncInvite Command.

4.6.1.1.5.1 RequestedServiceID s
The following values shall be used for the RequestedServiceID entry, indicating the granted
asynchronous service:

12 Octet Offset refers to the start of the POWERLINK frame. Offset to the start of the Ethernet frame is
14 Octets.

EPSG DS 301 V1.5.1 -76-

Description / ID Comment

NoService /

NO_SERVICE

Shall be used if the asynchronous slot is not assigned to any node.
RequestedServiceTarget shall be C_ADR_INVALID.

IdentRequest /
IDENT_REQUEST

Shall be used to identify inactive CNs and/or to query the identification data of a CN.
The addressed CN shall answer immediately after the reception of the SoA with the
node specific IdentRequest frame.The IdentResponse frame is based on the ASnd
frame.

StatusRequest /

STATUS_REQUEST

Shall be used to request the current status and detailed error information of a node.
Async-only CNs shall be cyclically queried by StatusRequest to supervise their status
and to query their requests for the asynchronous slot. The addressed node shall
answer immediately after the reception of the SoA, with the node specific
StatusRequest frame. The StatusResponse frame is based on the ASnd frame.

NMTRequestInvite /

NMT_REQUEST_INVITE

Shall be used to assign the asynchronous slot to a node that has indicated a pending
NMTCommand / NMTRequest by a Request to Send (RS bit of PRes,
StatusResponse or IdentResponse) with the priority level PRIO_NMT_REQUEST. The
addressed node shall answer immediately after the reception of the SoA with the
NMTCommand / NMTRequest frame. The NMTCommand and NMTRequest frames

are based on the ASnd frame.

Manufacturer specific /

MANUF_SVC_IDS

Shall be used for manufacturer specific purposes.

UnspecifiedInvite /

UNSPECIFIED_INVITE

Shall be used to assign the asynchronous slot to a node that has indicated a pending
transmit request by a Request to Send (RS bit of PRes, StatusResponse or
IdentResponse). The addressed node shall answer immediately after the reception of
the SoA, with any kind of a POWERLINK ASnd or a Legacy Ethernet frame.

 Definition of the RequestedServiceID in the SoA frame

Assignment of the asynchronous slot to the MN itself shall be indicated in the same way as
assignments to CNs.

4.6.1.1.6 Asynchronous Send (ASnd)

 Bit Offset

Octet Offset 13 7 6 5 4 3 2 1 0

0 res MessageType

1 Destination

2 Source

3 ServiceID

4 .. n Payload

n ≤ C_DLL_MAX_PAYL_OFFSET

 ASnd frame structure

The transmission of an ASnd frame by a node shall occur immediately after the transmission /
reception of a SoA frame.

ASnd frames shall be transmitted using a unicast or multicast MAC address (See 4.4). Received ASnd
frames having a unicast, multicast or broadcast MAC address shall be accepted.

Field Abbr. Description Value

MessageType mtyp POWERLINK message type identification ASnd

Destination dest POWERLINK Node ID of the addressed node(s)

Source src POWERLINK Node ID of the transmitting node

ServiceID svid Shall indicate the service ID dedicated to the asynchronous slot see Tab. 26

Payload pl Shall contain data, that are specific for the current ServiceID

 ASnd frame data fields

4.6.1.1.6.1 ServiceID values
The following values shall be used for the ServiceID entry:

13 Octet Offset refers to the start of the POWERLINK frame. Offset to the start of the Ethernet frame is
14 Octets.

EPSG DS 301 V1.5.1 -77-

Description / ID Comment

IdentResponse / IDENT_RESPONSE Shall be issued by a node that received an IdentRequest via SoA.

StatusResponse / STATUS_RESPONSE Shall be issued by a node that received a StatusRequest via SoA.

NMTRequest / NMT_REQUEST Shall be issued by a CN that received a NMTRequestInvite via SoA.

NMTCommand / NMT_COMMAND Shall be issued by the MN upon an internal request or upon an
external request via NMTRequest.

SDO / SDO May be issued by a CN that received an UnspecifiedInvite via SoA
to indicate SDO transmission via ASnd.

Manufacturer specific / MANUF_SVC_IDS Shall be used for manufacturer specifc purposes.

 ServiceID values in the ASnd frame

Service IDs not listed by Tab. 26 are reserved.

4.6.1.2 Non-POWERLINK Frames

Non-POWERLINK frames may be transmitted in accordance with the specifications of any Legacy
Ethernet protocol. Non-POWERLINK frame transmission is allowed by the MN if the asynchronous
slot is requested by a node..

Refer 5.1 for special requirements to IP (non-POWERLINK) frames.

4.6.1.3 Transfer Protection

Transfer disturbances shall be detected by the Ethernet CRC32.

4.7 Error Handling Data Link Layer (DLL)
The error handling on the data link layer forms the basis for diagnosis. Often the real error source can
be detected only by analysing/interpreting of multiple error symptoms on multiple nodes. Depending
on the error symptom / error source the nodes have to react on different layers. The error handling
should be simple and easy to implement.

4.7.1 Possible Error Sources and Error Symptoms

The following error sources are handled by the MN and the CN. Details are explained in the following
sections.

• Physical layer error sources

• Loss of link (no link condition – port of Ethernet controller)

• Incorrect physical Ethernet operating modes (10 Mbit/s or full duplex)

• Transmission Errors detected by CRC errors

• Rx buffer overflow

• Tx buffer underrun

• POWERLINK Data Link Layer error symptoms

• Loss of frame

• SoC-Frame/ SoA-Frame

• PReq / PRes Frame

• Collisions

• Cycle Time exceeded

• POWERLINK Address Conflict

• Multiple Managing Nodes

• Timing Violation (late Response)

Error recognition strongly depends of the device’s hardware and software implementation. Device
implementation should be close to this specification but some of the optional error classes listed by the
following paragraphs may not be supported. Support shall be indicated by the respective device
description entry.

EPSG DS 301 V1.5.1 -78-

4.7.2 Error Handling Table for CN
Error Symptoms
detected by the
CNs

C
u

m
u

la
ti

v
e
 C

n
t

T
h

re
s
h

o
ld

 C
n

t

D
ir

e
c
t

R
e
a
c
ti

o
n

DLL Local Handling Error Codes NMT Local Handling

Loss of link o o These are considered
to be error sources

E_DLL_LOSS_OF_LINK Logging in Error History

Incorrect physical
operating mode

 o E_DLL_BAD_PHYS_MODE Logging in Error History

Tx/Rx buffer
underrun / overflow

 o E_DLL_MAC_BUFFER NMT_GT6
Internal Communication Error
(handling of internal SW errors)
Logging in Error History

CRC error m o E_DLL_CRC_TH NMT_CT11, Error Condition
Logging in Error History

Collision o o E_DLL_COLLISION_TH NMT_GT6
Internal Communication Error
(handling of internal SW errors)
Logging in Error History

Invalid format m E_DLL_INVALID_FORMAT NMT_GT6
Internal Communication Error
(handling of internal SW errors)
Logging in Error History

SoC jitter out of
range

o o o E_DLL_JITTER_TH NMT_CT11, Error Condition
Logging in Error History

Loss of PReq o o E_DLL_LOSS_PREQ_TH NMT_CT11, Error Condition
Logging in Error History

Loss of SoA o o E_DLL_LOSS_SOA_TH NMT_CT11, Error Condition
Logging in Error History

Loss of SoC m m CN sends (PRes) the
last or actual values.
Invalid data shall not be
sent in any case.

E_DLL_LOSS_SOC_TH NMT_CT11, Error Condition
Logging in Error History

 CN error handling table

Remarks:

• Change of NMT state shall be signalled to all nodes (reason can be read at
ERR_History_ADOM)

• In ERR_History_ADOM, all logging events shall be registered.

• None of the described Error symptoms on the CN shall be signalled via emergency queue to the
MN.

• Cumulative Cnt, Threshold Cnt

m mandatory (Counters: shall be implemented / Detection: shall be detected)

o optionally (Counters: may be implemented / Detection: may be detected)

• Direct Reaction:

m a direct Reaction on an error occurrence shall be proceeded either on the DLL state
 machine or on the NMT state machine

o a direct Reaction on an error occurrence may be proceeded either on the DLL state
 machine or on the NMT state machine

EPSG DS 301 V1.5.1 -79-

4.7.3 Error Handling Table for MN
Error Symptoms

C
u

m
u

la
ti

v
e
 C

n
t

T
h

re
s
h

o
ld

 C
n

t

D
ir

e
c
t

R
e
a
c
ti

o
n
 DLL Local Handling Error Codes NMT Local Handling

Loss of link o o These are considered
to be an error source

E_DLL_LOSS_OF_LINK Logging in Error History

Incorrect physical
operating mode

 o E_DLL_BAD_PHYS_MODE Logging in Error History

Tx/Rx buffer
underrun / overflow

 o E_DLL_MAC_BUFFER NMT_GT6
Internal Communication Error
(handling of internal SW errors)
Logging in Error History

CRC error m o E_DLL_CRC_TH NMT_MT6
Logging in Error History

Collision o o E_DLL_COLLISION_TH NMT_GT6
Internal Communication Error
(handling of internal SW errors)
Logging in Error History

Collision m Communication
suspends for a
configurable number
of cycles .
Changes its state to:
DLL_MS_WAIT_SOC
_TIME

E_DLL_COLLISION Logging in Error History

Invalid format m
s

 E_DLL_INVALID_FORMAT Remove respective CN from
configuration, send NMT State
Command “NMTResetNode” to
respective CN.
Logging in Error History

Multiple MNs o E_DLL_MULTIPLE_MN State !=
NMT_MS_NOT_ACTIVE->
NMT_GT6 Internal
Communication Error
State =
NMT_MS_NOT_ACTIVE ->
reside in
NMT_MS_NOT_ACTIVE
Logging in Error History

POWERLINK
address conflict

 m
s

 E_DLL_ADDRESS_CONFLICT Remove all involved CNs from
configuration

Loss of PRes o
s

m
s

 E_DLL_LOSS_PRES_TH Remove respective CN from
configuration, send NMT State
Command NMTResetNode to
respective CN.

Logging in Error History

Late PRes o
s

o
s

 E_DLL_LATE_PRES_TH Remove respective CN from
configuration, send NMT State
Command NMTResetNode to
respective CN
Logging in Error History

Loss of
StatusResponse

o
s

m
s

 E_DLL_LOSS_STATUSRES_TH Remove respective CN from
configuration, send NMT State
Command NMTResetNode to
respective CN.

Logging in Error History

Cycle time exceeded o o E_DLL_CYCLE_EXCEED_TH NMT_MT6
Logging in Error History

Cycle time exceeded m Skip next cycle E_DLL_CYCLE_EXCEED Logging in Error History

 MN error handling table

Remarks:

EPSG DS 301 V1.5.1 -80-

• Change of NMT state shall signalled to all nodes (See Object ERR_History_ADOM)

• In Object ERR_History_ADOM, all logging events shall be registered.

• Cumulative Cnt, Threshold Cnt

m mandatory (Counters: shall be implemented / Detection: shall be detected)

o optionally (Counters: may be implemented / Detection: may be detected)

s per CN (Counters: per CN a Counter is used / Detection: Error shall be assigned to a CN)

• Direct Reaction:

m a direct reaction on an error occurrence shall be proceeded either on the DLL state
 machine or on the NMT state machine

o a direct reaction on an error occurrence may be proceeded either on the DLL state
 machine or on the NMT state machine

s per CN (Reaction: per CN / Detection: Error shall be assigned to a CN)

4.7.4 Error Handling Registration

This section gives an overview of the error registration on the MN and on CNs. The figure below
shows all events that can occur and how the may get registered. On each node an Error History
exists, where the occurred error symptoms are stored.

Fig. 33. Error registration

 NMT Layer State Machine

Managing Node

NMT Layer State Machine
Controlled Node

Controlled Nodes

DLL MN Error Symptom

COLLISIONS

MULTIPLE POWERLINK ADRESSES
MULTIPLE MN

FORMAT ERROR

CYCLETIME EXEEDED

Local MN Counter

LOSS POLLRESPONSE

Counters per CN on the MN

DLL CN Error Symptom

PACKET COLLISION

LOSS POLLREQUEST

FORMAT ERROR

SOC JITTER

LOSS SOC

LATE POLLRESPONSE

Error History

Physical Layer Error souces
RX BUFFER OVERFLOW

LOSS OF LINK
CRC ERROR

INCORRECT ETHERNET MODE
TX BUFFER UNDERRUN

DLL_MNCNLatePollResThrCnt_U32
DLL_MNCNLatePollResCumCnt_U32

DLL_MNCNLossPRespThrCnt_U32
DLL_MNCNLossPRespCumCnt_U32

DLL_MNLossOfLinkCumCnt_U32

DLL_MNCRCErrroThrCnt_U32

DLL_MNCRCErrroCumCnt_U32

DLL_MNCollisionThrCnt_U32

DLL_MNCollisionCumCnt_U32

DLL_MNCycTimeExceedThrCnt_U32

DLL_MNCycTimeExceedCumCnt_U32

Error Events

Physical Layer Error souces

RX BUFFER OVERFLOW

LOSS OF LINK

CRC ERROR

INCORRECT ETHERNET MODE

TX BUFFER UNDERRUN

Local CN Counter

DLL_CNLossOfLinkCumCnt_U32

DLL_CNCRCErrroThrCnt_U32

DLL_CNCRCErrroCumCnt_U32

DLL_CNCollisionThrCnt_U32

DLL_CNCollisionCumCnt_U32

Error Events

DLL_CNLossSoCThrCnt_U32

DLL_CNLossSoCCumCnt_U32

DLL_CNLossSoAThrCnt_U32

DLL_CNLossSoACumCnt_U32

DLL_CNLossPReqThrCnt_U32

DLL_CNLossPReqCumCnt_U32

DLL_CNSoCJitterThrCnt_U32

DLL_CNSoCJitterCumCnt_U32

LOSS SOA

Error History

EPSG DS 301 V1.5.1 -81-

4.7.4.1 Threshold counters

Fig. 34. Threshold counter

Every time an error symptom occurs the threshold counter shall be incremented by 8. After each cycle
without reoccurance of the error the counter shall be decremented by one (Threshold counter 8:1).

When the threshold value is reached (threshold counter ≥ threshold), it shall trigger an action and the
threshold counter shall be reset to 0.

All kinds of POWERLINK cycle, e.g. reduced and isochronous cycle, shall decrement threshold
counters. Async-only and multiplexed nodes shall decrement at every cycle but not only to cycles
addressing them.

The threshold value shall be configurable.

Immediate error reaction shall be commanded by a threshold value of 1.

Threshold counting and error reaction may be deactivated by setting the threshold value to 0.

Threshold counter handling shall be performed on a per error source basis.

4.7.4.2 Cumulative Counter

The Cumulative counter shall be incremented by 1 every time an error symptom occurs. An overflow
may occur.

Cumulative counters shall not be reset by reset commands. An application may provide means to
reset cumulative counters.

4.7.5 Physical Layer Error Sources

The data link layer uses the physical layer error sources for diagnosis of DLL communication error
symptoms.

4.7.5.1 Loss of Link

• Error source

The Loss of Link can occur if the connection is interrupted, e.g. wire breaks, somebody pulls out
the network cable or a hub in the POWERLINK network is defect.

• Error recognition

Loss of Link is a late detected error source explaining the primary error detections. Whenever a
loss of a frame or a timing violation on the Data Link Layer is detected, the MN resp. CN checks
the Physical Layer for a no link condition on the Ethernet MAC controller.

Recognition is optional.

• Handling

If the Loss of Link is detected, it is logged in the Error History.

Loss of Link shall be reported regardless any error log triggered by the preceding primary error
detection.

Error Symptom occured

Threshold

Threshold

Counter

Trigger

Action

EPSG DS 301 V1.5.1 -82-

• Registration

Optionally a cumulative counter (DLL_MNLossOfLinkCum_U32, resp.
DLL_CNLossOfLinkCum_U32) is incremented.

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_OF_LINK XXXX

4.7.5.2 Incorrect physical Ethernet operating mode

• Error source

During the initialisation the new node may check whether it is 100 Mbit/s half duplex Ethernet
operating mode. Otherwise timing requirements won’t be fulfilled. This situation may occur if
auto negotiation is used (not recommended, see Par. 3) and the communication partner is using
10 MBits (e.g. a Hub) or 100 MBit full duplex (e.g. a Switch).

• Error recognition

Incorrect physical Ethernet operating mode is a late detected error source explaining the
primary error detections. Whenever a loss of a frame or a timing violation on the Data Link
Layer is detected, the MN resp. CN checks the Physical Layer for an incorrect physical Ethernet
operating mode on the Ethernet MAC controller. Every time, when one of the following error
symptoms occurs, it checks if the cause of the error symptom was an incorrect physical
ETHERNET operating mode.

Recognition is optional. Support shall be indicated by D_DLL_ErrBadPhysMode_BOOL.

• Handling

If an incorrect physical Ethernet operating mode is detected, it is logged in the error history.

Incorrect physical Ethernet operating mode is late detected error source explaining the primary
error detections specified by 4.7.6.2, 4.7.7.3.1, 4.7.7.3.2 and 4.7.7.3.3. It shall be reported
regardless any error log triggered by the preceding primary error detection.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_BAD_PHYS_MODE XXXX

4.7.5.3 Rx MAC buffer overflow / Tx MAC buffer underrun

• Error source

If the receive MAC buffer of a CN or MN overflows, it cannot receive frames for a while.

The transmit MAC buffer underrun error on the physical layer occurs; when the buffer becomes
empty during transmission.

• Error recognition

Buffer overflow resp underrun is a late detected error source explaining the primary error
detections. Whenever a loss of a frame or a timing violation on the Data Link Layer is detected,
the MN resp. CN checks the Physical Layer for an Rx MAC buffer overflow or a TX MAC buffer
underrun on the Ethernet MAC controller.

Recognition is optional. Support shall be indicated by D_DLL_ErrMacBuffer_BOOL.

• Handling

If a Buffer error is detected, it is logged in the error history and the NMT layer is notified. The
CN resp. MN NMT state machine handles this error source as an internal Communication Error
(NMT_GT6) and changes its state to NMT_GS_RESET_COMMUNICATION.

It shall be reported regardless any error log triggered by the preceding primary error detection.

EPSG DS 301 V1.5.1 -83-

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_MAC_BUFFER XXXX

4.7.5.4 Transmission / CRC Errors

• Error source

Transmission errors are detected by hardware (CRC-Check) in the Ethernet-Controller.
Received frames containing CRC errors are simply discarded.

• Error recognition

Every time a frame is lost, the node shall check if a CRC error has occurred.

A device may also detect CRC errors on unexpected frames.

• Handling

If a CRC error is detected, it shall be logged in the error history.

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_MNCRCError_REC.ThresholdCnt_U32, resp.
DLL_CNCRCError_REC.ThresholdCnt_U32 violates the threshold
DLL_MNCRCError_REC.Threshold_U32 resp. DLL_CNCRCError_REC.Threshold_U32, the
CN resp. MN NMT state machine shall handle this error source as an “error condition“
(NMT_CT11 resp. NMT_MT6) and shall change it’s state to NMT_CS_PRE_OPERATIONAL_1
resp. NMT_MS_PRE_OPERATIONAL_1.

It’s not recommended to enable error reaction if unexpected frame CRC error recognition is
active.

• Registration

MN and CN shall operate a cumulative counter (DLL_MNCRCError_REC.CumulativeCnt_U32,
resp. DLL_CNCRCError_REC.CumulativeCnt_U32, see. 4.7.4.2).) and a threshold counter
(DLL_MNCRCError_REC.ThresholdCnt_U32, resp.
DLL_CNCRCError_REC.ThresholdCnt_U32).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_CRC_TH XXXX

4.7.6 Communication Error Symptoms detected by the
MN

This section describes the error symptoms on the data link layer which are detected and handled by
the MN.

4.7.6.1 Timing Violation

4.7.6.1.1 Slot Time Exceeded
Certain timing constellations must be distinguished when a frame is received. The timing behaviour of
nodes shall be monitored, otherwise the entire cycle time can exceed.

EPSG DS 301 V1.5.1 -84-

Fig. 35. Timeouts

The PRes frame of the CN must have been received completely before the slot timeout given by
NMT_MNCNPResTimeout_AU32[CN Node ID] expires. The violation of the slot time produces the
situations described below.

4.7.6.1.1.1 Case 1-2 Frame received in time
The behaviour is identical. The second case shows the latest acceptable time for the frame receipt.
The current slot timeout is switched off immediately after the frame is received.

4.7.6.1.1.2 Case 3 Loss of PRes: Frame not received
The Loss of a PRes frame is detected by the slot timeout.

4.7.6.1.1.3 Case 4-6 Late PRes: Frame received in foreign slot (also
collisions)

The cases 4 - 6 have one fact in common: A frame is received, which does not belong to the current
slot. The worst case could lead to a violation of the cycle time. This kind of error can disturb the entire
power link communication. Only in case 4 and 6 a Late PRes error can be detected. In case 5 a
collision occurs as a result of a Late PRes error.

Max. Delay of

all Hubs x2

Max. Line

Delay x 2

Max. Latency

of CN

Rcv. Path

Delay MN

Expected

Response Length

NMT_MNCNPResTimeout_U32 [CNNodeID]

Round Trip DelayPoll Req.

Reserved Slot-Time

x slot n

Start Timer

Reserved Slot Time y

slot n+1

Expected

Response Length
Round Trip Delay

time

Poll Req.

Trans. Path

Delay MN

time

EPSG DS 301 V1.5.1 -85-

Fig. 36. Timing violation

4.7.6.2 Loss of PRes

• Error source

Following possible error sources could cause this error symptom:

• Physical error sources on the MN

• Transmission Error (CRC Error)

• Loss of link

• Rx Buffer overflow

• Tx Buffer underrun

• Error symptoms on a CN in the POWERLINK network

• Frame Collision error symptom

Expected

RespLen

Frame received timeout

Round Trip DelayPoll Req. n Poll Req. n+1

Reserved Slot-Time x
slot n

Start PollTimer

Response

received
PollReq n+1Case 1. Frame received in time

Case 2. Frame received just in time

Case 4. Late PollResponse: Frame received in foreign slot
(carrier detected)

Response

received

Response

received

Receive
Event

Poll Req. n+1

Poll Req. n+1
Response

received

Case 5. Late PollResponse:Frame received in foreign slot
(collision detected & retransmission)

Poll Req. n+1

Send
Cmd

Send
Cmd

Send
Cmd

Send
Cmd

Receive
Event

Case 3. Loss of PollResponse: Frame not received

Send
Cmd

Poll Req. n+1

Receive
Event

Receive
Event

Reserved Slot-Time y
slot n+ 1

Case 6. Late PollResponse:Frame received in foreign slot

Send
Cmd

Poll Req. n+1
Poll Res.

n

Receive
Event

(no collision occured)

EPSG DS 301 V1.5.1 -86-

• A CN, which response latency is higher than allowed.

• A component of the network structure is defect.

• Power failure on a CN

• Etc.

• Error recognition

If the slot timer expires, no frame was received during the reserved slot time. (See Slot Time
exceeded: Case 3).

Loss of PRes is detected by the MN cycle state machine and reported via error event
DLL_MEV_LOSS_PRES.

• Handling

After detecting a CN’s Loss of PRes by the NMT_MNCNPResTimeout_AU32[CN Node ID], the
MN shall proceed with the PReq for the next CN (or SoA if the end is reached).

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_MNCNLossPResThrCnt_AU32[CN Node ID] violates the threshold
DLL_MNCNLossPResThreshold_AU32[CN Node ID], the MN NMT State machine shall
consider the CN inactive and shall remove it from the isochronous processing. Additionally it
shall send the command NMTResetNode to the respective CN. On this command the CN will
change its state (See 7.1.4). Whenever this error symptom is detected, the MN shall check for a
physical layer error source.

The error symptom shall be logged in the Error History every time the threshold value is
reached.

• Registration

The MN shall operate a threshold counter array DLL_MNCNLossPResThrCnt_AU32 and
optionally a cumulative counter array DLL_MNCNLossPResCumCnt_AU32 (see. 4.7.4.2). CNs
are represented by the subindices of the arrays.

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_PRES_TH XXXX

4.7.6.3 Late PRes

• Error source

Following possible error sources could cause this error symptom:

• Physical error sources on the MN

• Transmission Error (CRC Error)

• Loss of link

• Rx Buffer overflow

• Tx Buffer underrun

• Error symptoms on a CN in the POWERLINK network

• Frame Collision error symptom

• A CN, which response latency is higher than allowed.

• A component of the network structure is defect.

• Power failure on a CN

• Etc.

• Error recognition

A Late PRes error symptom may be detected on the MN, when the carrier is busy while trying to
send the PReq frame (See Slot Time exceeded: Case 4) or when it receives a PRes frame from
an unexpected CN (See Slot Time exceeded: Case 6).

EPSG DS 301 V1.5.1 -87-

Error recognition shall be performed at NMT states NMT_MS_PRE_OPERATIONAL_2,
NMT_MS_READY_TO_OPERATE and NMT_MS_OPERATIONAL on isochronous CNs.

Recognition is optional.

• Handling

After detecting a Late PRes error, the MN proceeds with the PReq for the next CN (or SoA if the
end is reached).

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_MNCNLatePResThrCnt_AU32[CN Node ID] violates the threshold
DLL_MNCNLatePResThreshold_AU32[CN Node ID], the MN NMT State machine shall
consider the CN inactive and shall remove it from the isochronous processing. Additionally it
shall send the command NMTResetNode to the respective CN. On this command the CN will
change it’s state (See 7.1.4).

If a PRes frame, that does not belong to the current slot, is received, the frame shall be
rejected.

Whenever a Late PR error is detected, the MN shall check for a physical layer error source.

The error symptom shall be logged in the Error History every time the threshold value is
reached

• Registration

The MN shall operate a threshold counter array DLL_MNCNLatePResThrCnt_AU32 and
optionally a cumulative counter array DLL_MNCNLatePResCumCnt_AU32 (see. 4.7.4.2). CNs
are represented by the subindices of the arrays.

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LATE_PRES_TH XXXX

4.7.6.4 Cycle Time Exceeded

• Error source

Following possible error sources could cause this error symptom:

• POWERLINK configuration failure

• A CN, which Response latency is higher than allowed.

• A component of the network structure, which is defect.

• Etc.

• Error recognition

A cycle time violation situation is defined as: The POWERLINK network was busy up to a time
where a SoC should have been sent. If an ASnd frame or an Ethernet frame at the end of a
cycle is delayed, then it may cause a collision with the SoC frame or a delay of the SoC frame.

Fig. 37. Cycle time exceeded

Error detection is performed by the MN cycle state machine and reported via error event
DLL_MEV_CYCLE_EXCEED.

To prevent cycle time exceed error the cycle shall be dimensioned for the worst case (with max
response times / timeouts).

1 2 3 SoASoC

Cycle x Cycle x + 1 Cycle x + 2

1 2 3 SoASoCa a

Late Response
Delay of the SoC,

shall not be send

time

SoC

EPSG DS 301 V1.5.1 -88-

On line check may be done by verifying the remaining cycle time ≥ maximum async slot time
(refer. DLL) before sending the SoA frame. No inviting SoA shall be transmitted if verification
failed.

• Handling

A cycle time violation is considered a configuration error, hence the default behaviour shall be to
suspend one cycle and to log the error symptom at the error history.

Optionally a threshold counter DLL_MNCycTimeExceed_REC.ThresholdCnt_U32 and a
cumulative counter DLL_MNCycTimeExceed_REC.CumulativeCnt_U32 may be operated.
Every time DLL_MNCycTimeExceed_REC.ThresholdCnt_U32 reaches the threshold
DLL_MNCycTimeExceed_REC.Threshold_U32 or, if no Threshold counter is implemented,
every time the error symptom occurs, the MN NMT state machine shall be notified. It shall
handle this error source as an “error condition“ (NMT_MT6) and shall change it’s state to
NMT_MS_PRE_OPERATIONAL_1.

Every error event shall be logged at the error history by E_DLL_CYCLE_EXCEED, threshold
violations by E_DLL_CYCLE_EXCEED_TH.

• Registration

The MN may optionally operate a threshold counter
DLL_MNCycTimeExceed_REC.ThresholdCnt_U32 and optionally a cumulative counter array
DLL_MNCycTimeExceed_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_CYCLE_EXCEED XXXX

3h 002h E_DLL_CYCLE_EXCEED_TH XXXX

4.7.6.5 Collisions

• Error Source

The number of hubs in the POWERLINK network may violate the path delay variability
specification of IEEE 802.3. Because standard Ethernet controllers according to IEEE 802.3 are
used, collisions can be detected only in some cases.

ETHERNET powerlink does not depend on the discovery of collisions.

In NMT_MS_PRE_OPERATIONAL_1, NMT_MS_PRE_OPERATIONAL_2,
NMT_MS_READY_TO_OPERATE, and NMT_MS_OPERATIONAL, no collisions should occur
due to the POWERLINK cycle design. If a node does not follow these requirements, then the
determinism and the high precision synchronisation cannot be guaranteed anymore.
Nevertheless collisions can occur in case of configuration failures or defect nodes.

• Error recognition

If the Ethernet controller discovers a collision in the POWERLINK network, it shall start the
standard Ethernet procedure for collisions.

• Handling

MN shall log the error symptom in the error history and and shall suspends cycle generation for
a configurable number (DLL_MNCycleSuspendNumber_U32) of cycles, before continuing with
the isochronous and asynchronous communication.

The MN data link layer state machine shall change its state to DLL_MS_WAIT_SOC_TIME.

Optionally a threshold counter DLL_MNCollision_REC.ThresholdCnt_U32 and a cumulative
counter DLL_MNCollision_REC.CumulativeCnt_U32 may be operated. Every time
DLL_MNCollision_REC.ThresholdCnt_U32 reaches the threshold
DLL_MNCollision_REC.Threshold_U32 or, if no Threshold counter is implemented, every time
the error symptom occurs, the MN NMT state machine shall be notified. It shall handle this error
source as an “internal Communication Error (NMT_GT6)” and shall change its state to
NMT_GS_RESET_COMMUNICATION.

EPSG DS 301 V1.5.1 -89-

Every error event shall be logged in the error history by E_DLL_COLLISION, threshold
violations by E_DLL_COLLISION_TH.

• Registration

The MN may optionally operate a threshold counter DLL_MNCollision_REC.ThresholdCnt_U32
and a cumulative counter DLL_MNCollision_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_COLLISION XXXX

3h 002h E_DLL_COLLISION_TH XXXX

4.7.6.6 Invalid Formats

• Error Source

Invalid Formats can result from software faults or hardware errors in the nodes. Format Errors
shall only be detected on PRes and ASnd frames with correct CRC. Format Errors in the
asynchronous communication not using the POWERLINK ASnd frame shall be ignored.

Invalid Format Errors can also occur if there are various firmware versions within the
POWERLINK network. In that case nodes may not support frame formats of other nodes.

• Error recognition

An invalid Format error symptom shall be recognized if a POWERLINK frame header contains
an unsupported value. This may be a false Node ID, etc. An invalid format error shall also be
caused, if the received frame size is larger than the predicted buffer input size.

A false resp. unknown message type or service ID does not result in an invalid format error.

Note: Otherwise the mixing of old and new devices that support extensions of the specification
with new message types or service IDs will result in invalid format errors in old CNs.

• Handling

If a CN causes an invalid format error, the MN NMT State machine shall consider the CN
inactive and shall remove it from the isochronous processing. Additionally it shall send to the
CN the command NMTResetNode. On this command the CN will change its state (See 7.1.4).

The error symptom shall be logged to error history, every time it occurs.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_INVALID_FORMAT XXXX

4.7.6.7 POWERLINK Address Conflicts

• Error source

Because of the distinct MAC address of each node it is not possible that two or more nodes own
the same MAC address but it is still possible that two or more nodes own the same powerlink
node address. Only in the asynchronous communication multiple CNs can answer on a SoA
frame (service channel: Ident). Since the MN sends a MAC multicast (SoA frame) to a unicast
powerlink address, several CNs with the same powerlink address are able to respond.

• Error recognition

The MN shall detect multiple used POWERLINK addresses in a network by counting the
responses on an IdentRequest SoA frame.

• Handling

If the MN detects that multiple CNs cause POWERLINK address conflicts, the MN NMT State
machine shall consider the involved CNs inactive and shall remove them from the configuration.

EPSG DS 301 V1.5.1 -90-

The error symptom shall be logged to error history, every time it occurs.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_ADDRESS_CONFLICT XXXX Status of the MN

4.7.6.8 Multiple MNs on a single POWERLINK Network

• Error source

In NMT_MS_NOT_ACTIVE the MN shall observe the POWERLINK network whether another
MN is already running.

If multiple MNs simultaneously start the communication, a combination of error symptoms will
be detected. One of these symptoms will be the receipt of SoC or SoA frames from the other
MN.

• Error recognition

The MN will receive SoC or SoA frames from the other MN.

Recognition is optional. Support shall be indicated by D_DLL_ErrMNMultipleMN_BOOL.

• Handling

If the MN is in the state NMT_MS_NOT_ACTIVE and detects that another MN is running, it shall
reside in its state.

If multiple MNs start the communication simultaneously and an MN detects this error symptom it
notifies the NMT state machine. It handles this error source as an “internal Communication
Error (NMT_GT6)” and changes its state to NMT_GS_RESET_COMMUNICATION.

The error symptom shall be logged every time it occurs.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_MULTIPLE_MN XXXX

4.7.6.9 Loss of StatusResponse

• Error source

Following possible error sources could cause this error symptom:

• Physical error sources on the MN

• Transmission Error (CRC Error)

• Loss of link

• Rx Buffer overflow

• Tx Buffer underrun

• Error symptoms on a CN in the POWERLINK network

• Frame Collision error symptom

• A CN, which response latency is higher than allowed.

• A component of the network structure is defect.

• Power failure on a CN

• Etc.

• Error recognition

If a StatusRequest was sent and the asynchronous slot time expires, no StatusResponse frame
was received during the asynchronous slot.

EPSG DS 301 V1.5.1 -91-

The error is detected by the MN cycle state machine and reported via error event
DLL_MEV_LOSS_STATUSRESPONSE.

• Handling

After detecting a CN’s Loss of StatusResponse by the NMT_MNCycleTiming_REC.
AsyncSlotTimeout_U32, the MN shall proceed with the SoC of the next cycle.

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_MNLossStatusResThrCnt_AU32[CN Node ID] violates the
threshold DLL_MNLossStatusResThreshold_AU32[CN Node ID], the MN NMT State machine
shall consider the CN inactive and shall remove it from the (isochronous) processing.
Additionally it shall send the command NMTResetNode to the respective CN. On this command
the CN will change its state (See 7.1.4). Whenever this error symptom is detected, the MN shall
check for a physical layer error source.

The error symptom shall be logged in the Error History every time the threshold value is
reached.

• Registration

The MN shall operate a threshold counter array DLL_MNLossStatusResThrCnt_AU32 and
optionally a cumulative counter array DLL_MNLossStatusResCumCnt_AU32 (see. 4.7.4.2).
CNs are represented by the subindices of the arrays.

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_STATUSRES_TH XXXX

4.7.7 Communication Error Symptoms detected by the
CN

This section describes error symptoms on the data link layer detected and handled by CNs.

4.7.7.1 Collisions

• Error Source

The number of hubs in the POWERLINK network may violate the path delay variability
specification of IEEE 802.3. Because standard Ethernet controllers according to IEEE 802.3 are
used, collisions can be detected only in some cases.

ETHERNET powerlink does not depend on the discovery of collisions.

In NMT_CS_PRE_OPERATIONAL_1, NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE, and NMT_CS_OPERATIONAL, no collisions should occur
because of the POWERLINK cycle design. If a node does not fullfill these requirements, then
the determinism and the high precision synchronisation can not be guaranteed anymore.
Nevertheless collisions can occur in case of configuration failures or defect nodes.

• Error recognition

If the Ethernet controller discovers a collision in the POWERLINK network, it shall start the
standard Ethernet procedure for collisions.

• Handling

A threshold counter DLL_CNCollision_REC.ThresholdCnt_U32 and a cumulative counter
DLL_CNCollision_REC.CumulativeCnt_U32 may be operated optionally. Every time the
threshold counter reaches the threshold DLL_CNCollision_REC.Threshold_U32, the CN NMT
state machine shall be notified. It shall handle this error source as an “Internal Communication
Error (NMT_GT6)” and shall change its state to NMT_GS_RESET_COMMUNICATION.

Threshold violations shall be logged in the error history.

EPSG DS 301 V1.5.1 -92-

• Registration

The CN may optionally operate a threshold counter DLL_CNCollision_REC.ThresholdCnt_U32
and a cumulative counter DLL_CNCollision_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_COLLISION_TH XXXX

4.7.7.2 Invalid Formats

• Error Source

Invalid Formats can result from software faults or hardware errors in the nodes. Format Errors
shall be detected on all POWERLINK frames with correct CRC received by the CN, e.g SoC,
PReq, PRes, SoA and ASnd. Format Errors in the asynchronous communication not using the
POWERLINK ASnd frame shall be ignored.

Invalid Format Errors can also occur if there are various firmware versions within the
POWERLINK network. In that case nodes may not support frame formats of other nodes.

• Error recognition

An invalid Format error symptom shall be recognized if a POWERLINK frame header contains
an unsupported value. This may be a false Node ID, etc. An invalid format error is also caused,
if the received frame size is larger than the predicted buffer input size.

A false resp. unknown message type or service ID does not result in an invalid format error.

Note: Otherwise the mixing of old and new devices that support extensions of the specification
with new message types or service IDs will result in invalid format errors in old CNs.

• Handling

If a CN detects an invalid format error, it shall notify it’s NMT State machine. The CN NMT State
machine handles this error source as an “Internal Communication Error (NMT_GT6)” and
changes its state to NMT_GS_RESET_COMMUNICATION.

The error symptom is logged to error history every time it occurs.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_INVALID_FORMAT XXXX

4.7.7.3 Loss of Frames

Loss of Frame errors are detected by the CN cycle state machine and reported via error events. The
state machine only detects the loss of frames, which were sent by the MN.

• Error source

Following error sources could cause this error symptom:

• Physical error sources on the MN (see 4.7.5)

• Transmission Error (CRC Error)

• Loss of link

• Rx Buffer overflow

• Tx Buffer underrun

• Error symptoms on a CN in the POWERLINK network

• Frame Collision (see 4.7.7.1)

• A component of the network structure is defect.

• Power failure on a CN or an MN

EPSG DS 301 V1.5.1 -93-

• Etc.

4.7.7.3.1 Loss of SoC

• Error recognition

Loss of SoC error is detected by the CN Cycle State Machine and reported via error event
DLL_CEV_LOSS_SOC.

• Handling

On detecting a Loss of SoC the cumulative counter
DLL_CNLossSoC_REC.CumulativeCnt_U32 shall be incremented. The CN shall reply on any
invitation with the data of the previous cycle. The CN shall accept new isochronous or
asynchronous data.

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_CNLossSoC_REC.ThresholdCnt_U32 violates the threshold
DLL_CNLossSoC_REC.Threshold_U32, the CN shall notify its NMT state machine and shall log
the error symptom to the error history. The CN NMT state machine shall handle this error
source as an “error condition (NMT_CT11)” and shall change it’s state to
NMT_CS_PRE_OPERATIONAL_1.

Whenever this error symptom is detected, the CN shall check for a physical layer error source
(see 4.7.5).

• Registration

The CN shall operate a threshold counter DLL_CNLossSoC_REC.ThresholdCnt_U32 and a
cumulative counter DLL_CNLossSoC_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_SOC_TH XXXX

4.7.7.3.2 Loss of SoA

• Error recognition

Loss of SoA error is detected by the CN Cycle State Machine and reported via error event
DLL_CEV_LOSS_SOA.

• Handling

On detecting a Loss of SoA the cumulative counter
DLL_CNLossSoA_REC.CumulativeCnt_U32 shall be incremented. The CN shall continue
operation. It shall accept new isochronous or asynchronous data.

Error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_CNLossSoA_REC.ThresholdCnt_U32 violates the threshold
DLL_CNLossSoA_REC.Threshold_U32, the CN shall notify its NMT state machine and shall log
the error symptom to the error history. The CN NMT state machine shall handle this error
source as an “error condition (NMT_CT11)” and shall change it’s state to
NMT_CS_PRE_OPERATIONAL_1.

Whenever this error symptom is detected, the CN checks for a physical layer error source (see
4.7.5).

• Registration

The CN shall operate a threshold counter DLL_CNLossSoA_REC.ThresholdCnt_U32 and a
cumulative counter DLL_CNLossSoA_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

EPSG DS 301 V1.5.1 -94-

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_SOA_TH XXXX

4.7.7.3.3 Loss of PReq

• Error recognition

Loss of PReq error is detected by the CN Cycle State Machine and reported via error event
DLL_CEV_LOSS_PREQ.

• Handling

On detecting a Loss of PReq the cumulative counter
DLL_CNLossPReq_REC.CumulativeCnt_U32 shall be incremented. The CN shall continue
communication and listen to cross traffic. It shall accept new isochronous or asynchronous data.

Further error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

If the threshold counter DLL_CNLossPReq_REC.ThresholdCnt_U32 violates the threshold
DLL_CNLossPReq_REC.Threshold_U32, the CN shall notify its NMT state machine and shall
log the error symptom to the error history. The CN NMT state machine shall handle this error
source as an “error condition (NMT_CT11)” and shall change it’s state to
NMT_CS_PRE_OPERATIONAL_1.

Whenever this error symptom is detected, the CN checks for a physical layer error source (see
4.7.5).

• Registration

The CN shall operate a threshold counter DLL_CNLossPReq_REC.ThresholdCnt_U32 and a
cumulative counter DLL_CNLossPReq_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_LOSS_PREQ_TH XXXX

4.7.7.3.4 SoC Jitter out of Range

• Error source

This error could have various error sources:

• Jitter on not POWERLINK compliant network components

• Collisions in the POWERLINK network

• Failure during the transmission

• MN failures

• Late response of CN causes a delay of the SoC

• Etc.

• Error recognition

A CN may control the SoC cycle time jitter.

Every time it receives the SoC frame, it shall measure the cycle time. A SoC jitter error shall be
recognized, when the difference between the nominal cycle time and the measured time is out
of a configurable range DLL_CNSoCJitterRange_U32.

Recognition shall be performed in NMT_CS_READY_TO_OPERATE and
NMT_CS_OPERATIONAL.

• Handling

If the CN detects a SoC Jitter range violation the cumulative counter
DLL_CNSoCJitter_REC.CumulativeCnt_U32 shall be incremented,

Further error reaction shall be triggered by the threshold counter mechnism (see 4.7.4.1).

EPSG DS 301 V1.5.1 -95-

If the threshold counter DLL_CNSoCJitter_REC.ThresholdCnt_U32 violates the threshold
DLL_CNSoCJitter_REC.Threshold_U32, the CN shall notify its NMT state machine and shall
log the error symptom to the error history. The CN NMT state machine shall handle this error
source as an “error condition (NMT_CT11)” and shall change it’s state to
NMT_CS_PRE_OPERATIONAL_1.

• Registration

The CN shall operate a threshold counter DLL_CNSoCJitter_REC.ThresholdCnt_U32 and a
cumulative counter DLL_CNSoCJitter_REC.CumulativeCnt_U32 (see. 4.7.4.2).

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_DLL_JITTER_TH XXXX

4.7.8 DLL Error Handling Objects

In this section the objects used by the DLL error handling are described.

Support of threshold counter objects requires support of the respective threshold value object and vice
versa.

4.7.8.1 Object 1C00h: DLL_MNCRCError_REC

The following objects are used to monitor CRC errors. The record consists of a cumulative counter
and a threshold counter data object and its threshold data object.

Index 1C00h Object Type RECORD

Name DLL_MNCRCError_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: M
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a CRC error occurs. Its value
monitors all CRC errors that were detected by the MN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a CRC error occurs on the MN and
decremented by 1 at every cycle without reoccurance of the error. Its value monitors the quality
of network in relation to the CRC error occurrence.

EPSG DS 301 V1.5.1 -96-

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.1)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

4.7.8.2 Object 1C01h: DLL_MNCollision_REC

The following objects are used to monitor Collision error symptoms. The record consists of a
cumulative counter and a threshold counter data object and its threshold data object.

Index 1C01h Object Type RECORD

Name DLL_MNCollision_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: O
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access rw

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a Collision error symptom occurs.
Its value monitors all Collision error symptoms that were detected by the MN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a Collision error symptom occurs
on the MN and decremented by 1 at every cycle without reoccurance of the error. Its value
monitors the quality of network in relation to the Collision error occurrence.

EPSG DS 301 V1.5.1 -97-

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.1)

Threshold counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

4.7.8.3 Object 1C02h: DLL_MNCycTimeExceed_REC

The following objects are used to monitor “Cycle time exceeded” error symptoms. The record consists
of a cumulative counter and a threshold counter data object and its threshold data object.

Index 1C02h Object Type RECORD

Name DLL_MNCycTimeExceed_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: O
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Cycle time Exceeded“ error
symptom occurs. Its value monitors all “Cycle Time exceeded” error symptom that were
detected by the MN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “Cycle Time exceeded” error
symptom occurs on the MN and decremented by 1 at every cycle without reoccurance of the
error. Its value monitors the quality of network in relation to the “Cycle Time exceeded error
occurrence.

EPSG DS 301 V1.5.1 -98-

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.1)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

4.7.8.4 Object 1C03h: DLL_MNLossOfLinkCum_U32

The following objects are used to monitor the “Loss of Link” error source. The cumulative counter shall
be incremented by 1 every time a “Loss of Link“ error symptom occurs. Its value monitors all “Loss of
Link” error symptoms that were detected by the MN.

The object may be implemented only if the error recognition is provided.

Index 1C03h Object Type VAR

Name DLL_MNLossOfLinkCum_U32

Data Type UNSIGNED32 Category MN: Cond
CN: -

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

4.7.8.5 Object 1C04h: DLL_MNCNLatePResCumCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a cumulative counter of Late
PRes events. The cumulative counter of the respective CN shall be incremented by 1 every time a
“Late PollResponse“ error symptom occurs. Its value monitors all “Late PollResponse” error symptoms
that were detected by the MN.

The object may be implemented only if the error recognition is provided.

Index 1C04h Object Type ARRAY

Name DLL_MNCNLatePResCumCnt_AU32

Data Type UNSIGNED32 Category MN: Cond
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CumCnt

Sub-Index 01h – FEh

Name CumCnt

-- -- Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

EPSG DS 301 V1.5.1 -99-

4.7.8.6 Object 1C05h: DLL_MNCNLatePResThrCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold counter of late
PRes. The threshold counter of the respective CN shall be incremented by 8 every time a “Late
PollResponse” error symptom occurs on the MN and decremented by 1 at every cycle without
reoccurance of the error. Its value monitors the quality of network in relation to the “Late
PollResponse” error occurrence.

The object may be implemented only if the error recognition is provided.

Index 1C05h Object Type ARRAY

Name DLL_MNCNLatePResThrCnt_AU32

Data Type UNSIGNED32 Category MN: Cond
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: ThrCnt

Sub-Index 01h – FEh

Name ThrCnt

-- -- Category M

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

4.7.8.7 Object 1C06h: DLL_MNCNLatePResThreshold_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold of late PRes.

Every time the respective DLL_MNCNLatePResThrCnt_AU32 value reaches the threshold, a defined
action shall proceed and the respective DLL_MNCNLatePResThrCnt_AU32 value shall be reset to 0.
(See 4.7.7.1)

Threshold Counting may be deactivated by setting respective DLL_MNCNLatePResThreshold_AU32
value to 0. If Threshold Counting is deactivated, no error reaction will occur.

The object may be implemented only if the error recognition is provided.

EPSG DS 301 V1.5.1 -100-

Index 1C06h Object Type ARRAY

Name DLL_MNCNLatePResThreshold_AU32

Data Type UNSIGNED32 Category MN: Cond
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: Threshold

Sub-Index 01h – FEh

Name Threshold

-- -- Category M

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

4.7.8.8 Object 1C07h: DLL_MNCNLossPResCumCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a cumulative counter of Loss
of PRes events. The cumulative counter of the respective CN shall be incremented by 1 every time a
“Loss of PollResponse“ error symptom occurs. Its value monitors all “Loss PollResponse” error
symptoms that were detected by the MN.

Index 1C07h Object Type ARRAY

Name DLL_MNCNLossPResCumCnt_AU32

Data Type UNSIGNED32 Category MN: O
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CumCnt

Sub-Index 01h – FEh

Name CumCnt

-- -- Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

4.7.8.9 Object 1C08h: DLL_MNCNLossPResThrCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold counter of Loss
of PRes.The threshold counter of the respective CN shall be incremented by 8 every time a “Loss of
PollResponse” error symptom occurs on the MN and decremented by 1 at every cycle without
reoccurance of the error. Its value monitors the quality of network in relation to the “Loss of
PollResponse” error occurrence.

EPSG DS 301 V1.5.1 -101-

Index 1C08h Object Type ARRAY

Name DLL_MNCNLossPResThrCnt_AU32

Data Type UNSIGNED32 Category MN: M
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: ThrCnt

Sub-Index 01h – FEh

Name ThrCnt

-- -- Category M

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

4.7.8.10 Object 1C09h: DLL_MNCNLossPResThreshold_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold of lost PRes.

Every time the respective DLL_MNCNLossPResThrCnt_AU32 value reaches the threshold, a defined
action shall proceed and the respective DLL_MNCNLossPResThrCnt_AU32 value shall be reset to 0.
(See 4.7.7.1)

Threshold counting may be deactivated by setting respective DLL_MNCNLossPResThreshold_AU32
value to 0. If Threshold Counting is deactivated, no error reaction will occur.

Index 1C09h Object Type ARRAY

Name DLL_MNCNLossPResThreshold_AU32

Data Type UNSIGNED32 Category MN: M
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: Threshold

Sub-Index 01h – FEh

Name Threshold

-- -- Category M

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

EPSG DS 301 V1.5.1 -102-

4.7.8.11 Object 1C0Ah: DLL_CNCollision_REC

The following objects are used to monitor “Collision” error symptoms detected by a CN. The record
consists of a cumulative counter and a threshold counter data object and its threshold data object.

The object may be implemented if the error recognition is provided.

Index 1C0Ah Object Type RECORD

Name DLL_CNCollision_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Collision“ error symptom
occurs. Its value monitors all “Collision” error symptoms that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “Collision” error symptom occurs
and decremented by 1 at every cycle without reoccurance of the error. Its value monitors the
quality of network in relation to the “Collision” error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.1)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -103-

4.7.8.12 Object 1C0Bh: DLL_CNLossSoC_REC

The following objects are used to monitor “Loss of Soc” error symptoms detected by a CN. The record
consists of a cumulative counter and a threshold counter data object and its threshold data object.

Index 1C0Bh Object Type RECORD

Name DLL_CNLossSoC_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 3 Access const

Default Value 3 PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Loss of SoC“ error symptom
occurs. Its value monitors all “Loss of SoC” error symptoms that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “Loss of SoC” error symptom
occurs and decremented by 1 at every cycle without reoccurance of the error. Its value monitors
the quality of network in relation to the “Loss of SoC” error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.3.1)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -104-

4.7.8.13 Object 1C0Ch: DLL_CNLossSoA_REC

The following objects are used to monitor “Loss of SoA” error symptoms detected by a CN. The record
consists of a cumulative counter and a threshold counter data object and its threshold data object.

The object may be implemented only if the error recognition is provided.

Index 1C0Ch Object Type RECORD

Name DLL_CNLossSoA_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Loss of SoA“ error symptom
occurs. Its value monitors all “Loss of SoA” error symptoms that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “Loss of SoA” error symptom
occurs and decremented by 1 at every cycle without reoccurance of the error. Its value monitors
the quality of network in relation to the “Loss of SoA” error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.3.2)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -105-

4.7.8.14 Object 1C0Dh: DLL_CNLossPReq_REC

The following objects are used to monitor “Loss of PReq” error symptoms detected by an isochronous
CN. The record consists of a cumulative counter and a threshold counter data object and its threshold
data object.

The object may be implemented only if the error recognition is provided.

Index 1C0Dh Object Type RECORD

Name DLL_CNLossPReq_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Loss of PReq“ error symptom
occurs. Its value monitors all “Loss of PReq” error symptoms that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “Loss of PReq” error symptom
occurs and decremented by 1 at every cycle without reoccurance of the error. Its value monitors
the quality of network in relation to the “Loss of PReq” error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.3.3)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -106-

4.7.8.15 Object 1C0Eh: DLL_CNSoCJitter_REC

The following objects are used to monitor “SoC Jitter” error symptoms detected by a CN. The record
consists of a cumulative counter and a threshold counter data object and its threshold data object.

The object may be implemented only if the error recognition is provided.

Index 1C0Eh Object Type RECORD

Name DLL_CNSoCJitter_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a “Soc Jitter“ error symptom
occurs. Its value monitors all “SoC Jitter” error symptoms that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a “SoC Jitter” error symptom occurs
and decremented by 1 at every cycle without reoccurance of the error. Its value monitors the
quality of network in relation to the “SoC Jitter” error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.7.3.1)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -107-

4.7.8.16 Object 1C0Fh: DLL_CNCRCError_REC

The following objects are used to monitor CRC errors. The record consists of a cumulative counter
and a threshold counter data object and its threshold data object.

Index 1C0Fh Object Type RECORD

Name DLL_CNCRCError_REC

Data Type DLL_ErrorCntRec_TYPE Category MN: -
CN: M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: CumulativeCnt_U32

Sub-Index 01h

Name CumulativeCnt_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The cumulative counter shall be incremented by 1 every time a CRC error occurs. Its value
monitors all CRC errors that were detected by the CN.

• Sub-Index 02h: ThresholdCnt_U32

Sub-Index 02h

Name ThresholdCnt_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The threshold counter shall be incremented by 8 every time a CRC error occurs on the CN and
decremented by 1 at every cycle without reoccurance of the error. Its value monitors the quality
of network in relation to the CRC error occurrence.

• Sub-Index 03h: Threshold_U32

Sub-Index 03h

Name Threshold_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

Every time ThresholdCnt_U32 reaches the threshold, a defined action shall proceed and
ThresholdCnt_U32 shall be reset to 0. (See 4.7.5.4)

Threshold Counting may be deactivated by setting Threshold_U32 to 0. If Threshold Counting is
deactivated, no error reaction will occur.

EPSG DS 301 V1.5.1 -108-

4.7.8.17 Object 1C10h: DLL_CNLossOfLinkCum_U32

The following objects are used to monitor the “Loss of Link” error source. The cumulative counter shall
be incremented by 1 every time a “Loss of Link“ error symptom occurs. Its value monitors all “Loss of
Link” error sources that were detected by the CN.

The object may be implemented only if the error recognition is provided.

Index 1C10h Object Type VAR

Name DLL_CNLossOfLinkCum_U32

Data Type UNSIGNED32 Category MN: -
CN: Cond

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

4.7.8.18 Object 1C12h: DLL_MNCycleSuspendNumber_U32

The DLL_MNCycleSuspendNumber_U32 parameter is used to define the number of cycles that will be
suspended, when a collision has occurred. (See also Tab. 28 MN error handling table and 4.7.6.5
Collisions)

Index 1C12h Object Type VAR

Name DLL_MNCycleSuspendNumber_U32

Data Type UNSIGNED32 Category MN: M
CN: -

Value Range UNSIGNED32 Access rw

Default Value 1 PDO Mapping No

Value 0 means that it will finish the current cycle and continue with the followed cycle; 1 means,
that it suspends the followed cycle.

4.7.8.19 Object 1C13h: DLL_CNSoCJitterRange_U32

The DLL_CNSoCJitterRange_U32 parameter is used to define the range in ns within the SoCJitter
may vary.

The object may be implemented only if the error recognition is provided.

Index 1C13h Object Type VAR

Name DLL_CNSoCJitterRange_U32

Data Type UNSIGNED32 Category MN: -
CN: Cond

Value Range UNSIGNED32 Access rw

Default Value 2000 PDO Mapping No

4.7.8.20 Object 1C14h : DLL_CNLossOfSocTolerance_U32

The object provides a tolerance interval in [ns] to be applied by CN’s Loss of SoC error recognition
(see 4.7.7.3.1).

EPSG DS 301 V1.5.1 -109-

Index 1C14h Object
Type

VAR

Nam
e

DLL_CNLossOfSocTolerance_U32

Data
Type

UNSIGNED32 Catego
ry

MN: -
CN: M

Value
Rang
e

0 .. D_DLL_CNLossOfSoCToleranceMax_U32 Access rws

Defa
ult
Value

D_DLL_CNLossOfSoCToleranceMax_U32 PDO
Mappin
g

No

4.7.8.21 Object 1C15h: DLL_MNLossStatusResCumCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a cumulative counter of Loss
of StatusResponse events. The cumulative counter of the respective CN shall be incremented by 1
every time a “Loss of StatusResponse“ error symptom occurs. Its value monitors all “Loss
StatusResponse” error symptoms that were detected by the MN.

Index 1C15h Object Type ARRAY

Name DLL_MNLossStatusResCumCnt_AU32

Data Type UNSIGNED32 Category MN: O
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CumCnt

Sub-Index 01h – FEh

Name CumCnt

-- -- Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

The sub-index is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0 and 1.

4.7.8.22 Object 1C16h: DLL_MNLossStatusResThrCnt_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold counter of Loss
of StatusResponse. The threshold counter of the respective CN shall be incremented by 8 every time
a “Loss of StatusResponse” error symptom occurs on the MN and decremented by 1 at every
StatusRequest without reoccurance of the error. Its value monitors the quality of network in relation to
the “Loss of StatusResponse” error occurrence.

EPSG DS 301 V1.5.1 -110-

Index 1C16h Object Type ARRAY

Name DLL_MNLossStatusResThrCnt_AU32

Data Type UNSIGNED32 Category MN: M
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: ThrCnt

Sub-Index 01h – FEh

Name ThrCnt

-- -- Category M

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

The sub-index is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0 and 1.

4.7.8.23 Object 1C17h:
DLL_MNLossStatusResThreshold_AU32

This array on the MN contains for every CN in the POWERLINK network a threshold of lost
StatusResponse.

Every time the respective DLL_MNLossStatusResThrCnt_AU32 value reaches the threshold, a
defined action shall proceed and the respective DLL_MNLossStatusResThrCnt_AU32 value shall be
reset to 0. (See 4.7.7.1)

Threshold counting may be deactivated by setting respective DLL_MNLossStatusResThreshold_AU32
value to 0. If Threshold Counting is deactivated, no error reaction will occur.

Index 1C17h Object Type ARRAY

Name DLL_MNLossStatusResThreshold_AU32

Data Type UNSIGNED32 Category MN: M
CN: -

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: Threshold

Sub-Index 01h – FEh

Name Threshold

-- -- Category M

Value Range UNSIGNED32 Access rws

Default Value 15 PDO Mapping No

The sub-index is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0 and 1.

EPSG DS 301 V1.5.1 -111-

4.7.8.24 Object 0424h: DLL_ErrorCntRec_TYPE

Index 0424h Object Type DEFSTRUCT

Name DLL_ErrorCntRec_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 03h

01h CumulativeCnt_U32 0007h UNSIGNED32

02h ThresholdCnt_U32 0007h UNSIGNED32

03h Threshold_U32 0007h UNSIGNED32

EPSG DS 301 V1.5.1 -112-

5 Network / Transport Layer

5.1 Internet Protocol (IP)
The Internet Protocol version 4 (IPv4) and its referred transport layer protocols UDP and TCP are the
preferred protocols in the asynchronous phase.

• RFC 791 defines Internet Protocol (IP)

• RFC 768 defines the User Datagram Protocol (UDP)

• RFC 793 defines the Transmission Control Protocol (TCP).

5.1.1 IP Host Requirements

This section discusses the requirements for a POWERLINK node implementation of the Internet
Protocol. To use IP transparently in the asynchronous phase, the POWERLINK nodes shall be
conformed to RFC1122 “Requirements for Internet Hosts -- Communication Layers”. However, this
would prohibit several low-end POWERLINK nodes, communicating with IP in the asynchronous
phase. Therefore the following conformance classes are introduced.

5.1.1.1 Nodes without IP Communication

MNs shall support IP communication.

CNs that don’t support SDO via UDP/IP do not need an IP stack.

At the CN, support of IP communication may be indicated by the device description entry
D_NWL_IPSupport_BOOL.

5.1.1.2 Minimum Requirements for SDO Communication

This conformance class shall be fulfilled, to ensure that a POWERLINK node is able to communicate
in the asynchronous phase via SDO. It is not guaranteed that protocols from the Internet Protocol suite
will work – e.g. Socket communication, TFTP, FTP HTTP, etc.

5.1.1.2.1 IP Stack Requirements
To communicate via IPv4 in the asynchronous phase, the POWERLINK node shall at least cope with
256 Bytes SDO payload. Therefore, the IP stack shall process at least C_DLL_MIN_ASYNC_MTU bytes
(including IP header and IP payload) that can be received. IP fragmentation and reassembly is not
required to fulfil this conformance class. Hence the size of the asynchronous phase shall be equal or
bigger than 256 Bytes SDO payload.

5.1.1.2.2 UDP Requirements
A POWERLINK node shall implement the User Datagram Protocol specified in RFC 768 and shall
support at least one UDP socket.

5.1.1.3 Minimum Requirements for Standard IP
Communication

This conformance class shall be compatible to RFC 1122 and shall cover the entire conformance
class for minimum requirements for SDO communication listed above. For convenience the following
core requirements are listed.

EPSG DS 301 V1.5.1 -113-

5.1.1.3.1 IP Stack Requirements
• The IPv4 layer shall implement reassembly of IP datagrams – see RFC1122 chapter 3.3.2

Reassembly.

• The IPv4 layer shall implement a mechanism to fragment outgoing datagrams intentionally –
see RFC1122 chapter 3.3.3 Fragmentation.

• In general an IPv4 capable POWERLINK node shall at least process IP datagrams up to 576
bytes (including header and data) – see RFC 1122 chapter 3.3.2/3.3.3.

• ICMP (RFC 792) support is optional. It shall be indicated by D_NWL_ICMPSupport_BOOL.

5.1.2 IP Addressing

Each IP-capable POWERLINK node possesses an IPv4 address, a subnet mask and default gateway.
These attributes are referred to as the IP parameters.

• IPv4 Address

The private class C Net ID 192.168.100.0 shall be used for a POWERLINK network – see
RFC1918. A class C network provides 254 (1-254) IP addresses, which matches the number of
valid POWERLINK Node ID’s. The Host ID of the private class C Net ID 192.168.100.0 shall be
identical to the POWERLINK Node ID. Hence the last byte of the IP address (Host ID) has the
same value as the POWERLINK Node ID. The following figure illustrates the construction of the
IP address.

Fig. 38. Construction of the IPv4 address

Remarks:

Knowing the Node ID of a POWERLINK node, its IP address and vice versa can be determined
easily without any communication overhead.

• Subnet mask

The subnet mask of a POWERLINK node shall be 255.255.255.0. This is the subnet mask of a
class C net.

• Default Gateway

The Default Gateway preset shall use the IP address 192.168.100.254. The value may be
modified to another valid IP address.

Generally the IPv4 Address and Subnet mask parameters of a POWERLINK node shall be fixed. The
downside of the fixed IP parameters are compensated by the POWERLINK Router using Network
Address Translation (see 9.1.4.2.2).

The following table summarises the default IP parameters.

IP Parameter IP address

IP address 192.168.100.<POWERLINK Node ID>

Subnet mask 255.255.255.0

Default Gateway 192.168.100.254 (may be modified)

 IP parameters of a POWERLINK node

5.1.3 Address Resolution

The Address Resolution Protocol (ARP) specified in RFC 826 shall be used to obtain the IP to
Ethernet MAC relation of a POWERLINK node. Depending on the POWERLINK node state:

• NMT_CS_EPL_MODE and NMT_MS_EPL_MODE state: ARP shall be performed in the
asynchronous phase. To reduce the traffic in the asynchronus phase, the MN may determine
the IP to MAC address relation from the ident process.

192.168.100.POWERLINK Node ID

Net ID Host ID

EPSG DS 301 V1.5.1 -114-

• NMT_CS_BASIC_ETHERNET state: ARP shall be performed like an IEEE802.3 compliant
node does, using CSMA/CD.

Optional the MN or CN may send the NMT Managing command NMTFlushArpEntry (see 7.3.2.1.2) if
one of them detects that an upcoming node has a new MAC address. This can be done to flush the
ARP cache of all nodes in the POWERLINK network. The POWERLINK node may process
NMTFlushArpEntry.

Alternativley an unsolicited ARP request frame (containing its IP address) may be broadcasted
initiated by the respective POWERLINK node at startup. As a result, the neighbours ARP caches shall
be updated.

5.1.4 Hostname

Each IP capable POWERLINK node shall have a hostname. The hostname is of type
VISIBLE_STRING32. The hostname can be used to access POWERLINK nodes with its name instead
of its IP address.

The admissible values of type VISIBLE_STRING for the hostname shall be restricted to:

• 30h - 39h (0 - 9)

• 41h - 5Ah (A - Z)

• 61h - 7Ah (a - z)

• 2D h (-)
The data are interpreted as ISO 646-1973(E) 7-bit coded characters.

The default hostname shall be constructed from the POWERLINK Node ID and the Vendor ID parted
by the character “-“ (<POWERLINK Node ID>-<Vendor ID>). POWERLINK Node ID and the Vendor
ID shall be hexadecimally coded.

If no hostname is explicitly assigned, the POWERLINK node shall use the default hostname instead.

The hostname located on the POWERLINK node shall be set with the NMT Managing command
NMTNetHostNameSet (refer 7.3.2.1.1). Modification of the hostname value shall not take effect until
the POWERLINK node enters the NMT_GS_INITIALISATION state. The hostname is read by the
ASnd with the Ident Response Service.

A hostname to IP address resolution service may be provided to gather the hostname to IP address
association of all POWERLINK nodes within a POWERLINK network. This service configures for
example the DNS table of the DNS server located on the POWERLINK to legacy Ethernet Router or a
local hostname table on a diagnostics device.

EPSG DS 301 V1.5.1 -115-

5.1.5 Object description

5.1.5.1 Object 1E4Ah: NWL_IpGroup_REC

The NWL_IpGroup_REC object is a subset of the IP Group RFC1213. The object specifies information
about the IP stack.

The Object shall be supported only if IP is supported by the device.

Index 1E4Ah Object Type RECORD

Name NWL_IpGroup_REC

Data Type NWL_IpGroup_TYPE Category Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 .. 3 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: Forwarding_BOOL

Sub-Index 01h

Name Forwarding_BOOL

Data Type BOOLEAN Category M

Value Range FALSE (Not-forwarding)
TRUE (forwarding)

Access ro/rws

Default Value FALSE (Not-forwarding) PDO Mapping No

The indication whether this entity is acting as an IP router in respect to the forwarding of
datagrams received by, but not addressed to this entity. IP routers forward datagrams. IP hosts
do not (except those source-routed via the host).

The ability to forward datagrams is indicated by D_NWL_Forward_BOOL. On device not
supporting forwarding sub-index 01h shall be FALSE, access shall be ro. On device supporting
forwarding sub-index 01h may be FALSE or TRUE, access shall be rw.

• Sub-Index 02h: DefaultTTL_U16

Sub-Index 02h

Name DefaultTTL_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 64 PDO Mapping No

The default value inserted into the Time-To-Live (TTL) field of the IP header of datagrams
originated at this entity, whenever a TTL value is not supplied by the transport layer protocol.

Note: The TTL field in the IP header is of different length. In the IP protocol TTL is an 8-bit field.

• Sub-Index 03h: ForwardDatagrams_U32

Sub-Index 03h

Name ForwardDatagrams_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value - PDO Mapping No

The number of input datagrams for which this entity was not their final IP destination, as a result
of which an attempt was made to find a route to forward them to the final destination.

EPSG DS 301 V1.5.1 -116-

5.1.5.2 Object 1E40h .. 1E49h: NWL_IpAddrTable_Xh_REC

The IP address table contains this entity's IP addressing information. The NWL_IpAddrTable_Xh_REC
object is a subset of the IP Group RFC1213. It assigns IP parameters to an interface indicated by
NMT_ItfGroup_Xh_REC.ItfIndex_U16. The IP address table shall have 1 to 10 entries that may be
configured via SDO.

The Objects shall be supported only if IP is supported by the device.

POWERLINK interfaces shall be described by the low order objects (e.g. 1E40h, 1E41h, …).

Index 1E40h .. 1E49h Object Type RECORD

Name NWL_IpAddrTable_Xh_REC

Data Type NWL_IpAddrTable_TYPE Category 1E40h: Cond
1E41h .. 1E49h: O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 5 Access const

Default Value 5 PDO Mapping No

• Sub-Index 01h: IfIndex_U16

Sub-Index 01h

Name IfIndex_U16

Data Type UNSIGNED16 Category M

Value Range 1..10 Access ro

Default Value - PDO Mapping No

The index value which uniquely identifies the interface to which this entry is applicable. The
interface identified by a particular value of this index is the same interface as identified by the
same value of NMT_InterfaceGroup_Xh_REC.InterfaceIndex_U16.

• Sub-Index 02h: Addr_IPAD

Sub-Index 02h

Name Addr_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access ro/rws

Default Value - PDO Mapping No

The IP address to which this entry's addressing information pertains.

If the object describes an Ethernet POWERLINK interface, access shall be ro. Addr_IPAD shall
be 192.168.100.xxx with xxx = NMT_EPLNodeID_REC.NodeId_U8 (cf. 5.1.2).

• Sub-Index 03h: NetMask_IPAD

Sub-Index 03h

Name NetMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access ro/rws

Default Value - PDO Mapping No

The subnet mask associated with the IP address of this entry. The value of the mask is an IP
address with all the network bits set to 1 and all the hosts bits set to 0.

If the object describes an Ethernet POWERLINK interface, access shall be ro. NetMask_IPAD
shall be 255.255.255.0 (cf. 5.1.2).

EPSG DS 301 V1.5.1 -117-

• Sub-Index 04h: ReasmMaxSize_U16

Sub-Index 04h

Name ReasmMaxSize_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access ro

Default Value - PDO Mapping No

The size of the largest IP datagram which this entity can re-assemble from incoming IP
fragmented datagrams received on this interface.

• Sub-Index 05h: DefaultGateway_IPAD

Sub-Index 05h

Name DefaultGateway_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

The default gateway associated with the IP address of this entry.
If the object describes an Ethernet POWERLINK interface, the entry shall indicate the router
type 1 device. Default value shall be C_ADR_RT1_DEF_NODE_ID .

5.1.5.3 Object 0425h: NWL_IpGroup_TYPE

Index 0425h Object Type DEFSTRUCT

Name NWL_IpGroup_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 03h

01h Forwarding_BOOL 0001h BOOLEAN

02h DefaultTTL_U16 0006h UNSIGNED16

03h ForwardDatagrams_U32 0007h UNSIGNED32

5.1.5.4 Object 0426h: NWL_IpAddrTable_TYPE

Index 0426h Object Type DEFSTRUCT

Name NWL_IpAddrTable_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 05h

01h IfIndex_U16 0006h UNSIGNED16

02h Addr_IPAD 0402h IP_ADDRESS

03h NetMask_IPAD 0402h IP_ADDRESS

04h ReasmMaxSize_U16 0006h UNSIGNED16

05h DefaultGateway_IPAD 0402h IP_ADDRESS

EPSG DS 301 V1.5.1 -118-

5.2 POWERLINK compliant UDP/IP format
In order to enable the transmission of POWERLINK frames encapsulated in UDP/IP frames, the
payload portion of the UDP/IP frame shall be leaded by a slightly modified POWERLINK frame
header.

The parameter MessageType defined by Ethernet POWERLINK shall be in conformance to the
requirements of 4.6.1.1.1. Destination and Source fields of the original POWERLINK header shall be
reserved but shall not be supported, when transmission occurs via UDP/IP.

 Bit Offset entry defined by

Octet Offset 14 7 6 5 4 3 2 1 0

0 - 5 Destination MAC Address Ethernet type II

6 - 11 Source MAC Address

12 - 13 EtherType

14 - 33 IP Header RFC 791

34 - 41 UDP Header RFC 768

42 MessageType Ethernet POWERLINK

43 reserved (Destination)

44 reserved (Source)

45 ServiceID / reserved

46 - n Payload Data Application

n+1 - n+4 CRC32 Ethernet type II

n ≥ 59

 POWERLINK compliant UDP/IP frame structure

5.3 POWERLINK Sequence Layer
see 6.3.2.3, 6.3.3.1

14 Octet Offset refers to the start of the Ethernet frame.

EPSG DS 301 V1.5.1 -119-

6 Application Layer

6.1 Data Types and Encoding Rules
This paragraph describes the data formats and encoding rules to be used by frames according to the
Ethernet POWERLINK syntax (EtherType = 88ABh). The rules apply to the POWERLINK-Content,
service specific header and data payload embedded into the Ethernet frame. The encoding of the
Ethernet frame follows the rules of IEEE 802.3.

Fig. 39. POWERLINK frame structure

The rules also apply to POWERLINK specific payloads that are embedded into non-POWERLINK
frame types (EtherType ≠ 88ABh), e.g. SDO-Transfer via UDP/IP etc. The Ethertype specific encoding
of these frames, described by RFC 791 (IP) and RFC 768 (UDP), is not the concern of these rules.

Fig. 40. POWERLINK compliant UDP/IP frame structure

The encoding of non-POWERLINK frames (EtherType ≠ 88ABh) without POWERLINK specific
payload is not the concern of these rules.

Fig. 41. Legacy Ethernet frame structure

6.1.1 General Description of Data Types and Encoding
Rules

In order to exchange meaningful data across a POWERLINK network, the data format and its meaning
must be known by the producer and consumer(s). This document specifies data formats and
meanings using data types.

The encoding rules define the representation of values of data types and the POWERLINK network
transfer syntax for the representations. Values are represented as bit sequences. Bit sequences are
transferred in sequences of octets (bytes). For numerical data types the encoding is little endian style
as shown in Tab. 31.

Applications often require data types beyond the basic data types. Using the compound data type
mechanism the list of available data types can be extended. Some general extended data types are
defined as “Visible String” or “Time of Day” (for example see 6.1.6.2 and 6.1.6.4). The compound data
types are a means to implement user defined “DEFTYPES” in the terminology of this specification and
not “DEFSTRUCTS” (see 6.2.2).

6.1.2 Data Type Definitions

A data type determines a relation between values and encoding for data of that type. Names are
assigned to data types in their type definitions. The syntax of data and data type definitions is as
follows (see EN 61131-3).

data_definition ::= type_name data_name

type_definition ::= constructor type_name

constructor ::= compound_constructor |
 basic_constructor

MAC- Frame- Header
(EtherType = 88ABh)

POWERLINK - Content
(Header + Data)

CRC

MAC- Frame- Header
(EtherType = 0800h)

IP- Header
(Protocol = 11h)

UDP- Header
(Port = XXXXh)

POWERLINK - Content CRC

MAC- Frame- Header
(EtherType ? 88ABh)

any Non - POWERLINK - Content CRC

EPSG DS 301 V1.5.1 -120-

compound_constructor ::= array_constructor |
 structure_constructor

array_constructor ::= ‘ARRAY’ ‘[‘ length ‘]’ ‘OF’ type_name

structure_constructor ::= ‘STRUCT’ ‘OF’ component_list

component_list ::= component { ‘,’ component }

component ::= type_name component_name

basic_constructor ::= ‘BOOLEAN’ |
 ‘VOID’ bit_size |
 ‘BYTE’ bit_size |
 ‘INTEGER’ bit_size |
 ‘UNSIGNED’ bit_size |
 ‘REAL32’ |
 ‘REAL64’ |
 ‘NIL’

bit_size ::= ‘1’ | ‘2’ | <...> | ‘64’

length ::= positive_integer

data_name ::= symbolic_name

type_name ::= symbolic_name

component_name ::= symbolic_name

symbolic_name ::= letter { [‘_’] (letter | digit) }

positive_integer ::= (‘1’ | ‘2’ | <...> | ‘9’) { digit }

letter ::= ‘A’ | ‘B’ | <...> | ‘Z’ | ‘a’ | ‘b’ | <...> | ‘z’

digit ::= ‘0’ | ‘1’ | <...> | ‘9’

Recursive definitions are not allowed.

The data type defined by type_definition is termed either basic, when the constructor is
basic_constructor, or compound, when the constructor is compound_constructor.

6.1.3 Bit Sequences

6.1.3.1 Definition of Bit Sequences

A bit can take the values 0 or 1.

A bit sequence b is an ordered set of 0 or more bits.

If a bit sequence b contains more than 0 bits, they are denoted as bj, j ≥ 0.

Let b0, ..., bn-1 be bits, n a positive integer. Then

b = b0 b1 ... bn-1

is called a bit sequence of length |b| = n.

The empty bit sequence of length 0 is denoted .

Examples: 10110100, 1, 101, etc. are bit sequences.

The inversion operator () on bit sequences assigns to a bit sequence

b = b0 b1 ... bn-1

the bit sequence

b = b0 b1 ...  bn-1

Here 0 = 1 and 1 = 0 on bits.

The basic operation on bit sequences is concatenation.

Let a = a0 ... am-1 and b = b0 ... bn-1 be bit sequences. Then the concatenation of a and b, denoted ab,
is

ab = a0 ... am-1 b0 ... bn-1

Example: (10)(111) = 10111 is the concatenation of 10 and 111.

The following holds for arbitrary bit sequences a and b:

|ab| = |a| + |b|

and

EPSG DS 301 V1.5.1 -121-

a = a = a

6.1.3.2 Transfer Syntax for Bit Sequences

For transmission across a POWERLINK network a bit sequence is reordered into a sequence of
octets. Here and in the following hexadecimal notation is used for octets. Let b = b0... bn-1 be a bit
sequence with n ≤ 11920d (1490d Byte * 8d Bit/Byte).

Denote k a non-negative integer such that 8(k-1) < n ≤ 8k. Then b is transferred in k octets assembled
as shown in Tab. 31. The bits bi, i ≥ n of the highest numbered octet shall be ignored.

octet number 1. 2. k.

 b7 .. b0 b15 .. b8 b8k–1 .. b8k-8

 Transfer syntax for bit sequences

Octet 1 is transmitted first and octet k is transmitted last. The bit sequence is transferred as follows
across the POWERLINK network:

b7, b6, ..., b0, b15, ..., b8, ...

Example:

Bit 9 ... Bit 0

10b 0001b 1100b

2h 1h Ch

 = 21Ch

The bit sequence b = b0 .. b9 = 0011 1000 01b represents an UNSIGNED10 with the value
21Ch and is transferred in two octets:

First 1Ch and then 02h.

6.1.4 Basic Data Types

For basic data types “type_name” equals the literal string of the associated constructor (cf.
symbolic_name), e.g.,

BOOLEAN BOOLEAN

is the type definition for the BOOLEAN data type.

6.1.4.1 NIL

Data of basic data type NIL is represented by .

6.1.4.2 Boolean

Data of basic data type BOOLEAN attains the values TRUE or FALSE.

The values are represented as bit sequences of length 1. The value TRUE is represented by the bit
sequence 1, and FALSE by 0.

A BOOLEAN shall be transferred over the network as UNSIGNED8 of value 1 (TRUE) resp. 0
(FALSE). Sequent BOOLEANs may be packed to one UNSIGNED8. Sequences of BOOLEAN and
BIT type items may be also packed to one UNSIGNED8.

6.1.4.3 Void

Data of basic data type VOIDn is represented as bit sequences of length n bits.

The value of data of type VOIDn is undefined. The bits in the sequence of data of type VOIDn must
either be specified explicitly or else marked "do not care".

Data of type VOIDn is useful for reserved fields and for aligning components of compound values on
octet boundaries.

6.1.4.4 Bit

Data of basic data type BITn are represented as bit sequences of length n bits.

The interpretation of the value of type BITn data is defined by the context of the variable, that is
implemented using BITn data type.

EPSG DS 301 V1.5.1 -122-

If a BIT value is not member of compound data type, it shall be transferred over the network as
UNSIGNED8 of value 1 resp. 0. Sequent BITs may be packed to one UNSIGNED8. Sequences of
BOOLEAN and BIT type items may be also packed to one UNSIGNED8.

6.1.4.5 Unsigned Integer

Data of basic data type UNSIGNEDn has values in the non-negative integers. The value range is 0, ...,
2n-1. The data is represented as bit sequences of length n.

The bit sequence

b = b0 ... bn-1

is assigned the value

UNSIGNEDn(b) = bn-1 2n-1+ ...+ b1 21 + b0 20

Note that the bit sequence starts on the left with the least significant byte.

Example: The value 266d = 10Ah with data type UNSIGNED16 is transferred in two octets
across the bus, first 0Ah and then 01h.

The following UNSIGNEDn data types are transferred as shown below:

octet number 0 1 2 3 4 5 6 7

UNSIGNED8 b7..b0

UNSIGNED16 b7..b0 b15..b8

UNSIGNED24 b7..b0 b15..b8 b23..b16

UNSIGNED32 b7..b0 b15..b8 b23..b16 b31..b24

UNSIGNED40 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32

UNSIGNED48 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40

UNSIGNED56 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48

UNSIGNED64 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48 b63..b56

 Transfer syntax for data type UNSIGNEDn

The data types UNSIGNED24, UNSIGNED40, UNSIGNED48 and UNSIGNED56 should not be
applied by new applications.

UNSIGNEDn data types of length deviating from the values listed by Tab. 32 may be applied by
compound data types only.

6.1.4.6 Signed Integer

Data of basic data type INTEGERn has values in the integers. The value range is -2n-1, … , 2n-1-1.

The data is represented as bit sequences of length n.

The bit sequence

b = b0 .. bn-1

is assigned the value

INTEGERn(b) = bn-2 2n-2 + … + b1 21 + b0 20 if bn-1 = 0

and, performing two's complement arithmetic,

INTEGERn(b) = - INTEGERn(^b) - 1 if bn-1 = 1

Note that the bit sequence starts on the left with the least significant bit.

Example: The value –266d = FEF6h with data type INTEGER16 is transfered in two
octets across the bus, first F6h and then FEh.

The following INTEGERn data types are transfered as shown below:

EPSG DS 301 V1.5.1 -123-

octet number 0 1 2 3 4 5 6 7

INTEGER8 b7..b0

INTEGER16 b7..b0 b15..b8

INTEGER24 b7..b0 b15..b8 b23..b16

INTEGER32 b7..b0 b15..b8 b23..b16 b31..b24

INTEGER40 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32

INTEGER48 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40

INTEGER56 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48

INTEGER64 b7..b0 b15..b8 b23..b16 b31..b24 b39..b32 b47..b40 b55..b48 b63..b56

 Transfer syntax for data type INTEGERn

The data types INTEGER24, INTEGER40, INTEGER48 and INTEGER56 should not be applied by
new applications.

INTEGERn data types of length deviating from the values listed by Tab. 33 may be applied by
compound data types only.

6.1.4.7 Floating-Point Numbers

Data of basic data types REAL32 and REAL64 have values in the real numbers.

The data type REAL32 is represented as bit sequence of length 32. The encoding of values follows
the IEEE 754-1985 Standard for single precision floating-point.

The data type REAL64 is represented as bit sequence of length 64. The encoding of values follows
the IEEE 754-1985 Standard for double precision floating-point numbers.

A bit sequence of length 32 either has a value (finite non-zero real number, ± 0, ± _) or is NaN (not-a-
number). The bit sequence

b = b0 … b31

is assigned the value (finite non-zero number)

REAL32(b) = (-1)S 2E-127 (1+ F)

Here

S = b31 is the sign.

E = b30 27 + …+ b23 20, 0 < E < 255, is the un-biased exponent.

F = 2-23 (b22 222 + …+ b1 21 + b0 20) is the fractional part of the number.

E = 0 is used to represent ± 0. E = 255 is used to represent infinities and NaN's.

Note that the bit sequence starts on the left with the least significant bit.

Example:

6.25 = 2 E-127 (1 + F) with
E =129 =27 +20 and
F = 2-1 +2-4 = 2 -23(222+219) hence the number is represented as:

S E F

b31 b30 .. b23 b22 .. b0

0 100 0000 1 100 1000 0000 0000 0000 0000

6.25 = b0 .. b31 = 0000 0000 0000 0000 0001 0011 0000 0010

It is transferred in the following order:

octet number 0 1 2 3

REAL32 00h 00h C8h 40h

 b7..b0 b15..b8 b23..b16 b31..b24

 Transfer syntax of data type REAL32

6.1.4.8 MAC Address

The data type MAC_ADDRESS is used to describe the MAC address of an Ethernet adapter. It is
represented by 6 octets. It may be interpreted as UNSIGNED48.

EPSG DS 301 V1.5.1 -124-

The MAC address is divided into two sub-items:

• Organisational Unique Identifier (OUI), describing the adapter’s manufacturer

• adapter specific unique identifier

Octet 5 4 3 2 1 0

 OUI adapter’s individual identifier

Example 00h 0Ah 86h xxh xxh xxh

 MAC address encoding, example 00-0A-86-xx-xx-xx shows a Lenze device

6.1.4.9 IP address

The data type IP_ADDRESS is used to describe the IP address of a network adapter, subnet masks
etc. It is represented by 4 octets. It may be interpreted as UNSIGNED32.

The IP address is divided to a Net Id part and a Host ID part. Tab. 36 shows the the coding of Net and
Host ID. The bit consumption of these parts depends on the type of the subnet and is therefore not
fixed.

Octet 3 2 1 0

 NetID HostID

Example C0h A8h 64h F0h

 192 168 100 240

 IP address encoding, example shows the IP address of a POWERLINK MN
192.168.100.240

6.1.5 Compound Data Types

Type definitions of compound data types expand to a unique list of type definitions involving only basic
data types. Correspondingly, data of compound type ´type_name´ are ordered lists of component data
named ´component_name_i´ of basic type ´basic_type_i´.

Compound data types constructors are ARRAY and STRUCT OF.

STRUCT OF

basic_type_1 component_name_1,
basic_type_2 component_name_2,
 … …
basic_type_N component_name_N

type_name

ARRAY [length] OF basic_type type_name

The bit sequence representing data of compound type is obtained by concatenating the bit sequences
representing the component data.

Assume that the components ´component_name_i´ are represented by their bit sequences

b(i), for i = 1,…,N.

Then the compound data is represented by the concatenated sequence.

b0(1) .. bn-1(1) .. bn-1(N).

Example: Consider the data type

STRUCT OF

INTEGER10 x,
UNSIGNED5 u

NewData

Assume x = - 423d = 259h and u = 30d = 1Eh. Let b(x) and b(u) denote the bit sequences
representing the values of x and u, respectively. Then:

b(x) = b0(x) .. b9(x) = 1001101001
b(u) = b0(u) .. b4(u) = 01111
b(xu) = b(x) b(u) = b0(xu) .. b14(xu) = 1001101001 01111

The value of the structure is transferred with two octets, first 59h and then 7Ah.

EPSG DS 301 V1.5.1 -125-

6.1.6 Extended Data Types

The extended data types consist of the basic data types and the compound data types defined in the
following subsections.

6.1.6.1 Octet String

The data type OCTET_STRINGlength is defined below; length is the maximum length of the octet
string.

ARRAY [length] OF UNSIGNED8 OCTET_STRINGlength

If the actual length of the string is shorter than length the rest shall be filled up with 0h.

6.1.6.2 Visible String

The data type VISIBLE_STRINGlength is defined below. The data type is VISIBLE_STRING whether
a length is defined in the data type name or not. A VISIBLE_STRING with a length definition defines
the maximum length allowed. Otherwise any length is allowed.

The admissible values of data of type VISIBLE_CHAR are 0h and the range from 20h to 7Eh. The data
are interpreted as ISO 646-1973(E) 7-bit coded characters.

UNSIGNED8 VISIBLE_CHAR

ARRAY [length] OF VISIBLE_CHAR VISIBLE_STRINGlength

There is no 0h necessary to terminate the string. However, if the actual length of the string is shorter
than length the rest shall be filled up with 0h.

6.1.6.3 Unicode String

The data type UNICODE_STRINGlength is defined below; length is the maximum length of the
unicode string.

ARRAY [length] OF UNSIGNED16 UNICODE_STRINGlength

If the actual length of the string is shorter than length the rest shall be filled up with 0h.

6.1.6.4 Time of Day

The data type TIME_OF_DAY represents absolute time. It follows from the definition and the encoding
rules that TIME_OF_DAY is represented as bit sequence of length 48.

Component ms is the time in milliseconds after midnight. Component days is the number of days since
January 1, 1984.

STRUCT OF

UNSIGNED28 ms,
VOID4 reserved,
UNSIGNED16 days

TIME_OF_DAY

6.1.6.5 Time Difference

The data type TIME_DIFFERENCE represents a time difference. It follows from the definition and the
encoding rules that TIME_DIFFERENCE is represented as bit sequence of length 48.

Time differences are sums of numbers of days and milliseconds. Component ms is the number
milliseconds. Component days is the number of days.

STRUCT OF

UNSIGNED28 ms,
VOID4 reserved,
UNSIGNED16 days

TIME_DIFFERENCE

6.1.6.6 Domain

Domains can be used to transfer an arbitrarily large block of data from a client to a server.

EPSG DS 301 V1.5.1 -126-

6.1.6.7 Net Time

The data type NETTIME represents a high precision time value. The NETTIME data type is

identical to an improved version of the TimeRepresentation type of IEEE 1588.

NETTIME is composed as follows:

STRUCT OF

UNSIGNED32 seconds

UNSIGNED32 nanoseconds

NETTIME

The nanoseconds member is defined such that the most significant bit represents the sign bit, 1
indicating a negative number, and the least significant 31 bits represent the nanoseconds portion of
the time being represented. TimeRepresentation thus defines a sign magnitude representation for time
stamps and time intervals.

The range of the absolute value of the least significant 31 bits of the nanoseconds portion of the
representation shall be restricted to:

0 <= | least significant 31 bits of nanoseconds | < 109

The sign of the nanoseconds member shall be interpreted as the sign of the entire representation. For
example:

• +2.0 seconds is represented by seconds = 00000002h and nanoseconds = 00000000h

• -2.0 seconds is represented by seconds = 00000002h and nanoseconds = 80000000h

• +2.000000001 seconds is represented by seconds = 00000002h and nanoseconds = 00000001h

• -2.000000001 seconds is represented by seconds = 00000002h and nanoseconds = 80000001h

Timestamps shall be relative to 01-01-1970 00:00 h. A negative timestamp shall indicate time prior to
this point of time. Timestamps using NETTIME will overflow in January 2106.

NETTIME shall be used for timestamps and time increments.

6.2 Object Dictionary
This section details the Object Dictionary structure and entries which are common to all devices.

The overall layout of the Object Dictionary is shown in 2.2.2.

6.2.1 Object Dictionary Entry Definition

An Object Dictionary entry shall be defined by the following items:

• Index

Index denotes the objects position within the Object Dictionary. This acts as a kind of address to
reference the desired data field. Index shall be declared as hexadecimal value.

Index shall be used to indicate the accessed object of “by index”-type SDO commands.

Object may be subdivided to sub-indices. The sub-index is used to reference data fields within a
complex object such as an array or record. The sub-index is not specified here.

• Object Type

Object Type contains an entry according to Tab. 37. It is used to denote what kind of object is at
that particular index within the Object Dictionary. The following definitions are used:

EPSG DS 301 V1.5.1 -127-

Object Type Comments Code

NULL A dictionary entry with no data fields 0

DEFTYPE Denotes a static data type definition such as a Boolean,
UNSIGNED16, float and so on

5

DEFSTRUCT Defines a record type 6

VAR A single value such as an UNSIGNED8, Boolean, float, Integer16,
visible string etc.

7

ARRAY A multiple data field object where each data field is a simple
variable of the same basic or extended data type e.g. array of
UNSIGNED16 etc. Sub-index 0 is of UNSIGNED8 and therefore
not part of the ARRAY data

8

RECORD A multiple data field object where the data fields may be any
combination of simple variables. Sub-index 0 is of UNSIGNED8
and therefore not part of the RECORD data

9

 Object type definitions

• Name

Name provides a simple textual description of the function of that particular object.

Name shall be in accordance to IEC 61131-3. It consists of:

domain prefix, indicating the association of the object to a functional domain,
3 uppercase characters followed by underline

name (verbally). composed of words, each word shall be leaded by an uppercase character
followed by lowercase characters or digits, no underlines or spaces

data type postfix, indicating the data type of the object (underline followed by up to 5 uppercase
characters or digits)

Total length of name shall be equal or below 32 characters.

Name shall be used to indicate the accessed object of “by name”-type SDO commands.

• Data Type

The entry provides information about the data type of the object. These include the following
pre-defined static data types: Boolean, floating point number, unsigned integer, signed integer,
visible/octet string, time-of-day, time-difference and DOMAIN (see 6.1). It also includes the pre-
defined complex data types and may also include types which are either manufacturer or device
specific.

It is not allowed to define records of records, arrays of records or records with arrays as fields of
that record. In the case where an object is an array or a record the sub-index is used to
reference one static data type data field within the object.

• Category

Category defines whether the object is Mandatory (M) or Optional (O). A mandatory object shall
be implemented on a device. An optional object needs not to be implemented on a device. The
support of certain objects or features however may require the implementation of related
objects. In this case, the relations are described in the detailed object specification.

Category may be Conditional (Cond) if the M/O category of an object depends on the
implementation of another object.

Category may be Not-Relevant (“-“) if the object is of no meaning for MN resp. CN.

The following entries shall be indicated for static data types only. In case of complex data types the
respective entries shall be provided for each sub-index individually.

• Access

The entry defines the access rights for a particular object. The view point is from the bus into
the device. It can be one of the following:

EPSG DS 301 V1.5.1 -128-

rw read and write access, value shall not be stored on writing dedicated sub-
indices of NMT_StoreParam_REC

rws read and write access, value shall be stored on writing dedicated sub-
indices of NMT_StoreParam_REC

wo write only access, value shall not be stored on writing dedicated sub-
indices of NMT_StoreParam_REC

wos write only access, value shall be stored on writing dedicated sub-indices
of NMT_StoreParam_REC

ro read only access

const read only access, value is constant

cond variable access controlled by the device
further information about access is provided by the object description

 Access attributes for data objects

Optional objects listed in the Object Dictionary with the Attribute rw may be implemented as
read only. Exceptions are defined in the detailed object specification.

Access type entries may be supplemented by additional information, e.g. reflecting data validity
restrictions.

• Value Range

The entry indicates the value range of the respective object. It may consist of one or more
distinct values or ranges of values. If the item shows a data type identifier, the complete value
range of the mentioned data type shall be allowed.

“-“ means that this specification does not predefine a value range. In this case the value range
of the device profile resp. device description shall apply.

Default value ranges in the device description file shall be equal to predefined default value
ranges in this specification.

• Default Value

The entry indicates the initialisation value that shall be assigned by the communication profile
implementation.

“-“ means that this specification does not predefine a default value. In this case the default value
of the device profile resp. device description shall apply.

Default values in the device description file shall be equal to predefined default values in this
specification.

• PDO Mapping

The entry indicates whether an entry may be mapped to a PDO message. It can be one of the
following:

Opt Object shall be mappable into a PDO

Def Object is part of the default mapping (see device profile)

No Object shall not be mappable into a PDO

 PDO mapping attributes for data objects

A complete static data type object definition (Object Type = VAR) example is displayed below:

Index 1234h Object Type VAR

Name SDO_VarDummyParameter_S16

Data Type INTEGER16 Category M

Value Range -15 000 .. 10 000 Access rw

Default Value 0 PDO Mapping Opt

 Static data type object definition example

EPSG DS 301 V1.5.1 -129-

Complex data type object definitions (Object Type = ARRAY or RECORD) are of reduced form,
because Access, Value Range, Default Value, and PDO mapping must be defined individually for the
the sub-indices

Index 2345h Object Type ARRAY

Name SDO_ArrayDummyParameter_AU16

Data Type UNSIGNED16 Category M

 Complex data type object definition example

• Category

refers to the complex data type object as a whole, but not to the particular sub-index. A
mandatory object may be composed of mandatory and optional sub-indices. This means that
the object must be supported but some of its’ sub-indices are optional. It’s also allowed, to
define optional object with mandatory sub-indices. This means that these sub-indices must be
supported, if the object is implemented.

• Data Type

shall contain a static data type in case of ARRAY type objects and a complex data type in case
of RECORD type objects.

The definition of data type describing objects (Object Type = DEFTYPE or DEFSTRUCT) is shown by
6.2.2.

6.2.1.1 Sub-Index Definition

Complex object types (ARRAY, RECORD) objects are composed of up to 256 data items. Each data
item may be addressed by an UNSIGNED8 type sub-index.

Sub-Indices are used in the following way:

• Sub-Index 00h NumberOfEntries

NumberOfEntries describes the highest available sub-index that follows, not considering FFh.
This entry is encoded as UNSIGNED8, regardless the type of the object. If the object exists,
NumberOfEntries is mandatory. Data Type and Category are not denoted at NumberOfEntries
descriptions.

NumberOfEntries is described by this specification as displayed below:

Sub-Index 00h

Name NumberOfEntries

Value Range 1..15 Access rw

Default Value 15 PDO Mapping No

 NumberOfEntries sub-index description example

In case of ARRAYs, NumberOfEntries may be modified (Access = rw) to show the umber of
occupied items in a list. In case of RECORDs, NumberOfEntries shall be hold constant (Access
= ro or Const).

NumberOfEntries may mapped to PDO to indicate the number of occupied items.

• Sub-Index 01h - FEh Object Specific Data

Sub-Indices between 01h and FEh hold the object’s payload data. The highest accessible index
is given by NumberOfEntries.

Sub-Indices of RECORD type objects are defined as follows:

Sub-Index 01h

Name RecItem1_U8

Data Type UNSIGNED8 Category M

Value Range 1..255 Access rw

Default Value 1 PDO Mapping Def

 Record type object sub-index description example

EPSG DS 301 V1.5.1 -130-

• Name is composed of a describing text followed by a data type postfix. Refer the object
name rules for further information, the domain prefix is omitted.

If a name entry is defined by a data type definition, the sub-index name shall be equal to
it.

The sub-index name shall be used in combination to the object name to access the sub-
index via “by name” SDO commands. According to IEC 61131-3 object and sub-index
name shall be separated by a dot:

SDO_RecordExamle_REC.RecItem1_U8.

• Category refers to respective sub-index only. Mandatory (M) means that the sub-index
must be implemented when the object ist implemented. A mandatory sub-index does not
force the hosting object to be mandatory.

Sub-Indices of ARRAY type objects are defined as follows:

Sub-Index 01h

Name ArraySubindex1

-- -- Category M

Value Range UNSIGNED16 Access rw

Default Value 0 PDO Mapping Opt

 Array type object sub-index description example

Name consists of a describing text. Refer the object name rules for further information, the
domain prefix and data type postfix are omitted. If a name entry is defined by a data type
definition, the sub-index name shall be equal to it.

• The sub-index name is for informational purpose only. Sub-index access via “by name”
SDO commands shall occur according to IEC 61131-3 via numerical index:

SDO_ArrayExamle_AU16[1]

• Category refers to respective sub-index only. Mandatory (M) means that the sub-index
must be implemented when the object ist implemented. A mandatory sub-index does not
force the hosting object to be mandatory.

• Despite of the functional equivalence of all sub-indices of an array, there may be defined
more than one sub-index entry to a particular object to show differences of the Category,
Access and / or PDO Mappings options of the sub-indices.

• Sub-Index FFh StructureOfObject

Sub-index FFh describes the structure of the entry by providing the data type and the object type
of the entry. Regardless the type of the object, it is encoded as UNSIGNED32 and organised as
follows:

 MSB LSB

Bit-No. 31 - 24 23 - 16 15 - 8 7 - 0

Value 00h Data Type (refer 6.2.2) Object Type
(refer Tab. 37) (High Byte) (Low Byte)

 Structure of sub-index FFh

It is optional to support sub-index FFh. If it is supported throughout the Object Dictionary and the
structure of the complex data types is provided as well, it enables to upload the entire structure
of the Object Dictionary. If StructureOfEntry is not supported, sub-index FFh shall be reserved.

StructureOfObject is not shown by object definitions of this specification.

6.2.2 Data Type Entry Specification

The static data types are placed in the Object Dictionary for definition purposes only. However, indices
in the range 0001h - 0007h may be mapped in order to define the appropriate space of the RPDO
(Dummy Mapping) as not being used by the device (do not care). The indices 0009h - 000Bh, 000Fh
may not be mapped to a PDO.

See App. 1.1, index range 0001h to 04FFh for data type specifiing object dictionary entries.

EPSG DS 301 V1.5.1 -131-

6.2.2.1 Static Data Types

The static data type (Object Type = DEFTYPE) representations used are detailed in 6.1.

A device may optionally provide the length of the static data types encoded as UNSIGNED32 at read
access to the index that refers to the data type. E.g. index 000Ch (Time of Day) contains the value
30h=48d as the data type „Time of Day“ is encoded using a bit sequence of 48 bit. If the length is
variable (e.g. 000Fh = Domain), the entry contains 0h.

6.2.2.2 Complex Data Types

The predefined complex data types’ (Object Type = DEFSTRUCT) representations are provided by
the respective paragraph or by the device profile.

For the supported complex data types a device may optionally provide the structure of that data type
at read access to the corresponding data type index. Sub-index 0 then provides the number of entries
at this index not counting sub-indices 0 and 255 and the following sub-indices contain the data type
according to App. 3.5 encoded as UNSIGNED16.

As an example the entry at Index 0023h describing the structure of the Identity object
NMT_IdentityObject_REC looks as follows:

Index 0023h Object Type DEFSTRUCT

Name IDENTITY

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h VendorId_U32 0007h UNSIGNED32

02h ProductCode_U32 0007h UNSIGNED32

03h RevisionNo_U32 0007h UNSIGNED32

04h SerialNo_U32 0007h UNSIGNED32

 Complex data type description example

Standard (simple) and complex manufacturer specific data types can be distinguished by attempting to
read sub-index 1h: At a complex data type the device returns a value and sub-index 0h contains the
number of sub-indices that follow, at a standard data type the device aborts the SDO transfer as no
sub-index 1h available.

Note that some entries of data type UNSIGNED32 may have the character of a structure (e.g.
NMT_DeviceType_U32, see 7.2.1.1.1).

6.2.2.3 Extension for Multiple Device Modules

For devices or device profiles that provide Multiple Device Modules like multiple axis controllers e.g.
the DEFTYPE / DEFSTRUCT mechanism is enhanced for each virtual device with an offset of 40h for
up to 7 additional virtual devices.

6.3 Service Data (SDO)
To access the entries of the object dictionary of a device via Ethernet POWERLINK a set of command
services is specified.

SDO communication attends to the client / server model (see 2.3.2). Support of SDO client functions
shall be indicated by D_SDO_Client_BOOL, support of SDO server functions by
D_SDO_Server_BOOL.

EPSG DS 301 V1.5.1 -132-

6.3.1 SDO Layer Model

Fig. 42. SDO layer model

Two sublayers are distinguished in the POWERLINK Protocol:

• POWERLINK Sequence Layer (6.3.2.3, 6.3.3.1)

The Sequence Layer is responsible for sorting the segments of a segmented transfer command
so that a correct byte stream is offered to the POWERLINK Command Layer.

• POWERLINK Command Layer (6.3.2.4, 6.3.3.2)

The Command Layer defines commands to access the parameters of the object dictionary. This
layer distinguishes between an expedited and a segmented transfer.

6.3.1.1 SDO Hosting in Frames

Ethernet POWERLINK provides three SDO transfer methods:

1. SDO transfer via UDP/IP frames in asynchronous phase

2. SDO transfer via POWERLINK ASnd frames in asynchronous phase

3. SDO embedded in PDO in isochronous phase

The methods 1 (6.3.2.1) and 2 (6.3.2.2) share a common Sequence (6.3.2.3) and Command Layer
(6.3.2.4).

At method 3 (6.3.3), SDO data are packed to a compact container to be inserted to the PDO data.
Sequence and Command Layer are adapted to the compact layout of the container.

On an MN, support of methods 1 and 2 shall be mandatory.

Support of method 1 shall be indicated at the object dictionary by NMT_FeatureFlags_U32 Bit 1 and
and in the device description by D_SDO_SupportUdpIp_BOOL. Support of method 2 shall be indicated
by NMT_FeatureFlags_U32 Bit 2 and D_SDO_SupportASnd_BOOL.

Support of method 3 is optional at MN and CN. Support of method 3 shall be indicated at the object
dictionary by NMT_FeatureFlags_U32 Bit 3 and in the device description by
D_SDO_SupportPDO_BOOL.

Remark: The NMT_FeatureFlags_U32 are reported to the MN by IdentResponse.

6.3.2 SDO in Asynchronous Phase

6.3.2.1 SDO via UDP/IP

The parameter transfer is based on a UDP/IP frame, allowing data transfer via a standard IP-router.
Because UDP does not support a reliable connection oriented data transfer, this task must be
supported by the sequence and command services.

 POWERLINK

Command

Header

SDO Payload

Data

Sequence
Layer

SDO Non- SDO Payload,
CRC

Frame Header,
Non- SDO Payload Hosting Frame

SDO Sequence Layer

SDO Command Layer

Hosting Frame non- SDO payload only available at SDO embedded in PDO

POWERLINK

EPSG DS 301 V1.5.1 -133-

Fig. 43. POWERLINK SDO embedded in UDP/IP frame

SDO via UDP/IP uses the Asynchronous Sequence Layer (6.3.2.1) and the Asynchronous Command
Layer (6.3.2.2).

For applications that do not require short cycle times and low jitter, POWERLINK telegrams may be
inserted in a UDP/IP datagram, in effect running POWERLINK over UDP/IP. For this reason the
message type (defined in the Data Link Layer) is inserted in front of the Sequence Layer.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 MessageType = ASnd

1 .. 2 reserved

3 ServiceID = SDO

4 .. 7 Sequence Layer Protocol

8 .. k-1 Command Layer Protocol

k .. 1471 SDO Payload Data

 SDO via UDP/IP

Field Abbr. Description Value

MessageType mtyp POWERLINK Message type (App. 3.1) ASnd

reserved res These fields are reserved
They are used for POWERLINK Destination
and Source Address when sending SDO
without UDP/IP

Zero, when embedded in
UDP/IP Frame
else mt specific

ServiceID sid ASnd ServiceID (App. 3.3) SDO

Sequence Layer
Protocol

 POWERLINK Sequence Layer (6.3.2.1)

Command Layer
Protocol

 POWERLINK Command Layer (6.3.2.2)

 SDO via UDP/IP field interpretation

6.3.2.1.1 UDP Layer
The UDP Header contains:

Ethernet

Header
IP

UDP

Data
Ethernet

CRC

Sequence

Layer

UDP/IP frame

Data

POWERLINK

Command

Layer

Data

POWERLINK

Command

Layer

Network

DLL

Transport

Application

Layer model Frame structure

POWERLINK

Sequ.

Data
Message

Type

POWERLINK

EPSG DS 301 V1.5.1 -134-

Field Size Description Used in
POWERLINK

Source Port 2 Byte Port Number of the sending process Logical
channel15 Destination Port 2 Byte Port Number of the receiving process

Length 2 Byte Data length of the whole UDP frame incl. header not used

Checksum 2 Byte optional Checksum not used

 UDP header

Parameters are transferred in a communication channel characterized by the IP addresses (source
and destination) and UDP Ports (source and destination). This communication channel is known as a
datagram socket. It establishes a peer-to-peer communication channel between two devices. A device
may support more than one channel. One supported server channel is the default case (Default
Channel). The default channel uses the UDP port C_SDO_EPL_PORT.

The maximum number of supported channels shall be indicated by D_SDO_MaxConnections_U32.

There may be multiple channels established between one client and one server. The maximum
number of such parallel channels shall be indicated by D_SDO_MaxParallelConnections_U32.

The client starts the transfer using the standard destination port C_SDO_EPL_PORT and a client
dependent source port (> 1024). The server responds to the request with the source port
C_SDO_EPL_PORT and the destination port defined by the client. Therefore up to (216–1024) logical
channels (sockets) can be opened between a client and a server. Each device is responsible for
handling its logical channels.

Client Server

UDP

source port = YYYYh

destination port =

C_SDO_EPL_PORT

Create Socket

listen socket

port C_SDO_EPL_PORT

Create Socket

source port = YYYYh (1024)

destination port =

C_SDO_EPL_PORT port YYYYh

client IP address

logical

channel 2

UDP

source port =

C_SDO_EPL_PORT

destination port = YYYYh

UDP

source port = ZZZZh

destination port =

C_SDO_EPL_PORT

UDP

source port =

C_SDO_EPL_PORT

destination port = ZZZZh

port ZZZZh

client IP address

logical

channel 1

Create Socket

source port = ZZZZh (1024)

destination port =

C_SDO_EPL_PORT

Fig. 44. UDP socket

15 in combination with the client and server IP address.

EPSG DS 301 V1.5.1 -135-

6.3.2.2 SDO via POWERLINK ASnd

SDO via POWERLINK ASnd applies POWERLINK frames for SDO communication.

Since POWERLINK frames are not forwarded by a POWERLINK Router Type 1 (s. 9.1), it is not
possible to access nodes exclusively providing SDO via POWERLINK ASnd from outside of the
POWERLINK segment.

SDO transfer by POWERLINK ASnd frames is well suited for devices providing reduced ressources,
because it does not require an IP stack.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 MessageType = ASnd

1 Destination

2 Source

3 ServiceID = SDO

4 .. 7 Sequence Layer Protocol

8 .. k-1 Command Layer Protocol

k .. 1471 SDO Payload Data

 SDO via POWERLINK ASnd

Field Abbr. Description Value

MessageType mtyp POWERLINK Message type (App. 3.1) ASnd

Destination dest POWERLINK Node ID of the addressed
node(s)

Source src POWERLINK Node ID of the transmitting node

ServiceID sid ASnd ServiceID (App. 3.3) SDO

Sequence Layer
Protocol

 POWERLINK Sequence Layer (6.3.2.3)

Command Layer
Protocol

 POWERLINK Command Layer (6.3.2.4)

 SDO via ASnd field interpretation

SDO via POWERLINK ASnd applies the Asynchronous Sequence Layer (6.3.2.3) and the
Asynchronous Command Layer (6.3.2.4).

6.3.2.3 Asynchronous SDO Sequence Layer

The POWERLINK Sequence Layer provides the service of a reliable bidirectional connection that
guarantees that no messages are lost or duplicated and that all messages arrive in the correct order.

Fragmentation is handled by the SDO Command Layer (6.3.2.4).

The POWERLINK Sequence Layer Header for asynchronous transfer shall consist of 2 bytes.

There shall be a sequence number for each sent frame, and an acknowledgement for the sequence
number of the opposite node, as well a connection state and a connection acknowledge.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 ReceiveSequenceNumber ReceiveCon

1 SendSequenceNumber SendCon

2 .. 3 reserved

 POWERLINK sequence layer in asynchronous data frame

Remark:
Using bits 0 and 1 for connection instead of bits 6 and 7 eases the handling of sequence number. The
sequence number easily can be increased by one by increasing the whole byte by four. This
increment has no influence to ReceiveCon and SendCon.

EPSG DS 301 V1.5.1 -136-

Field Abbr. Description Value

ReceiveSequenceNumber rsnr Sequence number of the last
correctly received frame

0 ... 63

ReceiveCon rcon Acknowledge of connection code
to the opposite node

0: No connection
1: Initialisation
2: Connection valid
3: Error Response
 (retransmission request)

SendSequenceNumber ssnr Own sequence number of the
frame, shall be increased by 1
with every new frame

0 ... 63

SendCon scon Own connection code 0: No connection
1: Initialisation
2: Connection valid
3: Connection valid with
 acknowledge request

 Fields of POWERLINK sequence layer in asynchronous data frame

6.3.2.3.1 Connection

6.3.2.3.1.1 Initialisation of Connection
The client shall request initialisation by setting scon to 1. This shall be responded by the server with
the same connection code and the same sequence number.

If the server had already a connection to the client the existing connection shall be shut down, i.e.
closed internally without sending an explicit close request before opening the new one.

Additionally the sequence number shall be initialised at the server.

Client Server

m1 (rsnr = ?, rcon = 0, ssnr = i, scon = 1)

m2 (rsnr = i, rcon = 1, ssnr = j, scon = 1)

m3 (rsnr = j, rcon = 1, ssnr = i, scon = 2)

m4 (rsnr = i, rcon = 2, ssnr = j, scon = 2)

The client responds to

the initialization request

of the server and sets

the connection to valid

The client requests a

connection The server

acknowledges the

request and

requests a

connection too

The server sets the

connection to valid

too

Fig. 45. Initialisation of a asynchronous connection

After this the bidirectional connection is established.

The sequence numbers shall not be incremented until the bidirectional connection initialisation has
been completed. It shall be increased by 1 for the first SDO command after the initialisation. No
command shall be sent while initialising the bidirectional connection.

6.3.2.3.1.2 Closing a connection
A connection should be shut down, when it is no longer needed.

A node, i.e. client or server, may shut down a connection, if it needs the resources for other reasons.

Client

resp.

Server

Server

resp.

Client

m1 (rsnr = ?, rcon = 0, ssnr = ?, scon = 0)The client/server requests

a shut down of the

connection

The server/client

shuts down the

connection, there is

no response!

Fig. 46. Closing of asynchronous connection

EPSG DS 301 V1.5.1 -137-

Closing a connection shall be indicated by rcon = 0 and scon = 0.

There shall be no acknowledge for closing a connection.

6.3.2.3.1.3 Data Transfer
When the connection is established each node is allowed to send frames.

Each node shall keep the sent data in a history buffer until it is acknowledged. Size of the history
buffer is indicated by D_SDO_SeqLayerTxHistorySize_U16. If all history buffer slots are occupied by
unacknowledged frames, no additional frame may be sent (see 6.3.2.3.1.5).

Each sent frame shall contain the acknowledgement of the last correctly received frame from the
opposite side.

When the sender sends an acknowledge request, the receiver shall send an acknowledge.

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

m5 (rsnr = i+3, rcon = 2, ssnr = j+1, scon = 2)

Send an

acknowledgement

with the last

acknowledged ssnr,

if there is no data to

be sent from client to

server

m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)

m4 (rsnr = j, rcon = 2, ssnr = i+3, scon = 2)

m3 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

m6 (rsnr = j+1, rcon = 2, ssnr = i+4, scon = 2)

m7 (rsnr = i+4, rcon = 2, ssnr = j+1, scon = 2)

No communication

until one of the two

sides has something

to send.

m8 (rsnr = j+1, rcon = 2, ssnr = i+5, scon = 2)If the client has

new data

m9 (rsnr = i+5, rcon = 2, ssnr = j+1, scon = 2)

m10 (rsnr = i+5, rcon = 2, ssnr = j+2, scon = 2) If the server has

new data

m11 (rsnr = j+2, rcon = 2, ssnr = i+5, scon = 2)

Fig. 47. Normal asynchronous communication

If the receiver has no new data to transmit it shall send an acknowledge frame to the sender, that
contains the last sent ssnr. If that ssnr was already acknowledged, the data may be omitted, because
the other side will drop the data (as repeated) anyway.

Because of the sliding window protocol only half of the sequence number range may be used. So the
maximum possible History Buffer size is 31. Otherwise it is not possible to distinguish between old
duplicated frames and new frames.

On the receiving node no buffering of the received frames is required. This may cause flooding of the
receiving node with commands (cf. 6.3.2.3.2.6).

6.3.2.3.1.4 Data Transfer with Delay
Due to delays in network, hardware and software layers it may take some cycles until the frame is
received by the receiver, and the acknowledge gets back to the sender.

EPSG DS 301 V1.5.1 -138-

The sender shall not forward more than D_SDO_SeqLayerTxHistorySize_U16 frames before receiving
an acknowledgement.

This example shows a configuration where the frames are delayed. A typical situation where frames
are delayed is when POWERLINK Networks are connected by means of routers over a legacy
Ethernet.

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)
m3 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

m6 (rsnr = j, rcon = 2, ssnr = i+3, scon = 2)

m7 (rsnr = j+2, rcon = 2, ssnr = i+4, scon = 2)

m4 (rsnr = i+1, rcon = 2, s
snr = j+1, scon = 2)

m5 (rsnr = i+2, rcon = 2, s
snr = j+2, scon = 2)

Fig. 48. Delayed asynchronous communication

6.3.2.3.1.5 Sender History Full
When the buffer for keeping frames is full (sliding window size exhausted), the sending node may
explicitly request an acknowledgement by sending a frame with acknowledge request.

The receiver shall acknowledge this frame with an empty acknowledge frame, if it has no frames of its
own to be sent.

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

History buffer is full

send requested

acknowledge

m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2

m4 (rsnr = j, rcon = 2, ssnr = i+3, scon = 3)

m3 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

m6 (rsnr = j, rcon = 2, ssnr = i+4, scon = 2)

m5 (rsnr = i+3, rcon = 2, ssnr = j, scon = 2)Client can discard

history buffers when a

acnowledge is received

Fig. 49. Asynchronous communication when history buffer gets full

6.3.2.3.2 Errors
Errors that may occur in the physical and data link layer:

• Loss of frames

EPSG DS 301 V1.5.1 -139-

• Duplication of frames

• Overtaking of frames

• Broken connection

Errors that may occur in the sequence layer:

• Flooding with commands

6.3.2.3.2.1 Error: Loss of Frame with Data

Client Server

m1 (rsnr = j , rcon = 2, ssnr = i , scon = 2)

Repeat data from history

buffer

Send error

acknowledge

m2 (rsnr = j , rcon = 2, ssnr = i+1, scon = 2)

m4 (rsnr = j , rcon = 2, ssnr = i+3, scon = 2)

m3 (rsnr = j , rcon = 2, ssnr = i+2, scon = 2)

m5 (rsnr = i+1, rcon = 3, ssnr = j, scon = 2)

Server detects

unexpected

sequence number

m6 (rsnr = j , rcon = 2, ssnr = i+2, scon = 2)

m7 (rsnr = j , rcon = 2, ssnr = i+3, scon = 2)Repeat data from history

buffer

m8 (rsnr = j , rcon = 2, ssnr = i+4, scon = 2)
Continue with new data

Fig. 50. Error loss of asynchronous frame

If the receiver detects a sequence number that is more than 1 higher than the last correctly received
sequence number, it shall respond with rcon=3 and the last correctly received sequence number to
indicate this error.

This error response may contain data (from the command layer).

The sender shall repeat all the frames that followed the responded sequence number.

The acknowledge fields in the repeated frames shall be updated.

6.3.2.3.2.2 Error: Loss of Acknowledge Frame

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

Repeat with acknowledge

request

Data is dropped,

send the requested

acknowledge

 m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)

m4 (rsnr = j, rcon = 2, ssnr = i+1, scon = 3

m3 (rsnr = i+1, rcon = 2, ssnr = j, scon = 2)

m5 (rsnr = i+1, rcon = 2, ssnr = j, scon = 2)

Fig. 51. Error loss of asynchronous acknowledge

If the sender is waiting for an acknowledgement and has no new frames to be sent, it shall repeat the
latest message with acknowledge request after a timeout.

EPSG DS 301 V1.5.1 -140-

6.3.2.3.2.3 Error: Duplication of Frame

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

Data is dropped

m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)

m4 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

m5 (rsnr = i+2, rcon = 2, ssnr = j, scon = 2)

m3 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)Duplication caused by

lower communication

layers

Fig. 52. Error duplication of asynchronous frame

If the receiver detects a sender sequence number that is lower than or equal to the last correctly
received sequence, it shall drop that message.

If that message has scon=2 no further action is required.

If that message has scon=3 the receiver shall acknowledge the last correctly received sequence to the
sender.

6.3.2.3.2.4 Error: Overtaking of Frames
When a frame overtakes, the receiver at first detects a lost frame. The receiver shall send an error
response to the sender so that the sender repeats the frame.

Then the overtaken frame arrives at the receiver and is accepted.

After this the repeated frame arrives and is dropped at the receiver, because it is recognized as a
duplicated frame.

Remark:

Overtaking of frames will never occur inside the POWERLINK network domain. Only on connections
over Internet using Type I routers overtaking can occur on the Legacy Ethernet side.

6.3.2.3.2.5 Broken Connection
It shall be detected, that the connection is broken, if the opposite node is shut down or disconnected
from the network.

The connection shall be considered broken when no acknowledgement is received within the timeout
given by SDO_SequLayerTimeout_U32.

Within this timeout multiple acknowledge requests shall be sent (see 6.3.2.3.2.2). The number of
acknowledge requests to be sent shall be described by SDO_SequLayerNoAck_U32. If
SDO_SequLayerNoAck_U32 is not implemented a minimum value of C_SDO_SEQULAYERNOACK
shall be used instead.

EPSG DS 301 V1.5.1 -141-

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

Server is

disconnected

or shut downm2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)

Repeat with

acknowledge request

m3 (rsnr = j, rcon = 2, ssnr = i+1, scon = 3)

m3 (rsnr = j, rcon = 2, ssnr = i+1, scon = 3)

.

.

.

Timeout no response

despite acknowledge

request, shut down the

connection when giving up

m3 (rsnr = ?, rcon = 0, ssnr = ?, scon = 0)

The shut down may or

may not arrive at the

server. It is necessary

to shut down

connections, in the

special case where all

frames from the server

to the client are lost.

Repeat with

acknowledge request

Fig. 53. Error asynchronous communication broken

6.3.2.3.2.6 Error: Flooding with commands

Client Server

m1 (rsnr = j, rcon = 2, ssnr = i, scon = 2)

Repeat data from history

buffer

m2 (rsnr = j, rcon = 2, ssnr = i+1, scon = 2)

m4 (rsnr = i+1, rcon = 3, ssnr = j, scon = 2)

m3 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

Server's command

layer did not fetch m2

yet, so drop m3 and

repeat request
m5 (rsnr = j, rcon = 2, ssnr = i+2, scon = 2)

Fig. 54. Error flooding with asynchronous commands

If the sender sends commands at a rate too high, the command layer at the receiver may not be able
to process the commands in time. In this case the sequence layer on the receiver side drops newly
arriving frames and shall send an acknowledgement of the last correctly handled frame and a rcon=3
back to the sender.

This causes the sender to repeat the dropped frame, and the receiver gains some time to handle the
request.

This shall not be misused as a flow control mechanism, flow control shall be done in higher layers.

6.3.2.4 Asynchronous SDO Command Layer

Tasks of the POWERLINK Command Layer

1. Addressing of the parameters, e.g. via index/sub-index or via name

2. Provide additional services

3. Distinguish between expedited and segmented transfer

The POWERLINK Command Layer is embedded in the POWERLINK Sequence Layer. If a large block
is to be transferred the POWERLINK Command Layer has to decide whether the transfer can be
completed in one frame (expedited transfer) or if it must be segmented in several frames (segmented
transfer). Further it has to know whether an Upload or a Download should be initiated.

For all transfer types it is the client that takes the initiative for a transfer. The owner of the accessed
object dictionary is the server of the Service Data Object (SDO). Either the client or the server can
take the initiative to abort the transfer of a SDO. All commands are confirmed. The remote result

EPSG DS 301 V1.5.1 -142-

parameter indicates the success of the request. In case of a failure, an Abort Transfer Request must
be executed.

Fig. 55 shows the structure of the information in the POWERLINK Command Layer Header.

Fig. 55. Information structure of POWERLINK command layer

6.3.2.4.1 POWERLINK Command Layer Protocol
This chapter defines the fixed part of the POWERLINK Command Layer protocol.

The POWERLINK Command Layer is structured in the following way:

Octet
Offset16

Bit Offset

7 6 5 4 3 2 1 0

0 reserved Fixed part

1 Transaction ID

2 Res-
ponse

Abort Segmentation reserved

3 Command ID

4 .. 5 Segment Size

6 .. 7 reserved

8 .. 11 Data Size (only if Segmentation = Initiate) Variable part

(8 + 4*d) ..
k-1

Command ID specific header Command ID specific
part

k .. 1463 Optional Payload Data

k = Length of Command ID specific header; k < 1464
d: if seg = Initiate d = 1
 else d = 0

 POWERLINK command layer

16 Offset related to beginning of POWERLINK command layer.

Command Direction Segmentation

Request

Response

Expedited

Command ID

ExpeditedAbort

Segmented

Segment

Initiate

Complete

Expedited

Segmented

Segment

Initiate

Complete

EPSG DS 301 V1.5.1 -143-

Field Abbr. Description Value

reserved res Reserved
This byte is used when embedding the SDO in
cyclic data (chapter 6.3.3).

0

Transaction ID tid Unambiguous transaction ID for a command.
Changed by the client with every new command.

0 – 255

Response rsp Request / Response 0: Request
1: Response

Abort a The requested Transfer could not be completed
by the client/server

0: transfer ok
1: abort transfer

Segmentation seg Differentiates between expedited and segmented
transfer

0: Expedited Transfer
1: Initiate Segment Transfer
2: Segment
3: Segment Transfer Complete

Command ID cid Specifies the command see Tab. 58

Segment Size ss Length of segment data.
Counting from the end of the command header
(beginning with octet offset 8)

256 –1456

Data Size ds Contains the number of bytes of the transferred
block.
Counting from the end of the command header
(beginning with octet offset 8)
Only used for the Initiate SegmentTransfer Frame
(seg = Initiate)
If ds = 0000h, the size is not indicated

0 – 232-1

Command ID specific Specifies the command referenced by the cid. See 6.3.2.4.2

 POWERLINK command layer field interpretation

The Transaction ID may be used to support several logic channels parallel via the same UDP socket
resp. ASnd channel.

The Segment Size (ss) indicates the length of the segment in the command layer, i.e. the valid data
length in the command layer. A minimum size of 256 bytes must be supported by every device. A
maximum of 1456 bytes (i.e. 1500 byte payload data for the Ethernet frame) may be supported. The
client can use the command “Maximum Segment Size” (see 6.3.2.4.2.4.1) to get the maximum usable
size for a communication to a server.

Note: The maximum segment size is limited to 1456 bytes, because an Ethernet frame can carry a
maximum of 1500 bytes. In case of SDO via UDP all the remaining bytes are needed for the protocol
overhead (IP (20 bytes), UDP (8 bytes), message type / service ID / etc. (4 bytes), POWERLINK
Sequence Layer (4 bytes) and the fixed part of the POWERLINK Command Layer (8 bytes)). In case
of SDO via ASnd the maximum possible length of 1500 bytes is not fully used because the protocol
overhead is shorter (message type / service ID / etc. (4 bytes), POWERLINK Sequence Layer (4
bytes) and the fixed part of the POWERLINK Command Layer (8 bytes)). However this guarantees an
SDO command layer independent of the underlaying transfer method (UDP/IP or ASnd).

Fig. 56. Definition of segment size

For Initiate Segmented Transfer (seg=1) the number of bytes to be transferred in the command is
indicated in the Data Size field. Therefore the offset for the Command ID specific header is 8
(Expedited Transfer) or 12 (Initiate Segmented Transfer) (cf. Tab. 54).

Ethernet
Header

IP Payload Data
Ethernet

CRC

Segment Size

UDP
Msg.
Type

POWERLINK
Sequ. Layer

POWERLINK
Command Layer

fix
part

cmd.
spec.

opt.
Data
Size

EPSG DS 301 V1.5.1 -144-

6.3.2.4.1.1 Download Protocol
The download service is used by the SDO client to download data to the server (owner of the object
dictionary).

Fig. 57. POWERLINK command layer: Typical download transfer

In an expedited download, the data identified by the cid specific header is transferred to the server.

In a segmented transfer SDOs are downloaded as a sequence of zero or more Download SDO
Segment services preceded by an Initiate SDO Download service and followed by a Segment Transfer
Complete frame. The sequence is terminated by:

• A response/confirm, indicating the successful completion of a normal download sequence.

• An Abort SDO Transfer request/indication, indicating the unsuccessful completion of the
download sequence.

The SDO Sequence Layer is not shown in Fig. 57. There may be more frames involved in the
initialisation of the SDO Sequence Layer, see chapter 6.3.2.3 for details.

tid
y

seg
exp.

rsp
0

cid
x

cid specific
header

payload data

tid
y

seg
exp.

rsp
1

cid
x

request

confirmation

indication

response

Expedited Download Transfer Command Layer)

Client Server

tid
y

cid
x

cid specific
header

payload
data

tid
y

seg
exp.

rsp
1

cid
x

request

confirmation

indication

response

Domain Download Transfer (Command Layer)

data size

tid
y

rsp
0

cid
x

payload data
request indication

tid
y

cid
x

payload data
request indication

tid
y

seg
comp.

rsp
0

cid
x

payload data
request indication

Client Server

Initiate Domain Transfer

Segment

Segment

Domain Transfer Complete

Transfer Response

Transfer Response

Expedited Transfer

a
0

a
0

seg
init.

rsp
0

a
0

a
0

seg
seg.

rsp
0

a
0

seg
seg.

a
0

a
0

ss

ss

ss

ss

ss

ss

ss

EPSG DS 301 V1.5.1 -145-

6.3.2.4.1.2 Upload Protocol
The Upload service is used by the SDO client to upload data from the server.

Fig. 58. POWERLINK command layer: Typical upload transfer

If an expedited upload is successful, the service concludes the upload of the data set identified by the
cid specific header and the corresponding data is confirmed.

In a segmented transfer, SDOs are uploaded as a sequence of zero or more Upload SDO Segment
services preceded by an Initiate SDO Upload service and followed by a Segment Transfer Complete
frame. The sequence is terminated by:

• The Segment Transfer Complete frame, indicating the successful completion of a normal upload
sequence.

• An Abort SDO Transfer request/indication, indicating the unsuccessful completion of the upload
sequence.

tid
y

seg
exp.

rsp
0

cid
x

cid specific
header

payload datatid
y

seg
exp.

rsp
1

cid
x

request

confirmation

indication

response

Expedited Upload Transfer (Command Layer)

Client Server

tid
y

seg
exp.

rsp
0

cid
x

cid specific
header

request indication

Domain Upload Transfer (Command Layer)

tid
y

seg
seg.

rsp
1

cid
x

payload data
response

tid
y

seg
seg.

rsp
1

cid
x

payload data
response

tid
y

seg
comp.

rsp
1

cid
x

payload data
response

Client Server

Upload Transfer

Segment

Segment

Domain Transfer Complete

Expedited Transfer Response

Upload Transfer

confirmation

confirmation

confirmation

data sizetid
y

seg
init.

rsp
1

cid
x

payload data
response

Initiate Domain Upload Transfer

confirmation

a
0

a
0

a
0

a
0

a
0

a
0

a
0

ss

ss

ss

cll

ss

ss

ss

EPSG DS 301 V1.5.1 -146-

6.3.2.4.1.3 Abort Transfer
The Abort Transfer service aborts the up- or download referenced by the Transaction ID. The reason
is indicated.

Fig. 59. Abort transfer

The Abort service is unconfirmed. The service may be executed at any time by either the client or the
server of a SDO. If the client of a SDO has a confirmed service outstanding, the indication of the abort
is taken to be the confirmation of that service.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 reserved

1 Transaction ID

2 Res-
ponse

Abort
1

Segmentation reserved

3 Command ID

4 .. 5 Segment Size

6 .. 7 reserved

8 .. 11 Abort Code

 Abort transfer frame

Field Abbr. Description Value

Abort Code ac Reason of the abort see App. 3.10

 Abort transfer frame field interpretation

The abort code is encoded as UNSIGNED32. A list of SDO abort codes is provided by App. 3.10.

tid
y

seg
exp.

rsp
0

cid
x

request /
confirmation

request

indication /
response

indication

Abort Transfer Client → Server

Client Server

Abort Transfer request

Upload / Download Protocol (Expedited, Initiate, Segment, End)

a
1

Abort Code

tid
y

seg
exp.

rsp
1

cid
x

confirmation response

Abort Transfer Server → Client

Client Server

a
1

Abort Code

request /
confirmation

indication /
response

Abort Transfer request

Upload / Download Protocol (Expedited, Initiate, Segment, End)

ss

ss

EPSG DS 301 V1.5.1 -147-

6.3.2.4.2 Commands
This chapter describes the Command ID specific part of the POWERLINK Command Layer.

Command Command Description // Device Description Entry Cmd ID M/O

NIL17 Not in List 0h M

SDO Protocol

Write by Index Write a parameter,
addressing via index/sub-index

1h M

Read by Index Read a parameter,
addressing via index/sub-index

2h M

Write All by Index Write a parameter,
addressing via index, all sub-indices //
 D_SDO_CmdWriteAllByIndex_BOOL

3h O

Read All by Index Read a parameter,
addressing via index, all sub-indices //
 D_SDO_CmdReadAllByIndex_BOOL

4h O

Write by Name Write a parameter, addressing via name //
 D_SDO_CmdWriteByName_BOOL

5h O

Read by Name Read a parameter, addressing via name //
 D_SDO_CmdReadByName_BOOL

6h O

File Transfer

File Write Simple file transfer //
 D_SDO_CmdFileWrite_BOOL

20h O

File Read Simple file transfer //
 D_SDO_CmdFileRead_BOOL

21h O

Variable groups

Write Multiple Parameter
by Index

Write multiple parameter within one command,
addressing via index/sub-index //
 D_SDO_CmdWriteMultParam_BOOL

31h O

Read Multiple Parameter
by Index

Read multiple parameter within one command,
addressing via index/sub-index //
 D_SDO_CmdReadMultParam_BOOL

32h O

Parameter Services

Maximum Segment Size Exchange the maximum segment size 70h Cond18

Manufacturer specific 80h –
FFh

O

 Command services and command ID

Support of particular commands is optional. Support shall be indicated by device description entries
(c.f. Tab. 58).

6.3.2.4.2.1 SDO Protocol
Note: The Download Protocol (6.3.2.4.1.1, including Fig. 57) is used for write commands and the
Upload Protocol (6.3.2.4.1.2, including Fig. 58)is used for read commands.

6.3.2.4.2.1.1 Command: Write by Index

Using the Write by Index service the client of a SDO downloads data to the server (owner of the object
dictionary). The data, the multiplexor (index and sub-index) of the data set that has been downloaded
and its size (only for segmented transfer) is indicated to the server.

17 The NIL command shall be ignored on the command layer but processed at the sequence layer,
that is the sequence layer shall send an acknowledge response but the NIL command will otherwise
be ignored.
18 Conditional: Only necessary if a segment size > 256 Byte should be transferred

EPSG DS 301 V1.5.1 -148-

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 9) + 4*d Index

10 + 4*d Sub-Index

11 + 4*d reserved

(12 + 4*d) .. 1463 Payload Data

d: if seg = Initiate d = 1
 else d = 0

 Command: Write by Index request

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65535

Sub-Index si Specifies a component of a device object dictionary entry 0 .. 254

 Write by Index request field interpretation

6.3.2.4.2.1.2 Command: Read by Index

Using the Read by Index service the client of a SDO requests that the server upload data to the client.
The multiplexor (index and sub-index) of the data set whose upload is initiated is indicated to the
server.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 9 Index

10 Sub-Index

11 reserved

 Command: Read by Index Request

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65535

Sub-Index si Specifies a component of a device object dictionary entry 0 .. 254

 Read by Index request field interpretation

6.3.2.4.2.1.3 Command: Write All by Index

Using the Write All by Index service the client of a SDO downloads data to the server (owner of the
object dictionary). The service addresses all sub-indices (except sub-index 0) of the indicated index.
The length of the payload data must confirm to the length of data for all sub-indices and all sub-indices
must be writable.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 9) + 4*d Index

10 + 4*d reserved

11 + 4*d reserved

(12 + 4*d) .. 1463 Payload Data

d: if seg = Initiate d = 1
 else d = 0

 Command: Write All by Index request

EPSG DS 301 V1.5.1 -149-

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65535

 Write All by Index request field interpretation

6.3.2.4.2.1.4 Command: Read All by Index

Using the Read All by Index service the client of a SDO requests that the server upload data to the
client. The service addresses all sub-indices (except sub-index 0) of the indicated index. All sub-
indices must be readable.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 9 Index

10 .. 11 reserved

 Command: Read All by Index Request

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65535

 Read All by Index request field interpretation

6.3.2.4.2.1.5 Command: Write by Name

Using the Write by Name service the client of a SDO downloads data to the server. The data, the
name of the data set that has been downloaded and its size (only for segmented transfer) are
indicated to the server.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 9) + 4*d Offset Payload Data (k)

(10 + 4*d) .. (k – 1) Name

k .. 1463 Payload Data

k = Offset of the name length; k < 1464, 4-aligned
d: if seg = Initiate d = 1
 else d = 0

 Command: Write by Name request

Field Abbr. Description Value

Offset Payload Data opd Specifies the beginning of the payload data (in bytes)
in this segment, counting from end of the fixed
command header (beginning with octet offset 8)

0 .. 1463

Name n Specifies an entry of the device object dictionary

 Write by Name request field interpretation

• The name may not be terminated by a \0.

• The definitions made in IEC 61131-3 for identifiers are adapted to the name conventions19.
These are:

• A name is a sequence of characters, dots, digits and underlines, beginning with a
character or an underline.

• Underlines shall be significant in identifiers, e.g. A_BC and AB_C are different identifiers.

• Multiple leading or embedded underlines are not allowed.

• Identifiers shall not contain embedded space (SP) characters.

19 The IEC 61131-3 defines several keywords utilized as individual syntax elements. These keywords
shall not be used as a parameter name. POWERLINK does not define further keywords.

EPSG DS 301 V1.5.1 -150-

• At least six unique characters shall be supported in all systems.

• The payload data shall be 4-byte-aligned. Therefore the name may have to be padded.

The Write by Name service is defined to access application objects (e.g. global variables) that do not
have an index/sub-index.

6.3.2.4.2.1.6 Command: Read by Name

Using the Read by Name service the client of a SDO requests that the server upload data to the client.
The name of the data set whose upload is initiated is indicated to the server.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 – 7 Command Layer (fixed part)

8 – 11 Data Size (only if Segmentation = Initiate)

(8 + 4*d) .. k Name

k < 1464

d: if seg = Initiate d = 1
 else d = 0

 Command: Read by Name request

Field Abbr. Description Value

Name N Specifies an entry of the device object dictionary see 6.3.2.4.2.1.5

 Read by Name request field interpretation

The payload data shall be 4-byte-aligned. Therefore the name may have to be padded.

The Read by Name service is defined to access application objects (e.g. global variables) that do not
have an index/sub-index.

6.3.2.4.2.2 File Transfer
A simple File transfer protocol is defined.

For file access, in addition to the naming conventions (see 6.3.2.4.2.1.5) the valid character set is
extended with the characters:

• “/” and “\”

• “*”

• “:”

A file open/close service is not defined because this would cause related services with different
Command IDs.

6.3.2.4.2.2.1 Command: File Write

The File Write protocol combines several typical operation system commands for file access:

• File open

• File seek

• File write

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 11) + 4*d Address

(12 .. 13) + 4*d Offset Payload Data (k)

(14 .. 15) + 4*d reserved

(16 + 4*d) .. (k – 1) File Name

k .. 1463
Payload Data

k = Offset of the payload data; k < 1464, 4-aligned
d: if seg = Initiate d = 1
 else d = 0

EPSG DS 301 V1.5.1 -151-

 Command: File Write request

Field Abbr. Description Value

Address addr Address of the data from the beginning of the file. 0 .. 232-1

Offset Payload
Data

opd Specifies the beginning of the payload data (in bytes)
in this segment, counting from the end of the fixed
command header (beginning with octet offset 8)

0 .. 1463

File Name fn File name (complete path)

 File Write request field interpretation

The Address field indicates the relative address of the data in the file.

6.3.2.4.2.2.2 Command: File Read

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 11) + 4*d Address

(12 + 4*d) .. k File Name

k < 1464
d: if seg = Initiate d = 1
 else d = 0

 Command: File Read request

Field Abbr. Description Value

Address addr Address of the data from the beginning of the file. 0 .. 232-1

File Name fn File name (complete path)

 File Read request field interpretation

6.3.2.4.2.3 Variable groups

6.3.2.4.2.3.1 Command: Write Multiple Parameter by Index

Using the Write Multiple Parameter by Index service the client of a SDO downloads multiple data sets
to the server. The data, the multiplexor (index and sub-index) of the data sets that are downloaded
and the size of the transfer (only for segmented transfer) are indicated to the server.

A device shall be able to process this command up to a size which can be transferred in a maximum
sized Ethernet frame.

EPSG DS 301 V1.5.1 -152-

6.3.2.4.2.3.2 Write Multiple Parameter by Index Request

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 11) + 4*d Octet Offset of next Data Set (k)

(12 .. 13) + 4*d Index

14 + 4*d Sub-Index

15 + 4*d reserved Padding Length

(16 + 4*d) .. (k – 1) Payload Data

k .. (k + 3) Octet Offset of next Data Set (m)

(k + 4) .. (k + 5) Index

k + 6 Sub-Index

k + 7 reserved Padding Length

(k + 8) .. (m – 1) Payload Data

m … … (further write requests)

d: if seg = Initiate d = 1
 else d = 0
k, m 4-aligned

 Command: Write Multiple Parameter by Index Request

Field Abbr. Description Value

Octet Offset of
next Data Set

o2d Octet offset of the next data set. The value is the absolute
offset, counting from the beginning of the fixed command
header (beginning with octet offset 0)

If o2d=ZERO the last data set has been reached.

0 .. 232-1

Index i Specifies an entry of the device object dictionary 0 .. 65535

Sub-Index si Specifies a component of a device object dictionary entry 0 .. 254

Padding
Length

pl Number of padding bytes in the last quadlet (4-byte word) of
the payload data

0 .. 3

reserved res Reserved for future use. 0

 Write Multiple Parameter by Index request field interpretation

6.3.2.4.2.3.3 Write Multiple Parameter by Index Response

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 9) +.4*d Index

10 + 4*d Sub-Index

11 + 4*d SubAbort reserved

(12 .. 15) + 4*d Sub-Abort Code

(16 .. 17) + 4*d Index

18 + 4*d Sub-Index

19 + 4*d SubAbort reserved

(20 .. 23) + 4*d Sub-Abort Code

24 … … (further write responses)

d: if seg = Initiate d = 1
 else d = 0

 Command: Write Multiple Parameter by Index Response

EPSG DS 301 V1.5.1 -153-

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65.535

Sub-Index si Specifies a component of a device object dictionary
entry

0 .. 254

Sub-Abort sa The requested transfer could not be processed by the
server

0: transfer ok
1: abort transfer

reserved res Reserved for future use 0

Sub-Abort Code sac Reason of the sub-abort see App. 3.10

 Write Multiple Parameter by Index response field interpretation

In the response a list of all invalid object accesses is transferred.

The list entries consist of the index and sub-index of the object, a sub-abort flag (sa) and the sub-abort
code (sac).

The abort flag (a) in the command header is set only if the data contain one single abort code instead
of a response list. E.g. “Command ID not valid or unknown”.

If all accesses are valid and processed by the server the command specific header is empty, i.e. the
abort flag (a) is not set and the list of faulty accesses is empty.

6.3.2.4.2.3.4 Command: Read Multiple Parameter by Index

Using the Read multiple parameter service the client of a SDO requests that the server for upload
multiple data sets to the client. The multiplexor (index and sub-index) of the data sets whose upload is
initiated is indicated to the server.

A device shall be able to process this command up to a size which can be transferred in a maximum
sized Ethernet frame.

6.3.2.4.2.3.5 Read Multiple Parameter by Index Request

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 9) + 4*d Index

10 + 4*d Sub-Index

11 + 4*d reserved

(12 .. 13) + 4*d Index

14+4*d Sub-Index

15+4*d reserved

16 … … (further read requests)

d: if seg = Initiate d = 1
 else d = 0

 Command: Read Multiple Parameter by Index request

Field Abbr. Description Value

Index i Specifies an entry of the device object dictionary 0 .. 65535

Sub-Index si Specifies a component of a device object dictionary entry 0 .. 254

reserved res Reserved for alignment 0

 Read Multiple Parameter by Index request field interpretation

EPSG DS 301 V1.5.1 -154-

6.3.2.4.2.3.6 Read Multiple Parameter by Index Response

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 11 Data Size (only if Segmentation = Initiate)

(8 .. 11) + 4*d Octet Offset of next Data Set (k)

(12 .. 13) + 4*d Index

14 + 4*d Sub-Index

15 + 4*d SubAbort reserved Padding Length

(16 + 4*d) .. (k – 1) Payload Data / Sub-Abort Code

k .. (k + 3) Octet Offset of next Data Set (m)

(k + 4) .. (k + 5) Index

k + 6 Sub-Index

k + 7 SubAbort reserved Padding Length

(k + 8) .. (m – 1) Payload Data / Sub-Abort Code

m … … (further read responses)

d: if seg = Initiate d = 1
 else d = 0
k, m 4-aligned

 Command: Read Multiple Parameter by Index response

Field Abbr. Description Value

Octet Offset of
next Data Set

o2d Octet offset of the next data set. The value is the
absolute offset, counting from the beginning of the fixed
command header (beginning with octet offset 0)

If o2d=ZERO the last data set has been reached.

0 – 232-1

Index i Specifies an entry of the device object dictionary 0 – 65.535

Sub-Index si Specifies a component of a device object dictionary entry 0 – 254

Sub-Abort sa The requested transfer could not be served by the server 0: transfer ok
1: abort transfer

Padding Length pl Number of padding bytes in the last quadlet (4-byte
word) of the payload data

0 – 3

reserved res Reserved for future use 0

Sub-Abort
Code

sac Reason of the sub-abort see App. 3.10

 Read Multiple Parameter by Index response field interpretation

In the response a list of all object accesses is transferred.

The list entries consist of the index and sub-index of the object, a sub-abort flag (sa) and the payload
data resp. the sub-abort code (sac).

The abort flag (a) in the command header is set only if the data contain one single abort code instead
of a response list. E.g. “Command ID not valid or unknown”.

6.3.2.4.2.4 Parameter Services

6.3.2.4.2.4.1 Command: Maximum Segment Size

The maximum segment size (MSS) indicates the maximum length of a segment in the command layer.

The minimum segment size that must be supported by every device is 256 bytes. If the client and the
server can handle more than 256 bytes the client can use this command to negotiate the maximum
segment size.

EPSG DS 301 V1.5.1 -155-

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 .. 7 Command Layer (fixed part)

8 .. 9 MSS Client

10 .. 11 MSS Server

 Command: Maximum Segment Size

Field Abbr. Description Value

MSS Client mssc MSS of the client 256 –1456

MSS
Server

msss MSS of the server

If 0000h the length is not indicated (request from
client to server)

256 –1456

 Maximum Segment Size field interpretation

The maximum segment size is limited to 1456 independent of the transfer method (UDP/IP or ASnd).

In the request frame from the client the mssc is indicated to the server. The msss is set to ZERO and
therefore not indicated.

In the response the server repeats the mssc of the client and indicates its own msss.

Both, client and server, must compare the mssc to the indicated msss and must calculate the
minimum of both. This is the used MSS.

Used MSS = min {mssc; msss}

6.3.3 SDO Embedded in PDO

It is possible to embed the SDO in the cyclic PDO. The embedded SDO is used as a container
mapped into the PDO.

The Read/Write by Index command layer protocol is used to access the data. The Header of the
container starts with a shortened Sequence Layer (1 Byte). The fixed part of the following
POWERLINK Command Layer protocol is adopted in the following points:

• as the container has a fixed length, the valid data length has to be indicated. Therefore the field
“valid payload length” is inserted. Up to 255 bytes of payload data may be transferred in a
container.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 Sequence Layer embedded in PDO Sequence Layer

1 Transaction ID

Command Layer

2 Res-
ponse

Abort Segmentation reserved

3 Valid Payload Length

4 Command ID

5 .. 6 Index

7 Sub-Index

8 – 11 Data Size (only if Segmentation = Initiate) Variable Part

(8 + 4*d) ..
k – (8 + 4*d)

Optional Payload Data
Payload

k = Length of container in byte
d: if seg = initiate d = 1
 else d = 0

 SDO embedded in PDO

EPSG DS 301 V1.5.1 -156-

Field Abbr. Description Value

Sequence Layer (see chapter 6.3.3.1)

Command Layer

Transaction ID tid Unambiguous transaction ID for a command.
Must be changed by the client with every new
command.

0 .. 255

Response rsp Request / Response 0 : Request
1 : Response

Abort a The requested Transfer could not be served
by the client/server

0: Transfer ok
1: Abort transfer

Segmentation seg Differentiates between expedited and
segmented transfer

0: Expedited Transfer
1: Initiate Segment Transfer
2: Segment
3: Segment Transfer Complete

Valid Payload
Length

vpl Length of valid payload data in the container in
bytes.

0 .. 255

Command ID cid Specifies the command See Tab. 58

Index i Specifies an entry of the device object
dictionary

0 .. 65535

Sub-Index si Specifies a component of a device object
dictionary entry

0 .. 254

Data Size ds see definition in Tab. 57

 SDO embedded in PDO field interpretation

The container needs a minimum of 8 bytes for header information.

If segmented transfer is supported, the data size field must be inserted for the initiate frame as defined
in the POWERLINK Command Layer Protocol so the header will be 12 byte.

The embedded SDO transfer establishes a peer-to-peer communication channel between two
devices. This is a unidirectional Client-Server connection. If a device needs to transfer data using this
method to several other devices it must establish a SDO communication channels for each.

The client SDO container (CSDO) and the server SDO container (SSDO) parameter are described by
the SDO communication parameter objects SDO_ServerContainerParam_XXh_REC resp.
SDO_ClientContainerParam_XXh_REC. For each SDO channel a pair the communication parameters
is mandatory.

6.3.3.1 Embedded Sequence Layer for SDO in PDO

For embedding of SDO in cyclic data (PollRequest and PollResponse) the first byte within
POWERLINK Command Layer is reserved for Embedded Sequence Layer.

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 SequenceNumber Connection

1 … Command Layer Protocol

 POWERLINK sequence layer for embedding of SDO in cyclic data

Remark:
Only one sequence number for both directions is suitable, because the communication is embedded in
the cyclic communication. And therefore it is guaranteed that there are messages in both directions.

EPSG DS 301 V1.5.1 -157-

Field Abbr. Description Value

SequenceNumber snr Shall be increased by one with each
new request frame.

0 ... 63

Connection con Shows the different connection states 0: No connection
1: Initialisation
2: Connection valid
3: Error Response
 (Retransmission
 Request)

 Fields of POWERLINK sequence layer for embedding of SDO in cyclic data

6.3.3.1.1 Connection

6.3.3.1.1.1 Initialisation of Connection
Connection is not initialised (e.g. after power up). The server has shut down the connection to this
client. Now client and server know that the connection is down. “?” is used for counters that shall be
ignored.

After this the connection is established.

The sequence number shall not be incremented until the connection initialisation has been completed
No command shall be transferred during the initialisation.

Client Server

m1 (snr = ? , con = 0)

m4 (snr = ? , con = 0)

Client requests

initialization.

Connection is shut down

Server responds with

the same connection

code and the same

sequence number

m3 (snr = i , con = 1)

m6 (snr = i , con = 1)

m9 (snr = i , con = 2)

m10 (snr = i , con = 2)

Client sets connection to

valid

Server responds with

valid connection

m2 (snr = ? , con = 0)

m5 (snr = i , con = 1)

m7 (snr = i , con = 2)

m8 (snr = i , con = 1)

Server cannot

respond immediately,

because the poll

response has to be

sent directly after the

poll request so that

there is no time for

processing.

Fig. 60. Initialisation of embedded connection

EPSG DS 301 V1.5.1 -158-

6.3.3.1.1.2 Closing a connection
A connection should be shut down, when it is no longer needed.

A node may shut down a connection if it needs the resources for other reasons.

Client Server

m1 (snr = ?, con = 0)

m4 (snr = ?, con = 0)

Client requests a shut

down of the connection

m3 (snr = ?, con = 0)

m2 (snr = ?, con = ?)

The server shuts

down the connection

Further telegrams have

the con = 0

Further telegrams have

the con = 0

Fig. 61. Closing of connection

Closing a connection shall be indicated by con = 0.

EPSG DS 301 V1.5.1 -159-

6.3.3.1.1.3 Data Transfer
When the connection is established the client is allowed to send new request frames. Client and
server have to keep the sent frames in some sort of a history buffer.

It is possible to send request frames in advance from client to server in consecutive cyclic frames,
even if the responses to the preceding requests have not yet been received. The response frames
then are received some cycles later than the corresponding request frames.

If there is nothing to send, the most recently sent packet shall be repeated.

To make the error recovery (see next chapter) for this protocol work, the client has to know how many
responses the send history on the server holds. This history size parameter can be read from the
object directory, the default value is 1.

The client holds a send history to be able to regain a lost response by repeating the request.

With a send history size of n in the server and a send history size of m in the client, the client shall not
forward more than min(m, n) requests before receiving the response.

Sample with six new request frames:

Client Server

m1 (snr = i, con = 2)

m2 (snr = i, con = 2)

m3 (snr = i, con = 2)

m4 (snr = i, con = 2)

m5 (snr = i + 1, con = 2)

m6 (snr = i, con = 2)

m7 (snr = i + 2, con = 2)

m9 (snr = i + 3, con = 2)

m11 (snr = i + 4, con = 2)

m13 (snr = i + 5, con = 2)

m15 (snr = i + 6, con = 2)

m17 (snr = i + 6, con = 2)

m19 (snr = i + 6, con = 2)

m21 (snr = i + 6, con = 2)

m8 (snr = i, con = 2)

m10 (snr = i + 1, con = 2)

m12 (snr = i + 2, con = 2)

m14 (snr = i + 3, con = 2)

m16 (snr = i + 4, con = 2)

m18 (snr = i + 5, con = 2)

m20 (snr = i + 6, con = 2)

m22 (snr = i + 6, con = 2)

repeating last te legram

unti l there is a new one

Fig. 62. Normal embedded communication

EPSG DS 301 V1.5.1 -160-

6.3.3.1.2 Errors

6.3.3.1.2.1 Error: Request Lost
If server detects an unexpected sequence number, that is not 1 higher than the last correctly received
sequence number, it responds with connection code 3 and the sequence number of the last
successful received frame. The client then has to repeat all frames starting after the sequence number
of the last successful transferred frame.

Client Server

m1 (snr = i + 1, con = 2)

m2 (snr = i, con = 2)

m3 (snr = i + 2, con = 2)

m5 (snr = i + 3, con = 2)

m6 (snr = i + 1, con = 2)

m7 (snr = i + 4, con = 2)

m9 (snr = i + 2, con = 2)

m11 (snr = i + 2, con = 2)

m13 (snr = i + 3, con = 2)

m15 (snr = i + 4, con = 2)

m8 (snr = i + 1, con = 3)

m10 (snr = i + 1, con = 3)

m12 (snr = i + 2, con = 2)

m14 (snr = i + 2, con = 2)

m16 (snr = i +

Request i+2 lost

Server detects

unexpected

sequence number

client repeats from

history buffer starting

with i+2

Server again detects

unexpected

sequence number

Server drops second

repeat of i+2

client repeats again

from history buffer

starting with i+2

Fig. 63. Error embedded request lost

EPSG DS 301 V1.5.1 -161-

6.3.3.1.2.2 Error: Response Lost
If the client detects an unexpected sequence number that is not 1 higher than the last correctly
received sequence number, it has to repeat that frames with connection code 3 for which no response
was received.

Client Server

m1 (snr = i + 1, con = 2)

m2 (snr = i, con = 2)

m3 (snr = i + 2, con = 2)

m5 (snr = i + 3, con = 2)

m6 (snr = i + 2, con = 2)

m7 (snr = i + 4, con = 2)

m9 (snr = i + 2, con = 3)

m11 (snr = i + 2, con = 3)

m13 (snr = i + 3, con = 3)

m15 (snr = i + 4, con = 3)

m8 (snr = i + 3, con = 2)

m10 (snr = i + 4, con = 2)

m12 (snr = i + 2, con = 2)

m14 (snr = i + 2, con = 2)

m16 (snr = i +

Client detects

unexpected sequence

number, so it repeats

telegram i+2 until it gets

the response

Server drops the

already received

frames, and sends

the responses from

its history buffer

m4 (snr = i + 1, con = 2)

Response i+2 lost

m17 (snr = i + 5, con = 2)

m18 (snr = i + 4, con = 2)

Client repeats the other

messages too

Client goes on with

normal communication

Fig. 64. Error embedded response lost

6.3.3.1.3 Handling of Segmented Transfers

6.3.3.1.3.1 Segmented Download from Client to Server

Client

SequenceLayer

Server

SequenceLayer

m1 (snr = i + 1, con = 2, (c1))

m2 (snr = i, con = 2)

m3 (snr = i + 2, con = 2, (c2))

m5 (snr = i + 3, con = 2, (c3))

m6 (snr = i + 2, con = 2, (s2))

m7 (snr = i + 4, con = 2, (c4))

m9 (snr = i + 4, con = 2)

m8 (snr = i + 3, con = 3, (s3))

m10 (snr = i + 4, con = 3, (s4))

m4 (snr = i + 1, con = 2, (s1))

c1 (seg=init, cmd)

s1 (dummy)

c3 (seg=segm, cmd)

s2 (dummy)

s3 (dummy)

s4 (resp)

c4 (seg=comp, cmd)

c1 (seg=init, cmd)

s1 (dummy)

s3 (seg = segm)

s4 (resp)

c4 (seg=comp, cmd)

Client

CommandLayer

c3 (seg=segm, cmd)

c2 (seg=segm, cmd)

c2 (seg=segm, cmd)

s2 (seg = segm)

Server

CommandLayer

Fig. 65. Embedded segmented download

EPSG DS 301 V1.5.1 -162-

For SDO embedded in cyclic data each new frame requested by the client shall be responded by the
server. In the case of a segmented download from the client to the server, the client will produce more
command frames than the server.

So the server shall acknowledge the sequence numbers with dummy frames that contain Command
ID “NIL”, while the segmented transfer is running.

6.3.3.1.3.2 Segmented Upload from Server to Client
In the case of a segmented upload from the server to the client the server will produce more
commands than the client. To provide the server with enough sequence numbers the client shall send
dummy commands that contain Command ID “NIL”, to the server until the upload is complete.

Client

SequenceLayer

Server

SequenceLayer

m1 (snr = i + 1, con = 2, (c1))

m2 (snr = i, con = 2)

m3 (snr = i + 2, con = 2, (c2))

m5 (snr = i + 3, con = 2, (c3))

m6 (snr = i + 2, con = 2, (s2))

m7 (snr = i + 4, con = 2, (c4))

m9 (snr = i + 5, con = 2, (c5))

m8 (snr = i + 3, con = 3, (s3))

m10 (snr = i + 4, con = 3, (s4))

m4 (snr = i + 1, con = 2, (s1))

Server

CommandLayer

c1 (cmd)

s1 (seg = init

c3 (dummy)

s2 (seg = segm)

s3 (seg = segm)

s4 (seg = comp)

c4 (dummy)

c5 (dummy)

c1 (cmd)

s1 (seg = init)

s3 (seg = segm)

s4 (seg = comp)

c4 (dummy)

Client

CommandLayer

c3 (dummy)

c5 (dummy)

c2 (dummy)

c2 (dummy)

s2 (seg = segm)

Fig. 66. Embedded segmented upload

6.3.3.2 Embedded Command Layer for SDO in Cyclic Data

Remark: Even though this specification only defines the services Write / Read by Index via SDO in
PDO all other commands specified in the SDO Command Layer (chapter 6.3.2.4) can be supported in
a similar way.

6.3.3.2.1 Command Write by Index via PDO

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 Sequence Layer embedded in PDO

1 Transaction ID

2 Res-
ponse

Abort Segmentation reserved

3 Valid Payload Length

4 Command ID = Write by Index

5 .. 6 Index

7 Sub-Index

8 .. 11 Data Size (only if Segmentation = Initiate)

8 + 4*d k – (8 + 4*d) Payload Data

k = Length of container in byte

 Command: Write by Index Request via PDO

EPSG DS 301 V1.5.1 -163-

6.3.3.2.2 Command Read by Index via PDO

 Bit Offset

Octet Offset 7 6 5 4 3 2 1 0

0 Sequence Layer embedded in PDO

1 Transaction ID

2 Res-
ponse

Abort Segmentation reserved

3 Valid Payload Length

4 Command ID = Read by Index

5 – 6 Index

7 Sub-Index

 Command: Read by Index Request via PDO

6.3.3.3 Object Description

6.3.3.3.1 Object 1200h .. 127Fh:
SDO_ServerContainerParam_XXh_REC

The SDO_ServerContainerParam_XXh_REC objects contain the parameters for the SDOs for which
the device is the server.

To map the container in the PDO the corresponding index shall be mapped.

To allow access by name “_XXh” shall be replaced by a name index. Name index shall be “_00h” if
object index is 1200h. It shall be incremented up to “_7Fh” corresponding to object index 127Fh.

Index 1200h .. 127Fh Object Type RECORD

Name SDO_ServerContainerParam_XXh_REC

Data Type SDO_ParameterRecord_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 4 Access const

Default Value 4 PDO Mapping No

• Sub-Index 01h: ClientNodeID_U8

Sub-Index 01h

Name ClientNodeID_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

POWERLINK Node ID of SDO client

• Sub-Index 02h: ServerNodeID_U8

Sub-Index 02h

Name ServerNodeID_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

POWERLINK Node ID of SDO server

EPSG DS 301 V1.5.1 -164-

• Sub-Index 03h: ContainerLen_U8

Sub-Index 03h

Name ContainerLen_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

Max. data length of the container (incl. header) in byte

• Sub-Index 04h: HistorySize_U8

Sub-Index 04h

Name HistorySize_U8

Data Type UNSIGNED8 Category M

Value Range 0 .. 63 Access rws

Default Value - PDO Mapping No

Client Request history size (for sequence layer, see 6.3.3.1)

6.3.3.3.2 Object 1280h .. 12FFh:
SDO_ClientContainerParam_XXh_REC

The SDO_ClientContainerParam_XXh_REC objects contain the parameters for the SDOs for which
the device is the client. If the entry is supported, all sub-indices must be available.

To map the container in the PDO the corresponding index shall be mapped.

To allow access by name “_XXh” shall be replaced by a name index. Name index shall be “_00h” if
object index is 1280h. It shall be incremented up to “_7Fh” corresponding to object index 12FFh.

Index 1280h .. 12FFh Object Type RECORD

Name SDO_ClientContainerParam_XXh_REC

Data Type SDO_ParameterRecord_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 5 Access const

Default Value 5 PDO Mapping No

• Sub-Index 01h: ClientNodeID_U8

Sub-Index 01h

Name ClientNodeID_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

POWERLINK Node ID of SDO client

• Sub-Index 02h: ServerNodeID_U8

Sub-Index 02h

Name ServerNodeID_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

POWERLINK Node ID of SDO server

EPSG DS 301 V1.5.1 -165-

• Sub-Index 03h: ContainerLen_U8

Sub-Index 03h

Name ContainerLen_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value - PDO Mapping No

Max. data length of the container (incl. header) in byte

• Sub-Index 04h: HistorySize_U8

Sub-Index 04h

Name HistorySize_U8

Data Type UNSIGNED8 Category M

Value Range 0 .. 63 Access rws

Default Value - PDO Mapping No

Server Response history size (for sequence layer, see 6.3.3.1)

• Sub-Index 05h: reserved

6.3.3.3.3 Object 0422h: SDO_ParameterRecord_TYPE

Index 0422h Object Type DEFSTRUCT

Name SDO_ParameterRecord_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h ClientNodeID_U8 0005h UNSIGNED8

02h ServerNodeID_U8 0005h UNSIGNED8

03h ContainerLen_U8 0005h UNSIGNED8

04h HistorySize_U8 0005h UNSIGNED8

6.3.4 SDO Timeouts

6.3.4.1 Object 1300h: SDO_SequLayerTimeout_U32

The object provides a timeout value in [ms] for the connection abort recognition of the SDO sequence
layer (see 6.3.2.3.2.5).

Index 1300h Object Type VAR

Name SDO_SequLayerTimeout_U32

Data Type UNSIGNED32 Category M

Value Range 100 ms – Max(UNSIGNED32) Access rws, valid on reset

Default Value C_SDO_SEQULAYERTIMEOUT PDO Mapping No

Note: The default value of C_SDO_SEQULAYERTIMEOUT will be high enough even for diagnosing
nodes over the internet.

Note: Take care when configuring the sequence layer timeout. If the configured value is too low, SDO
access to the device is impossible after ResetConfiguration.

6.3.4.2 Object 1301h: SDO_CmdLayerTimeout_U32

The object provides a timeout value in [ms] for the connection abort recognition of the SDO command
layer.

If SDO_CmdLayerTimeout_U32 is not implemented a value of C_SDO_CMDLAYERTIMEOUT shall
be used instead for detecting a command layer timeout.

EPSG DS 301 V1.5.1 -166-

Index 1301h Object Type VAR

Name SDO_CmdLayerTimeout_U32

Data Type UNSIGNED32 Category O

Value Range 100 ms – Max(UNSIGNED32) Access rws, valid on reset

Default Value C_SDO_CMDLAYERTIMEOUT PDO Mapping No

Note: Take care when configuring the command layer timeout.
This timeout is valid for each and every SDO command. When configuring its value a long duration for
SDO access has to be considered, e.g. for firmware download or storing the OD.
If the configured value is too low, SDO access to the device is impossible after ResetConfiguration.

6.3.4.3 Object 1302h: SDO_SequLayerNoAck_U32

The object provides the number of acknowledge requests for the connection abort recognition of the
SDO sequence layer (see 6.3.2.3.2.5).

Index 1302h Object Type VAR

Name SDO_SequLayerNoAck_U32

Data Type UNSIGNED32 Category O

Value Range 2 – Max(UNSIGNED32) Access rws, valid on reset

Default Value C_SDO_SEQULAYERNOACK PDO Mapping No

6.4 Process Data Object (PDO)
The real-time data transfer is performed by means of Process Data Objects (PDO).

PDO communication in POWERLINK is always performed isochronously by PReq and/or PRes
frames. The PRes frames are sent as broadcasts following the producer/consumer scheme. The
PReq frames with unicast addresses comply with the master/slave relationship.

The transmission type of PDO is continuous. There is no “on event” or “on change” transmission type
provided.

From the device’s view, there are two types of PDO usage: data transmission and data reception.
Transmit PDOs (TPDOs) and Receive PDOs (RPDOs) shall be distinguished. Devices supporting
TPDOs are PDO producers or PDO masters and devices which are able to receive PDOs are called
PDO consumers or PDO slaves.

The numbers of supported channels shall be provided by the application.

An MN device may support up to 256 RPDO and 256 TPDO channels.

On a CN device, only one TPDO channel may be available while up to 256 RPDO may be supported .
An Async-only CN device shall not support any TPDO channel but may provide up to 256 RPDO
channels.

The size of PDO channels is application-specific.

A PDO channel shall be described by a pair of objects:

• PDO communication parameter describing communication attributes of the PDO. Mapping
version and address information are provided.
PDO communication parameter are held by the objects PDO_TxCommParam_XXh_REC and
PDO_RxCommParam_XXh_REC (Index number 1800h .. 18FFh resp. 1400h .. 14FFh).

• PDO mapping parameter describing the mapping of the objects contained in PDO payload to
object dictionary entries.
PDO mapping parameter are held by the objects PDO_TxMappParam_XXh_AU64 and
PDO_RxMappParam_XXh_AU64 (Index number 1A00h .. 1AFFh resp. 1600h .. 16FFh).

Corresponding PDO communication and mapping parameters shall be identified by equal low byte
values of the index numbers. TPDO and RPDO object pairs shall be distinguished.

The mapping of application objects into a PDO may be transmitted to a device during the device
configuration process by applying the SDO services to the corresponding entries of the Object
Dictionary.

EPSG DS 301 V1.5.1 -167-

Regarding the complete network, TPDO and RPDO mappings applied to a dedicated isochronous
frame may be different. Especially in producer/consumer relationships using PRes frames, individual
objects mapped by the TPDO mapping of the producer may be targeted to different consumers. The
RPDO mapping of a consumer may skip objects not targeted to it.

6.4.1 PDO Mapping Limitations

PDO mapping description may require a large amount of memory. Other restriction may derive from
the internal structure of a device, e.g. buffer size, interfaces etc.

Devices may limit the amount of PDO data to be transmitted and received per POWERLINK cycle.

A device shall not impose restrictions on the sequence of mapped objects within a PDO.

6.4.1.1 TPDO Mapping Limitations

Transmit PDO description amount may be limited in following ways:

• The maximum number of supported TPDO channels may be indicated by
D_PDO_TPDOChannels_U16. It limits the number of PDO_TxCommParam_XXh_REC and
PDO_TxMappParam_XXh_AU64 objects.

• The maximum number of mapped objects per TPDO channel may be indicated by
D_PDO_TPDOChannelObjects_U8. It limits the number of PDO_TxMappParam_XXh_AU64
sub-indices.

• An overall limit to the number of mapped objects regardless their distribution to channels may
be indicated by D_PDO_TPDOOverallObjects_U16. It provides an upper limit to the sum of the
TPDO objects of all channels.

• D_PDO_TPDOChannels_U16, D_PDO_TPDOChannelObjects_U8 and
D_PDO_TPDOOverallObjects_U16 may be combined. If one of the values violates a
calculatoric limit given by the other ones it shall be ignored.

Example: D_PDO_TPDOChannels_U16 and D_PDO_TPDOChannelObjects_U8 together
provide an upper limit to the overall number of available mapping object entries. If
D_PDO_TPDOOverallObjects_U16 is greater than the product of D_PDO_TPDOChannels_U16
and D_PDO_TPDOChannelObjects_U8, it shall be ignored.

TPDO limits caused by the internal structure of a device shall indicated as following:

• On a per telegram base, TPDO may be limited by

• TX buffer size,

• the bandwidth of an internal interface, that transport complete TPDO payload from
application to POWERLINK stack

• etc.

Such kind of limits shall be indicated by NMT_CycleTiming_REC.IsochrTxMaxPayload_U16.

• On a per cycle base, TPDO data amount may be limited by the bandwidth of an internal
interface that transports all TPDO data that shall be transmitted during a cycle.
D_PDO_TPDOCycleDataLim_U32 shall indicate such kind of limit.

It is assumed that TPDO telegram generation is performed on the POWERLINK stack side of
the interface. TPDO objects mapped to multiple TPDO channels shall be transported once over
the interface and distributed to the channels on the POWERLINK stack side. Thus they shall be
once taken into account when calculating the bandwidth.

6.4.1.2 RPDO Mapping Limitations

Receive PDO description amount may be limited in following ways:

• The maximum number of supported RPDO channels may be indicated by
D_PDO_RPDOChannels_U16. It limits the number of PDO_RxCommParam_XXh_REC and
PDO_RxMappParam_XXh_AU64 objects.

• The maximum number of mapped objects per RPDO channel may be indicated by
D_PDO_RPDOChannelObjects_U8. It limits the number of PDO_RxMappParam_XXh_AU64
sub-indices.

EPSG DS 301 V1.5.1 -168-

• An overall limit to the number of mapped objects regardless their distribution to channels may
be indicated by D_PDO_RPDOOverallObjects_U16. It provides an upper limit to the sum of the
RPDO objects of all channels.

• D_PDO_RPDOChannels_U16, D_PDO_RPDOChannelObjects_U8 and
D_PDO_RPDOOverallObjects_U16 may be combined. If one of the values violates a
calculatoric limit given by the other ones it shall be ignored.

Example: refer 6.4.1.1

RPDO limits caused by the internal structure of a device shall indicated as following:

• On a per telegram base, RPDO may be limited by

• RX buffer size,

• the bandwidth of an internal interface, that transport complete RPDO payload from
POWERLINK stack to application

• etc.

Such kind of limits shall be indicated by NMT_CycleTiming_REC.IsochrRxMaxPayload_U16.

• On a per cycle base, RPDO data amount may be limited by the bandwidth of an internal
interface that transports all RPDO data that have been received during a cycle.
D_PDO_RPDOCycleDataLim_U32 shall indicate such kind of limit.

6.4.1.3 Further Limitations

The overall memory consumption of the objects defining the mapping
(PDO_TxMappParam_XXh_AU64, PDO_TxCommParam_XXh_REC,
PDO_RxMappParam_XXh_AU64 and PDO_RxCommParam_XXh_REC) may be limited. The limit is
given by D_PDO_MaxDescrMem_U32. The size is calculated as follows:

• Each object PDO_TxCommParam_XXh_REC whose mapping is activated
(PDO_TxMappParam_XXh_AU64.NumberOfEntries is not equal to 0) uses 2 Bytes.

• Each object PDO_RxCommParam_XXh_REC whose mapping is activated
(PDO_RxMappParam_XXh_AU64.NumberOfEntries is not equal to 0) uses 2 Bytes.

• Each object PDO_TxMappParam_XXh_AU64 uses
PDO_TxMappParam_XXh_AU64.NumberOfEntries * 8 Bytes.

• Each object PDO_RxMappParam_XXh_AU64 uses
PDO_RxMappParam_XXh_AU64.NumberOfEntries * 8 Bytes.

The sum of these sizes must not exceed D_PDO_MaxDescrMem_U32.

The minimum size of mapped objects may be indicated by D_PDO_Granularity_U8. The mapped
offset shall be a multiple of the granularity.

6.4.2 PDO Mapping Version

Compatibility of TPDO channels and corresponding RPDO channels may be ensured by PDO
mapping version handling.

PDO mapping version is held by PDO_TxCommParam_XXh_REC.MappingVersion_U8 and
PDO_RxCommParam_XXh_REC.MappingVersion_U8. Tab. 91 shows the PDO mapping main and
sub version encoding.

High nibble Low nibble

Main version Sub version

 Structure of PDO Mapping version

The assigned value of the PDO Mapping version is application specific.

If the PDO Mapping is changed in a compatible manner e.g. expanding the PDO contents, the sub
version shall be incremented.

PDO Mapping may be variable or static. Variable mapping may be dynamically modified by the
application, even under operation. Static mapping is pre-defined and may not be modified in any way.

Support of variable mapping shall be indicated by NMT_FeatureFlags_U32 Bit 6 and
D_PDO_DynamicMapping_BOOL.

EPSG DS 301 V1.5.1 -169-

To control compatibility of PDO mapping, PDO_TxCommParam_XXh_REC.MappingVersion shall be
set. The version info shall be transmitted by the master or producer with every PDO transporting PReq
and PRes frame (s. 4.6.1.1.3 resp. 4.6.1.1.4).

The PDO slave or consumer shall check the mapping version of received PDOs using the
corresponding PDO_RxCommParam_XXh_REC.MappingVersion entry. PDOs with differing main
version shall be ignored. PDOs with equal main version but differing sub version shall be accepted.

A PDO mapping version value of 0 indicates that there is no mapping version available. This does not
disable the version check. If the mapping version in the received PDO is 0 the corresponding
PDO_RxCommParam_XXh_REC.MappingVersion entry shall be 0 too and vice versa. Otherwise the
received mapping is ignored.

6.4.3 SDO via PDO Container

A container may be used by the PDO mapping to enable exchange of SDO data via PDO
communication channels.

See 6.3.3 for detailed description of SDO embedded in PDO.

The type of container is defined by a referencing object at index
SDO_ServerContainerParam_XXh_REC or SDO_ClientContainerParam_XXh_REC

6.4.4 Transmit PDOs

If sub-index 0 of the mapping object (PDO_TxMappParam_XXh_AU64) is 0 the TPDO is invalid. The
RD flag of the TPDO transporting Frame shall be reset. (refer Tab. 105 or 7.1.4)

Sending PDO data is implicitly isochronous for a node in the state NMT_CS_OPERATIONAL and
NMT_MS_OPERATIONAL. In NMT_CS_READY_TO_OPERATE and
NMT_MS_READY_TO_OPERATE, PDO data are sent in the same way, but they are not valid. The
RD flag of the TPDO transporting Frame shall be reset..

6.4.5 Receive PDOs

RPDO data shall be valid if the RD flag of the RPDO transporting frame is set in the state
NMT_CS_OPERATIONAL and NMT_MS_OPERATIONAL. The data shall be occurred to the objects
assigned by the RPDO mapping parameters. The application may access the received PDO data by
reading these objects.

If the RD flag is not set in the received message, the mapping shall not be performed, e.g. the data
shall not be copied to the mapped objects. The application shall further make use of the old data
earlier received. RD flag signaling to the application shall be implementation specific.

In NMT states not equal NMT_CS_OPERATIONAL resp. NMT_MS_OPERATIONAL, RPDO data shall
be invalid and shall be ignored.

If the length of the data actually received is less than the length of the mapped objects or if the
received and the expected PDO mapping versions differ in an incompatible manner the received data
has to be ignored and a fault situation occurs.

6.4.6 PDO via PReq

PDO via PReq transmission follows the master/slave relationship as described in 2.3.1.

PDO via PReq is carried out according to the following protocol.

The following data elements in the PReq frame (for the frame structure see 4.6.1.1.3) are relevant for
PDO transport:

indication

POWERLINK

CN

POWERLINK

MN

request
PollRequest

EPSG DS 301 V1.5.1 -170-

• The RD flag indicates if the PDO data is valid. If the bit is 0b, the PDO data is not valid and shall
not be interpreted by the POWERLINK CN.

• Size indicates the user data length of the PDO payload data.

• Payload indicates the PDO data.

6.4.7 PDO via PRes

PDO via PRes transmission follows the producer/consumer relationship as described in 2.3.3.

PDO via PRes from a CN is carried out according to the following protocol.

PDO via PRes from the MN is carried out according to the following protocol.

The following data elements in the PRes frame (for the frame structure see 4.6.1.1.4) are relevant for
PDO transport:

• The RD flag indicates if the PDO data is valid. If the bit is 0b, the PDO data is not valid and shall
not be interpreted by the POWERLINK CN.

• Size indicates the user data length of the PDO payload data.

• Payload indicates the PDO data.

6.4.8 PDO Error Handling

6.4.8.1 Dynamic Errors

6.4.8.1.1 Incompatible Mapping
If an incompatible PDO Mapping version is received, the PDO shall be ignored.

This error situation shall be logged and signaled to the application. Typically this error occurs many
times, so the error shall be logged and signaled once for every received wrong PDO mapping version.
The bit corresponding to the error causing node may be set to 1b in PDO_ErrMapVers_OSTR.

Error code Description

E_PDO_MAP_VERS PDO with wrong Mapping version received, PDO ignored

6.4.8.1.2 Unexpected End of PDO
If a PDO is received which is shorter than the amount of mapped objects, the PDO shall be ignored.

This error situation shall be logged and signaled to the application. Normally this error occurs many
times, so the error shall be logged and signaled once for each PDO. The bit corresponding to the error
causing Node may be set to 1b in PDO_ErrShort_RX_OSTR.

POWERLINK

MN

POWERLINK

CN

request indication
PollResponse

indication

indication

POWERLINK

CNs

indication

indication

indication

POWERLINK

CNs

POWERLINK

MN

request
PollResponse

EPSG DS 301 V1.5.1 -171-

Error code Description

E_PDO_SHORT_RX RX PDO length too short, PDO ignored

6.4.8.2 Configuration Errors

If an attempt to change the PDO mapping results in a memory consumption of mapped objects that
exceeds the configured payload size limits NMT_CycleTiming_REC.IsochrRxMaxPayload_U16 or
NMT_CycleTiming_REC.IsochrTxMaxPayload_U16, this attempt shall be rejected anyway.

If only the limit NMT_CycleTiming_REC.PReqActPayloadLimit_U16 or NMT_CycleTiming_REC.
PResActPayloadLimit_U16 is violated the mapping shall be activated. However the RD flag shall be
reset resp. the received data shall be ignored.

If any of the limits introduced in 6.4.1 is violated, the attempt shall be rejected too.

The memory size check shall be done when a mapping is enabled by writing the number of mapped
objects to PDO_RxMappParam_XXh_AU64.NumberOfEntries or PDO_TxMappParam_XXh_AU64.
NumberOfEntries. .

Error code Description

E_PDO_MAP_OVERRUN Mapping exceeds payload size or mapped object number limit

6.4.9 Object Description

6.4.9.1 Object 1400h .. 14FFh:
PDO_RxCommParam_XXh_REC

This description handles a sequence of up to 256 objects. These indices describe the communication
attributes of the RPDO channels. Mapping version and address information are provided.

The number of objects may be less than 256 (refer 6.4.1). Objects shall be implemented starting at
Index 1400h.

The validity of the respective object depends on the NumberOfEntries_U8 entry of the corresponding
(s. 6.3.4) RPDO mapping index PDO_RxMappParam_XXh_AU64.

To change the PDO communication parameter, the PDO shall be deactivated by setting
PDO_RxMappParam_XXh_AU64.NumberOfEntries to 0. To enable modifications,
PDO_RxMappParam_XXh_AU64.NumberOfEntries shall be set to a value not equal 0.

Inde
x

1400h .. 14FFh Object
Type

RECORD

Nam
e

PDO_RxCommParam_XXh_REC

Data
Type

PDO_CommParamRecord_TYPE Categor
y

Cond

To allow access by name, “_XXh” shall be replaced by a name index. Name index shall be
“_00h” if object index is 1400h. It shall be incremented up to “_FFh” corresponding to object
index 14FFh.

EPSG DS 301 V1.5.1 -172-

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 Access const

Default Value 2 PDO Mapping No

• Sub-Index 01h: NodeID_U8

Sub-Index 01h

Name NodeID_U8

Data Type UNSIGNED8 Category M

Value Range 0, 1 .. 254 Access rws

Default Value - PDO Mapping No

Node ID of the node transmitting the corresponding PRes. Valid Node IDs shall be determined
by NMT_NodeAssignment_AU32 [Node ID] Bits 0 and 8.

Node ID entry 0 is reserved for PReq received by a CN.

Node ID entry C_ADR_SELF_ADR_NODE_ID shall indicate mapping of the RPDO to the
TPDO describing the locally transmitted PRes frame. This Node ID always refers to the locally
transmitted PRes, independent of the local Node ID setting.

The local Node ID may be also used to indicate the reception of self-transmitted PDO (e.g.
Node ID 3). But in this case the mapping is fixed to this Node ID. If the local Node ID changes
(e.g. from 3 to 4), the mapping still refers to the PRes of Node ID 3

Receipt of self-transmitted PDO is optional. It shall be indicated by the device description entry
D_PDO_SelfReceipt_BOOL.

• Sub-Index 02h: MappingVersion_U8

Sub-Index 02h

Name MappingVersion_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws / ro

Default Value - PDO Mapping No

Access shall be ro if only static mapping is provided by the device.

6.4.9.2 Object 1600h .. 16FFh
PDO_RxMappParam_XXh_AU64

This description handles a sequence of up to 256 objects. These indices describe the mapping of the
objects contained in RPDO payload to object dictionary entries.

The number of objects and subindices may be limited (refer 6.4.1). Objects shall be implemented
starting at Index 1600h.

To change the PDO mapping, the PDO shall be deactivated by setting NumberOfEntries to 0. The
new mapping may then be given by writing object mapping entries to sub-index 1 and higher. To
enable the PDO mapping again, NumberOfEntries shall be set to the number of the highest sub-index
containing the object mapping to be activated. When the mapping is enabled, it shall be verified, that
the cumulative length of all mapped objects does not violate the payload size limit
NMT_CycleTiming_REC.IsochrRxMaxPayload_U16 and on the CN additionally the limit
NMT_CycleTiming_REC.PReqActPayloadLimit_U16 for the PReq frame. For the appropriate error
handling see 6.4.8.2.

On some device, add or remove entries to or from the current list of mapping entries may be
performed by modifying NumberOfEntries without effecting the ObjectMapping sub-indices. To do so,
NumberOfEntries shall be set to 0 before writing the new NumberOfEntries value.

Default mapping values may be provided by the device profile.

EPSG DS 301 V1.5.1 -173-

Index 1600h .. 16FFh Object Type ARRAY

Name PDO_RxMappParam_XXh_AU64

Data Type UNSIGNED64 Category Cond

To allow access by name, “_XXh” shall be replaced by a name index. Name index shall be
“_00h” if object index is 1600h. It shall be incremented up to “_FFh” corresponding to object
index 16FFh.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0, 1 .. 254 Access rws

Default Value - PDO Mapping No

Number of mapped objects. 0 indicates that the mapping index and the corresponding RPDO
communication index (6.4.9.1) is deactivated.

On devices providing only static mapping, the value shall be set to the number of entries
corresponding to the static mapping or 0.

Note: By this it is also possible to activate / deactivate (0) a static mapping.

• Sub-Index 01h .. FEh: ObjectMapping

Sub-Index 01h .. FEh

Name ObjectMapping

-- -- Category O

Value Range UNSIGNED64 Access rws / ro

Default Value - PDO Mapping No

Access shall be ro if only static mapping is provided by the device.

• Sub-Index 01h .. FEh Value Interpretation

For every PDO channel up to 254 objects may be mapped.

The offset related to the start address of the PDO payload and the length of data shall be
provided for every mapped object.

Octet Offset Name Description

0 – 1 Index Index of the object to be mapped

2 Sub-index Sub-index of the object to be mapped

3 reserved for alignment purpose

4 – 5 Offset Offset related to start of PDO payload (Bit count)

6 – 7 Length Length of the mapped object (Bit count)

 Structure of PDO Mapping Entry

Tab. 93 shows the internal bit mapping of an object mapping entry. See 6.1.4.5 for information
about data type encoding for transmission purpose.

 UNSIGNED64

 MSB LSB

Bits 63 .. 48 47 .. 32 31 .. 24 23 .. 16 15 .. 0

Name Length Offset reserved Sub-index Index

Encoding UNSIGNED16 UNSIGNED16 - UNSIGNED8 UNSIGNED16

 Internal bit mapping of PDO mapping entry

Mapped objects of length ≥ 8 Bits shall be aligned to a byte boundary offset.

Overlapping of mapped objects should be avoided.

The following example shows the mapping interpretation:
 Index 6000h, Sub-index 4 with a data length of 8 bit shall be mapped to offset 16 [bit].

EPSG DS 301 V1.5.1 -174-

Bits 63 .. 48 47 .. 32 31 .. 24 23 .. 16 15 .. 0

Name Length Offset reserved Sub-index Index

Data 8 16 0 4 6000h

The object above is mapped with the following value (big endian):

• 0008.0010.00.04.6000h

It is transmitted in the following order (little endian):

• 0060.04.00.1000.0800h

6.4.9.3 Object 1800h .. 18FFh
PDO_TxCommParam_XXh_REC

This description handles a sequence of up to 256 objects. These indices describe the communication
attributes of the TPDO channels. Mapping version and address information are provided.

As a CN has only one TPDO channel, only the first index PDO_TxCommParam_XXh_REC shall be
implemented on a CN.

On the MN, the number of objects may be less than 256 (refer 6.4.1).

Objects shall be implemented starting at Index 1800h.

The validity of the respective object depends on the NumberOfEntries_U8 entry of the corresponding
(s. 6.3.4) TPDO mapping index PDO_TxMappParam_XXh_AU64.

To change the PDO communication parameter, first the PDO has to be deactivated by means of
setting PDO_TxMappParam_XXh_AU64.NumberOfEntries to 0. To enable modifications,
PDO_TxMappParam_XXh_AU64.NumberOfEntries shall be set to a value not equal to 0.

Inde
x

1800h .. 18FFh Object
Type

RECORD

Nam
e

PDO_TxCommParam_XXh_REC

Data
Type

PDO_CommParamRecord_TYPE Categor
y

Cond

To allow access by name, “_XXh” shall be replaced by a name index. Name index shall be
“_00h” if object index is 1800h. It shall be incremented up to “_FFh” corresponding to object
index 18FFh.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 Access const

Default Value 2 PDO Mapping No

• Sub-Index 01h: NodeID_U8

Sub-Index 01h

Name NodeID_U8

Data Type UNSIGNED8 Category M

Value Range 0, 1 .. 254 Access rws

Default Value - PDO Mapping No

Node ID of the PDO target:

• CN: not used (0)

• MN: Node ID of the PReq target (CN). Valid Node IDs shall be released by
 NMT_NodeAssignment_AU32 [Node ID] Bits 0 and 8.
 Node ID entry 0 shall indicate multicast PRes transmitted by the MN.

EPSG DS 301 V1.5.1 -175-

• Sub-Index 02h: MappingVersion_U8

Sub-Index 02h

Name MappingVersion_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws / ro

Default Value - PDO Mapping No

Access shall be ro if only static mapping is provided by the device.

6.4.9.4 Object 1A00h .. 1AFFh
PDO_TxMappParam_XXh_AU64

This description handles a sequence of up to 256 objects. These indices describe the mapping of the
objects contained in TPDO payload to object dictionary entries.

As a CN has only one TPDO channel, only the first index PDO_TxMappParam_XXh_AU64 shall be
implemented on a CN.

On the MN, the number of objects may be less than 256 (refer 6.4.1).

Objects shall be implemented starting at Index 1A00h.

The number of subindices may be limited (refer 6.4.1).

To change the PDO mapping, the PDO shall be deactivated by setting NumberOfEntries to 0. The
new mapping may then be given by writing object mapping entries to sub-index 1 and higher. To
enable the PDO mapping again, NumberOfEntries shall be set to the number of the highest sub-index
containing the object mapping to be activated. When the mapping is enabled, it shall be verified, that
the cumulative length of all mapped objects does not violate the payload size limit
NMT_CycleTiming_REC.IsochrTxMaxPayload_U16 and additionally the limit
NMT_CycleTiming_REC.PResActPayloadLimit_U16 for the Pres frame. For the appropriate error
handling see 6.4.8.2.

On some device, add or remove entries to or from the current list of mapping entries may be
performed by modifying NumberOfEntries without effecting the ObjectMapping sub-indices. To do so,
NumberOfEntries shall be set to 0 before writing the new NumberOfEntries value.

Default values may be provided by the device profile.

Index 1A00h .. 1AFFh Object Type ARRAY

Name PDO_TxMappParam_XXh_AU64

Data Type UNSIGNED64 Category Cond

To allow access by name, “_XXh” shall be replaced by a name index. Name index shall be
“_00h” if object index is 1A00h. It shall be incremented up to “_FFh” corresponding to object
index 1AFFh.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0, 1 .. 254 Access rws

Default Value - PDO Mapping No

0 indicates that the mapping index and the corresponding TPDO communication index (6.4.9.1)
is deactivated. The RD flag of the TPDO transporting frame shall be reset (TPDO is invalid).

On devices only providing static mapping, the value shall be set to the number of entries
corresponding to the static mapping or 0.

Note: By this it is also possible to activate / deactivate (0) a static mapping.

EPSG DS 301 V1.5.1 -176-

• Sub-Index 01h .. FEh: ObjectMapping

Sub-Index 01h .. FEh

Name ObjectMapping

-- -- Category O

Value Range UNSIGNED64 Access rws / ro

Default Value - PDO Mapping No

Access shall be ro if only static mapping is provided by the device.

• Sub-Index 01h .. FEh Value Interpretation

see PDO_RxMappParam_XXh_AU64.ObjectMapping Value Interpretation (6.4.9.2)

6.4.9.5 Object 1C80h: PDO_ErrMapVers_OSTR

This object contains a list of all the nodes, sending a wrong mapping version (see 6.4.8.1.1).

The bits are arranged in the node list format (refer 7.3.1.2.3). If a wrong mapping version is detected,
the bit corresponding to the node transmitting the PDO, shall be set to 1b. Reset shall be handled by
the application.

Hint: A configuration tool shall refresh the object to avoid erroneously pending error indication.

Index 1C80h Object Type VAR

Name PDO_ErrMapVers_OSTR

Data Type OCTET_STRING32 Category O

Value Range - Access rw

Default Value 0 PDO Mapping No

EPSG DS 301 V1.5.1 -177-

6.4.9.6 Object 1C81h: PDO_ErrShort_RX_OSTR

This object contains a list of all the nodes, sending a too short PDO (see 6.4.8.1.2).

The bits are arranged in the node list format (refer 7.3.1.2.3). If a short PDO is detected, the bit
corresponding to the node transmitting the PDO, shall be set to 1b. Reset shall be handled by the
application.

Hint: A configuration tool shall refresh the object to avoid erroneously pending error indication.

Index 1C81h Object Type VAR

Name PDO_ErrShort_RX_OSTR

Data Type OCTET_STRING32 Category O

Value Range - Access rw

Default Value 0 PDO Mapping No

6.4.9.7 Object 0420h: PDO_CommParamRecord_TYPE

Index 0420h Object Type DEFSTRUCT

Name PDO_CommParamRecord_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h NodeID_U8 0005h UNSIGNED8

02h MappingVersion_U8 0005h UNSIGNED8

6.5 Error Signaling
This chapter describes how to record errors and events which are generated by a POWERLINK Node
and the procedure how a CN shall indicate and transfer errors/events to the MN.

All communication layers as well as the application shall have access to the Error Signaling.

The Data Link Layer of a CN shall query the Error Signaling cyclically for new StatusResponse data.

If there was no change in the Static Error Bit Field and the Status Entries since the last query from the
DLL and the Emergency Queue is empty, the Error Signaling shall not provide data to the DLL.

If there was a change or the Emergency Queue is not empty the Error Signaling shall generate new
StatusResponse data and pass it to the DLL at the next query.

• Static Error Bit Field : 8 Bytes, see 6.5.8.1

• Error Entry: 20 Bytes / Entry, see Tab. 94

If the Emergency Queue is used, the space for at least 1 History Entry shall be available in the
StatusResponse frame. This History Entry may not contain emergency data to make sure the CN can
transmit the Emergency Queue entries to the MN.

Emergency Queue support is optional. D_NMT_EmergencyQueueSize_U32 indicates support
(D_NMT_EmergencyQueueSize_U32 > 0) and queue size.

EPSG DS 301 V1.5.1 -178-

Fig. 67. Error signaling – Reference model

Error Signaling

StatusResponse data

Static Error Bit Field Status and History Entries

Data Link Layer

Emergency Queue

Entry Type.Bit15 = 1

Entry Type.Bit15 = 0

Entry Type.Bit14 = 1

Object 1003h
ERR_History_ADOM

Status Entries

Generation of new frame if changed or the Emergency Queue contai ns data

Error Signaling

StatusResponse data

Static Error Bit Field Status and History Entries

Data Link Layer

Emergency Queue

Entry Type.Bit15 = 1

Entry Type.Bit15 = 0

Entry Type.Bit14 = 1

Object 1003h
ERR_History_ADOM

Status Entry

Error Entry

Fig. 68. Error signaling – Overview

Device

P

UDP

PDO SDO Command

NM

Device

SDO Sequence

Erro

r Signaling

Application

Device

POWERLINK Data Link Layer

IP

UDP TCP

POWERLINK Appl. Layer

PDO SDO Command

Object Dictionary

NMT

MAC

PHY

HTTP

FTP

Device Profile

SDO Sequence

Error

Signaling

Application

EPSG DS 301 V1.5.1 -179-

6.5.1 Error Entry

This chapter describes the function and the data format of an Error Entry listed in the Error History
object 1003h ERR_History_ADOM or the StatusResponse.

The Error History object holds the errors and events that have occurred on the device..

An ErrorEntry_DOM has the following format:

Octet Offset Description

0 .. 1 Entry Type

2 .. 3 Error Code

4 .. 11 Time Stamp

12 .. 19 Additional Information

 Format of one entry

Field Abbr. Description Value

Entry Type type see Tab. 96 UNSIGNED16

Error Code code Depending on the Entry Type the error codes are
described in the device profiles , device descriptions or the
communication profile. Communication profile specific
error codes are described in App. 3.9.

UNSIGNED16

Time
Stamp

time SoC Nettime from the cycle when the error/event was
detected.

NETTIME

Additional
Information

add This field contains device profile or vendor specific
additional error information.

UNSIGNED64

 Description of one entry

All elements of the Error Entry shall be stored and transferred in little endian format.

Octet Bit Value Description

0 .. 1 15
(status)

0b ERR_History_ADOM Entry

1b Status Entry in StatusResponse frame (Bit 14 shall be set to 0b)

14
(send)

0b ERR_History_ADOM only

1b Additional to the ERR_History_ADOMthe entry shall also be entered in to
the Emergency Queue of the Error Signaling.

13 .. 12
(mode)

0h Not allowed in ERR_History_ADOM.
Entries with this mode may only be used by the Error Signaling itself to
indicate the termination of the History Entries in the StatusResponse
frame.

1h An error has occurred and is active (e.g. short circuit of output detected)

2h An active error was cleared (e.g. no short circuit anymore)
(not allowed for Status Entries)

3h An error / event occurred
(not allowed for Status Entries)

11 .. 0
(profile)

000h Reserved

001h The field Error Code in Tab. 94 contains a vendor specific error code

002h The field Error Code in Tab. 94 contains POWERLINK communication
profile specific errors which are listed in App. 3.9 (Network errors,
communication errors, data link errors …)

003h ..
FFFh

The field Error Code in Tab. 94 contains device profile specific errors.
e.g.
191h … CiA 401, Device Profile for Generic IO Modules
192h … CiA 402, Drive Profile

 Format of the field entry type

EPSG DS 301 V1.5.1 -180-

6.5.2 Interface to Error Signaling

Any layer of the MN or CN which intends to generate an Error Entry shall provide the following
information to the Error Signaling:

• Entry Type (all fields shall be provided, see Tab. 96)

• Error Code (see Tab. 94)

• Additional Information (see Tab. 94)

6.5.3 Processing of CN Error Information on the MN

History or Status Entries received from CNs shall be passed to the application layer.

6.5.4 Error Signaling Bits

To avoid that the MN has to poll ERR_History_ADOM for changes, the following mechanism shall
inform the MN when the Static Error Bit Field, the Status Entries or the History Entries of the CN
StatusResponse frame have changed.

The following bits shall be used for a confirmed transmission from the CN to the MN:

Field Abbr. Description

Exception
Reset

ER Initialisation of the Error Signaling
When a CN receives the value 1b it shall reset its EN bit to 0b and clear the Emergency
Queue.
The MN shall send the ER bit with the following frame:
 SoA(StatusRequest)

Exception
Clear

EC In this bit the CN shall mirror the last received ER from the MN.
This is required to indicate the MN that the initialisation of the Error Signaling was done.
A CN shall send the EC bit with the following frame:

 Asnd(StatusResponse)

Exception
New

EN By toggling this bit the CN informs the MN that the Static Error Bit Field or the Status
Entries have changed or that new History Entries are available in the StatusResponse
frame.
A CN shall send the EN bit with the following frames:
 Pres
 Asnd(StatusResponse)
For isochronous CNs the MN shall evaluate the EN bit of the Asnd(StatusResponse) only

in NMT_CS_PRE_OPERATIONAL_1.

Exception
Acknowledge

EA When the MN detects that the last sent EA bit is different to the last received EN bit it
shall send a StatusRequest frame to the CN. After the StatusResonse frame was
successfully received by the MN, it shall set EA=EN.
When the bit is transferred to the CN the next time, the CN knows that it may generate a
new StatusResponse frame and toggle the EN bit again.
The MN shall send the EA bit with the following frames:
 Preq
 SoA(StatusRequest)
Isochronous CNs shall evaluate the EA bit of the SoA(…) only in
NMT_CS_PRE_OPERATIONAL_1.

 Error signaling bits

A CN shall only evaluate the ER and EA flags of the respective SoA(…) frames when the
RequestedServiceTarget is the CNs POWERLINK Node ID.

EPSG DS 301 V1.5.1 -181-

6.5.5 Initialisation

With this initialisation the MN shall prepare the CN for the Error Signaling.

Fig. 69. Error signaling initialisation

6.5.5.1 Startup value and behaviour of the EC flag

At startup (NMT_GT1, NMT_GT2 or NMT_GT8) the CN shall reset the Error Signaling and set EC=1.

The CN shall not change the EC flag before at least 1 valid frame with ER=1 was received.

This regulation is necessary for the following case :

• The MN completes the initialisation until ER=0, the CN is still in
NMT_CS_PRE_OPERATIONAL_1

• The CN has a power fail and starts up again. The next received frame from the MN contains
ER=0 … Now the CN shall respond with EC=1 to show the MN that the Error Signaling is not
initialised.

• The MN shall restart the intialization of the Error Signaling

Other NMT transitions shall not automatically initialise the Error Signaling in order to allow the MN to
receive emergency messages even if the NMT state of the CN changes for e.g. to
NMT_GS_INITIALISATION because of any reason.

The Error Signaling shall only be initialised by NMT_GT1, NMT_GT8, NMT_GT2 or explicit Error
Signaling reset by the MN (ER=1).

MN CN

The MN detects that
the initialisation was
done by the CN and
shall set ER back to 0 .

Because ER = 1 the CN shall reset the
EN bit to 0 and clears the Emergency
Queue .
The CN shall set EC = ER

SoA (StatusRequest) (ER = 1)

ASnd (StatusResponse) (EC = ?)

Because the Asnd (StatusResponse
is sent in the same POWERLINK
cycle the value of EN and EC is not
defined at the beginning .

SoA (StatusRequest) (ER = 1)

ASnd (S tatusRespon se) (EC = 1)

SoA (StatusRequest) (ER = 0)

ASnd (StatusResponse) (EC = 1)

SoA (StatusRequest) (ER = 0)

ASnd (StatusResponse) (EC = 0)

Because ER = 1 the CN shall reset the
EN bit to 0 and clears the Emergency
Queue .
The CN shall set EC = ER

The CN shall set EC = ER

EC = 0 … Initialisation
finished

EPSG DS 301 V1.5.1 -182-

6.5.6 Error Signaling with Preq and Pres frames

For isochronous CNs only the Preq and Pres frames shall be used for the Error Signaling.

If an isochronous CN is in the state NMT_CS_PRE_OPERATIONAL_1 the Error Signaling shall
behave like an Async-only CN (6.5.7)

MN CN

The MN detects that EN is
different to the last sent
EA, the MN shall get the
new status via
SoA(StatusRequest)

PReq (EA=0)

PRes (EN=0) .

.

. PReq (EA=0)

PRes (EN=0)

When EA=EN the CN shall
cyclically query the Error Signaling
for new StatusResponse data. If
no new data is available EN shall
not be changed.

PReq (EA=0)

PRes (EN= 1)

SoA (StatusRequest)

ASnd (StatusResponse)

PReq (EA=0)

PRes (EN=1)

PReq (EA=0)

PRes (EN=1)

PReq (EA=0)

PRes (EN=1)

It may take several cycles
until the MN has a free
asynchronous slot to send
the SoA(StatusRequest)

In case of a
communication error the
MN shall retry to send
the StatusRequest

SoA (StatusRequest)

ASnd (StatusResponse)

PReq (EA= 1)

PRes (EN=1)

After the
ASnd(StatusResponse)
was received the MN shall
set EA equal to the last
received EN

PReq (EA=1)

PRes (EN=1)

If the Error Signaling passes new
StatusResponse data to the DLL
the EN bit shall be toggled.

As long as the last received EA is
not equal to EN the DLL shall NOT
query the Error Signaling for new
StatusResponse data.

When EA=EN the CN shall
continue to query the Error
Signaling for new StatusResponse
data. If no new data is available
EN shall not be changed.

Fig. 70. Error signaling with Preq and Pres

EPSG DS 301 V1.5.1 -183-

6.5.7 Error Signaling with Async-only CNs

Async only CNs are periodically requested by the MN.

This shall be also done for isochronous CNs in NMT_CS_PRE_OPERATIONAL_1.

MN CN

The MN shall periodically
send a
SoA(StatusRequest) to the
CN

SoA(StatusRequest) (EA=0)

ASnd When EA=EN the CN shall
cyclically query the Error Signaling
for new StatusResponse data. If
no new data is available EN shall
not be changed.

If the Error Signaling passes new
StatusResponse data to the DLL
the EN bit shall be toggled.
EN is now 1 but can not be
transferred to the MN until the MN
sends a SoA(StatusRequest)
The DLL shall stop to query the
Error Signaling for new
StatusResponse data.

Now the EN flag is transferred to
the MN combined with the new
StatusResponse data.

EA is equal to the last sent EN, the
CN shall continue to query the
Error Signaling for new
StatusResponse data.

SoA(StatusRequest) (EA=0)

ASnd

SoA(StatusRequest) (EA=0)

ASnd(StatusResponse) (EN=0)

.

.

.

SoA(StatusRequest) (EA=0)

ASnd

SoA(StatusRequest) (EA=0)

ASnd

.

.

.

SoA(StatusRequest) (EA=0)

ASnd(StatusResponse) (EN=1)

EN is equal to the last sent
EA, the MN does not need
to evaluate the
StatusResponse data.

EN is different to the last
sent EA, the MN shall
evaluate the
StatusResponse data and
set EA = EN

SoA(StatusRequest) (EA=1)

ASnd .
.
.

Fig. 71. Error signaling for Async-only CNs and CNs in state NMT_CS_PRE_OPERATIONAL_1

6.5.8 Format of StatusResponse Data

Refer to 7.3.3.3.1 for StatusResponse frame structure.

6.5.8.1 Static Error Bit Field

Octet Offset20 Description

6 Content of ERR_ErrorRegister_U8

7 Reserved

8 .. 13 Device profile or vendor specific errors

 Static error bit field

6.5.8.2 Status and History Entries

If not all available entries of the StatusResponse are used, an entry with Mode 0 (see Tab. 96) shall
be used to terminate the History and Status Entry list and declare this and all following entries as
unused.

The CN may also change the length of the StatusResponse frame to fit the required Status and
History fields. In this case no entry for termination is required.

20 Octet offset relates to the beginning of the ASnd service slot (See 7.3.3.3.1)

EPSG DS 301 V1.5.1 -184-

The number of used Status / History Entries is defined by D_NMT_ErrorEntries_U32 .

Status Entries shall be located in front of the History Entries inside the StatusResponse frame.

6.5.9 Examples

The examples in this chapter are an implementation proposal for the creation of the StatusResponse
frames on the CN.

Another buffer handling may be implemented in consideration of the following points:

• The CN shall notify the MN about changes of the StatusResponse frame using the EN bit as
shown in 6.5.6 or 6.5.7

• After the CN has indicated new StatusResponse data to the MN by toggling the EN flag, the
StatusResponse frame on the CN may not be changed anymore as it can be requested by the
MN at any time. Only if the reception of the response is acknowledged by the EA flag of the MN,
the CN may change the StatusResponse frame data again.

The following examples make use of the following abbreviations:

Abbreviation Description

BF Static Error Bit Field

S Bit 15 (status) of the Entry Type (see Tab. 94 Format of one entry)

M Bit 13-12 (mode) of the Entry Type (see Tab. 94 Format of one entry)

C Error Code (see Tab. 94 Format of one entry)

 Abbreviations for the following examples

The Octet Offsets relates to the beginning of the Ethernet frame.

6.5.9.1 Case 1 – Only Bit Field, No Status/History Entries

This is the most simple implementation of the Error Signaling. Only the Static Error Bit Field is used to
signal errors from the CN to the MN.

The length of the StatusResponse frame is fixed and does not change during runtime:

Octet Offset Description

0 .. 23 Headers

24 .. 31 Static Error Bit Field

32 .. 51 Entry 0 (M=0)

52 .. 71 Entry 1 (M=0)

72 .. 75 Ethernet CRC

Field Description

Headers Ethernet / POWERLINK / Asnd(StatusResponse) Header (see 7.3.3.3.1)

Static Error Bit Field The bit field containing the status information (see 6.5.8.1)

Entry 0, Entry 1 For this example no Status Entry is required. Since the frame must have a minimum
length the first two entries can not be removed by shortening the frame. To avoid that
the MN processes this data, the field Mode of the Entry Type is 0.

At startup the Error Signaling shall generate 2 identical empty StatusResponse Frames and pass one
of them to the Data Link Layer as initial StatusResponse data. A third frame shall be generated for
further use.

This frame of the Data Link Layer may be requested by the MN at any time.

• Frame 1: Owner = Error Signaling (May be changed at any time)

• Frame 2: Owner = Data Link Layer

• Frame 3: Owner = Error Signaling (unused until Frame 1 is changed)

If the Static Error Bit Field has changed, the value is copied to frame 3 which will be passed to the
Data Link Layer:

• Frame 1: Owner = Error Signaling (May be changed at any time)

• Frame 2: Owner = Data Link Layer (DLL)

EPSG DS 301 V1.5.1 -185-

• Frame 3: Owner = Error Signaling (Copy of the changed Frame 1, ready to be taken from the
DLL)

Now the Error Signaling is not allowed to change this Frame 3 because it can be taken from the Data
Link Layer at any time.

The next time the DLL queries for new data the Error Signaling passes Frame 3 to the DLL which shall
set the EN flag to signal the MN that new data is available. Frame 2 shall be passed back to the Error
Signaling for further use:

• Frame 1: Owner = Error Signaling (May be changed at any time)

• Frame 2: Owner = Error Signaling (unused until Frame 1 is changed)

• Frame 3: Owner = Data Link Layer (DLL)

If the Error Signaling has changed Frame 1 before Frame 2 was passed back it shall immediately
create a copy of Frame 1, otherwise it shall wait for the next change of Frame 1 and then create the
copy.

• Frame 1: Owner = Error Signaling (May be changed at any time)

• Frame 2: Owner = Error Signaling (Copy of the changed Frame 1, ready to be taken from the
DLL)

• Frame 3: Owner = Data Link Layer (DLL)

The sequence continues in this manner and Frame 2/Frame 3 are passed alternatively to the DLL for
transmission to the MN. The DLL shall only query the Error Signaling for the next frame if EN=EA, that
means the MN has successfully picked up the last changed frame.

6.5.9.2 Case 2 – Status Entries

In this example the CNs are allowed to signal errors using the Static Error Bit Field and/or the Status
Entries of the StatusResponse frame.

The frame sequence is the same as in Example 1. Every time the Error Signaling makes changes of
the StatusResponse frame content (Static Error Bit Field or in one of the Status Entries) it shall
provide a new frame for the DLL which will be I as soon as EN=EA.

Example with 4 Status Entries:

Octet Offset Description

0 .. 23 Headers

24 .. 31 Static Error Bit Field

32 .. 51 Status Entry 0

52 .. 71 Status Entry 1

72 .. 91 Status Entry 2

92 .. 111 Status Entry 3

112 .. 115 Ethernet CRC

Field Description

Status Entry
0 .. 3

S=X,M=0
 This entry and all following entries are not valid
S=1,M=1,C=0
 The entry does not contain status information but the next entry is valid
S=1.M=1,C>0
 The entry contains valid status information

If all 4 status entries contain status information and the CN wants to remove Status Entry 1 and 2 it
has two ways to do so.

• Set C of Entry 1 and Entry 2 to 0 to invalidate the entries

• Copy Entry 3 to Entry 1 and set M of Entry 2 to 0 to terminate the list

• Copy Entry 3 to Entry 1 and shorten the frame size

EPSG DS 301 V1.5.1 -186-

6.5.9.3 Case 3 – History Entries

The CN sends History Entries or static errors to the MN. The MN shall only process the received
History Entries if EN is not equal EA so each entry will be processed only once.

The initial frame shall not contain valid Status or History Entries.

Octet Offset Description

0 .. 23 Headers

24 .. 31 Static Error Bit Field

32 .. 51 Entry 0 (M=0)

52 .. 59 Padding

60 .. 63 Ethernet CRC

Initial frames at startup:

• Frame 1: Owner = Error Signaling (May be changed at any time)

• Frame 2: Owner = Data Link Layer

• Frame 3: Owner = Error Signaling (unused until Frame 1 is changed)

As in Example 1, the CN may change the Static Error Bit Field and perform the same sequence as in
Example 1 to signal the change to the MN.

Additionally the Error Signaling shall check periodically if the Emergency Queue (see Fig. 68 Error
signaling – Overview) contains any entries. In this case the Error Signaling also shall create a copy of
Frame 1 and append as many History Entries from the Emergency Queue to the frame as possible
and remove these entries from the queue.

Frame 1 never contains History Entries.They shall be only added to the frame passed to the DLL !

Assume the Emergency Queue contains 10 History Entries and the length of the Status Response is
limited to a maximum of 150 byte, the next frame prepared for the DLL will be the following:

Octet Offset Description

0 .. 23 Headers

24 .. 31 Static Error Bit Field

32 .. 51 History Entry 0

52 .. 71 History Entry 1

72 .. 91 History Entry 2

92 .. 111 History Entry 3

112 .. 131 History Entry 4

132 .. 135 Ethernet CRC

The frame will transport 5 of the 10 queue entries to the MN. The next time the Error Signaling shall
transfer the rest of the entries in the queue (but always maximum 5 entires in this case). The
sequence will continue in this manner until the Emergency Queue is empty.

6.5.9.4 Case 4 – Status and History Entries

The CN may also send StatusResponse frames containing both Status and History Entries. In this
case the History Entries shall be located in the frame after the Status Entries. As shown in the
examples above the Status Entries contain static information and the History Entries are taken from
the Emergency Queue.

The MN shall be aware that the number of Status Entries and History Entries as well as the frame
length of the StatusResponse can vary at every frame.

6.5.10 Object descriptions

6.5.10.1 Object 1001h : ERR_ErrorRegister_U8

The object ERR_ErrorRegister_U8 is compatible to the object ‘error register’ of the standard
communication profile CiA DS 301.

EPSG DS 301 V1.5.1 -187-

Index 1001h Object Type VAR

Name ERR_ErrorRegister_U8

Data Type UNSIGNED8 Category M

Value Range 0..255 Access ro

Default Value 0 PDO Mapping Opt

• Value Interpretation

Bit M/O Description

0 M Generic error
This bit shall be set to 1b if the Static Error Bit Field or the Status Entries in the
StatusResponse frame show one or more errors.
If this bit is 0b the MN only needs to evaluate the History Entries of the
StatusResponse frame.

1 O Current

2 O Voltage

3 O Temperature

4 O Communication error

5 O Device profile specific

6 O Reserved (always 0)

7 O Manufacturer specific

6.5.10.2 Object 1003h: ERR_History_ADOM

Sub-index 0 contains the number of actual errors/events that are recorded in the array starting at sub-
index 1. Every new error/event is stored at sub-index 1, the older ones move down the list.

Object ERR_History_ADOM shall not be cleared upon initialisation during an NMTResetConfiguration,
NMTResetCommunication or NMTResetNode.

Note: This facilitates reading the error history after the CN performed an NMTReset following an error.

Index 1003h Object Type ARRAY

Name ERR_History_ADOM

Data Type DOMAIN Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 254 Access rw

Default Value 0 PDO Mapping Opt

When writing to this sub-index only value 0 is allowed (clear history). All other values will be
rejected with an error code.

• Sub-Index 01h – FE h : ErrorEntry_DOM

Sub-Index 01h – FEh

Name ErrorEntry_DOM

-- -- Category O

Value Range see Tab. 94 Access ro

Default Value - PDO Mapping No

6.6 Program Download
In this chapter, a common method for downloading a program to a device via its object dictionary is
specified. Here only the mechanism for performing the program download is specified, not the
structure of program data or the data structure. The specified mechanism can be used for
downloading complete programs to devices (e.g. if a device only provides a kind of POWERLINK

EPSG DS 301 V1.5.1 -188-

bootstrap loader) or only parts of a program (e.g. specific tasks of real-time systems). The data
structure of the transferred program data must be specified by the manufacturer (e.g. INTEL-HEX
format or binary format).

Further specifications for the program download are given in specific device profiles (e.g. in CiA DS-
405 for the download of PLC programs).

Programmability of a CN is indicated by NMT_NodeAssignment_AU32[sub-index] Bit 6.

6.6.1 Object Dictionary Entries on the CN

6.6.1.1 Object 1F50h: PDL_DownloadProgData_ADOM

PDL_DownloadProgData_ADOM holds downloaded programs. It allows the access to up to 254
programs.

Index 1F50h Object Type ARRAY

Name PDL_DownloadProgData_ADOM

Data Type DOMAIN Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 00h .. FEh Access rw

Default Value - PDO Mapping No

• Sub-Index 01h: Program

Sub-Index 01h

Name Program

-- -- Category Cond

Value Range DOMAIN Access cond

Default Value - PDO Mapping No

Sub-index 1 is the program access point of a device that is reserved for the firmware of the
device holding the device communication profile. Therefore no common program download to
this sub-index is allowed.

If the download fails, the device responds with an Abort SDO Transfer (error code 0606 0000h).

If the device does not support firmware download via SDO Write by Index this sub-index shall
not be present.

Note: The firmware may also be downloaded to a device by FTP or SDO File Write transfer.

If the device supports reading of the program the access shall be rw otherwise wo.

• Sub-Index 02h .. FEh: Program

Sub-Index 02h .. FEh

Name Program

-- -- Category O

Value Range DOMAIN Access cond

Default Value - PDO Mapping No

Program sub-indices provide access to additional programs in a device.

If the device supports reading of the program the access shall be rw otherwise wo.

6.6.1.2 Object 1F51h: PDL_ProgCtrl_AU8

PDL_ProgCtrl_AU8 is specified for controlling the execution of stored programs:

EPSG DS 301 V1.5.1 -189-

Index 1F51h Object Type ARRAY

Name PDL_ProgCtrl_AU8

Data Type UNSIGNED8 Category Cond

PDL_ProgCtrl_AU8 shall be implemented if PDL_DownloadProgData_ADOM is supported by
the device.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 01h .. FEh Access rw

Default Value 01h PDO Mapping No

• Sub-Index 01h: ProgCtrl

Sub-Index 01h

Name ProgCtrl

-- -- Category M

Value Range 0 .. 2 (refer Tab. 100) Access rw

Default Value - PDO Mapping No

ProgCtrl controls the program holding the device communication profile to be accessed by
PDL_DownloadProgData_ADOM[1].

On write access program execution will be commanded, on read access the current execution
state of the program may be queried. The following values are defined:

 Write Access Read Access

0 stop program program stopped

1 start program program running

2 reset program program stopped

 PDL_ProgCtrl_AU8 sub-index value interpretation

If the action is not possible, the device shall responds with an Abort SDO Transfer (error code
0800 0024h).

• Sub-Index 02h .. FEh: ProgCtrl

Sub-Index 02h .. FEh

Name ProgCtrl

-- -- Category Cond

Value Range 0 .. 2 (refer Tab. 100) Access rw

Default Value - PDO Mapping No

ProgCtrl sub-indices control the additional programs to be accessed via the
PDL_DownloadProgData_ADOM sub-indices 02h .. FEh. The respective sub-index shall be
implemented if the corresponding sub-index of PDL_DownloadProgData_ADOM is provided by
the device.

6.6.1.3 Object 1F52h: PDL_LocVerApplSw_REC

PDL_LocVerApplSw_REC is defined to support verification of the version of the program holding the
device communication profile to be accessed via PDL_DownloadProgData_ADOM[1] 21.

21 Note that the object NMT_ManufactDevName_VS can be regarded as a version number of a fixed
program of a non-programmable node or as a firmware (like boot block and operating system) version
number of a programmable node. Hence, a separate object for re-programmable application software
is defined.

EPSG DS 301 V1.5.1 -190-

Index 1F52h Object Type RECORD

Name PDL_LocVerApplSw_REC

Data Type PDL_LocVerApplSw_TYPE Category Cond

PDL_LocVerApplSw_REC shall be implemented if PDL_DownloadProgData_ADOM is
supported by the device.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 Access const

Default Value 2 PDO Mapping No

• Sub-Index 01h: ApplSwDate_U32

Sub-Index 01h

Name ApplSwDate_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

ApplSwDate_U32 shall contain the number of days since January 1, 1984.

• Sub-Index 02h: ApplSwTime_U32

Sub-Index 02h

Name ApplSwTime_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

ApplSwTime_U32 shall contain the number of ms since midnight.

Note that the date and time are only supported for the default application program. Dates and
times of additional programs 2 to 254 are not supported. In case of two or more programs, one
possibility could be to store the latest update time and date of any of the programs 2 to 254 in
the objects PDL_MnExpAppSwDateList_AU32 and PDL_MnExpAppSwTimeList_AU32.

6.6.1.4 Object 0427h: PDL_LocVerApplSw_TYPE

Index 0427h Object Type DEFSTRUCT

Name PDL_LocVerApplSw_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h ApplSwDate_U32 0007h UNSIGNED32

02h ApplSwTime_U32 0007h UNSIGNED32

6.6.2 Object Dictionary Entries on the MN

Two MN located objects are specified for verification of the version of the application software at the
CNs.

In programmable devices the objects shall be compared to PDL_LocVerApplSw_REC reflecting the
version of the downloaded program holding the device communication profile accessible via
PDL_DownloadProgData_ADOM[1].

In non-programmable devices the objects may be used to store verification data to be compared to
NMT_ManufactSwVers_VS.

EPSG DS 301 V1.5.1 -191-

6.6.2.1 Object 1F53h: PDL_MnExpAppSwDateList_AU32

PDL_MnExpAppSwDateList_AU32 holds the expected Application SW date to be compared to the
actual value on the CN in order to verify the Application SW.

Index 1F53h Object Type ARRAY

Name PDL_MnExpAppSwDateList_AU32

Data Type UNSIGNED32 Category Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 01h .. FEh Access rws

Default Value FEh PDO Mapping No

• Sub-Index 01h .. FEh: AppSwDate

Sub-Index 01h .. FEh

Name AppSwDate

-- -- Category O

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 5.

AppSwDate contains the number of days since January 1, 1984.

PDL_MnExpAppSwDateList_AU32 shall be implemented by MNs if the MN supports program
verification.

PDL_MnExpAppSwDateList_AU32 may be implemented by CNs to hold latest update date of
additional programs to be accessed via PDL_DownloadProgData_ADOM sub-indices 02h .. FEh.

6.6.2.2 Object 1F54h: PDL_MnExpAppSwTimeList_AU32

PDL_MnExpAppSwTimeList_AU32 holds the expected Application SW time to be compared to the
actual value on the CN in order to verify the Application SW.

Index 1F54h Object Type ARRAY

Name PDL_MnExpAppSwTimeList_AU32

Data Type UNSIGNED32 Category Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 01h .. FEh Access rws

Default Value FEh PDO Mapping No

• Sub-Index 01h .. FEh: AppSwTime

Sub-Index 01h .. FEh

Name AppSwTime

-- -- Category O

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 5.

AppSwTime contains the number of milliseconds after midnight (00:00).

EPSG DS 301 V1.5.1 -192-

PDL_MnExpAppSwTimeList_AU32 shall be implemented by MNs if the MN supports program
verification.

PDL_MnExpAppSwTimeList_AU32 may be implemented by CNs to hold latest update time of
additional programs to be accessed via PDL_DownloadProgData_ADOM sub-indices 02h .. FEh.

6.7 Configuration Management
The configuration of a device may be stored locally on the device in a non-volatile memory or centrally
on the MN performing the Configuration Manager function.

The Configuration Manager is an optional application residing on the MN. It may configure network
devices at network boot-up. Support of Configuration Manager functions shall be indicated by device
description entry D_CFM_ConfigManager_BOOL.

For this it has to know the (application dependent) parameter values. This information may be
provided by a Device Configuration File for each device. This file is stored on the MN. In order to
reduce memory consumption Concise Configuration Storage may be applied.

POWERLINK defines a XML based Device Description (XDD) and Device Configuration (XDC) file
format. The file format is described in detail in a separate paper (POWERLINK XML Specification).

6.7.1 Device Description

The Device Description File provides information about the device’s basic communication and
functional properties.

POWERLINK employs XDD Files for Device Description. These files shall be provided by the
manufacturer of the device.

XDD files may be stored locally on the device or centrally on the MN.

6.7.1.1 Local Storage on the Device

With some devices it may be possible to store the Device Description File (XDD) locally on the device.
Local XDD File storage has some advantages:

• The manufacturer does not have the problem of distributing the XDD File via data carrier.

• Management of different XDD File versions for different software versions is less error prone, if
they are stored together.

• The complete network settings may be stored on the network. This makes the task of analyzing
or reconfiguring a network easier for tools and more transparent for the users.

The object CFM_StoreDevDescrFile_DOM contains the XDD File. The format of the file is described
by object CFM_StoreDevDescrFormat_U16.

The XDD File is downloaded from a Configuration Tool to the device by writing the file as a domain to
CFM_StoreDevDescrFile_DOM. The file is uploaded by reading CFM_StoreDevDescrFile_DOM.

6.7.1.2 Central Storage on the MN

For those devices which are not able to store their XDD Files, the Configuration Manager on the MN
may take over this task. The objects CFM_StoreDevDescrFileList_ADOM and
CFM_DevDescrFileFormatList_AU8 are defined at the Configuration Manager to hold the file
information.

The device XDD File is downloaded from a Configuration Tool to the Configuration Manager by writing
the file as a domain to CFM_StoreDevDescrFileList_ADOM with the sub-index equal to the device’s
Node ID.

The file is uploaded to a tool by reading CFM_StoreDevDescrFileList_ADOM with the sub-index equal
to the device’s Node ID.

6.7.2 Device Configuration Storage

Device Configuration provides application specific setup values.

EPSG DS 301 V1.5.1 -193-

6.7.2.1 Device Configuration File Storage

Centralized storage of device configuration is performed by the Configuration Manager on the MN.
Data is stored in the form of a Device Configuration File (XDC).

XDC Storage is managed by the the objects CFM_StoreDcfList_ADOM and
CFM_DcfStorageFormatList_AU8. CFM_StoreDcfList_ADOM holds the XDC Files and
CFM_DcfStorageFormatList_AU8 provides information about the files’ storage format. Each sub-index
of the ARRAYs points to the Node ID of the device to which the XDC belongs.

The XDC is downloaded from a Configuration Tool to the Configuration Manager by writing the XDC
File as a domain to CFM_StoreDcfList_ADOM with the sub-index equal to the device’s Node ID.

The XDC is uploaded from the Configuration Manager to a Tool by reading the object
CFM_StoreDcfList_ADOM with the sub-index equal to the device’s Node ID.

6.7.2.2 Concise Configuration Storage

The Concise Device Configuration does not contain all of the information contained in the XDC. The
information to be stored consists of the parameter values of the object dictionary entries. The
information is stored by a stream assigning data values to the particular objects and sub-indices. (See
Tab. 102)

It is recommended that Concise Configuration Storage is used when complete XDC storage is not
possible.

The concise configuration of a device is downloaded from a Configuration Tool to the Configuration
Manager by writing the stream as a domain to CFM_ConciseDcfList_ADOM with the sub-index equal
to the device’s Node ID.

The concise DCF of a device is uploaded from the Configuration Manager to a Tool by reading the
object CFM_ConciseDcfList_ADOM with the sub-index equal to the device’s Node ID.

6.7.2.3 Check Configuration Process

POWERLINK defines the object CFM_VerifyConfiguration_REC. If a device supports saving of
parameters in non-volatile memory, the MN or a configuration tool may use this object to verify the
configuration after a device is reset and to check whether a reconfiguration is necessary. The
configuration tool shall store configuration date, time and ID in CFM_VerifyConfiguration_REC and
shall store the same values in the respective sub-indices of CFM_ExpConfDateList_AU32,
CFM_ExpConfTimeList_AU32 and CFM_ExpConfIdList_AU32.

Now the configuration tool orders the device to save its configuration by writing the signature “save” to
NMT_StoreParam_REC.AllParam_U32.

After a reset the device restores the last configuration and the signature automatically or by request.

The Configuration Manager compares the signature in CFM_VerifyConfiguration_REC to the
respective sub-indices of CFM_ExpConfDateList_AU32, CFM_ExpConfTimeList_AU32 and/or
CFM_ExpConfIdList_AU32 and decides if a reconfiguration is necessary or not.

6.7.2.4 Request Configuration

In some applications there might be situations where it is necessary to configure CNs during run-time
– for example, if a CN fails and re-boots. The NMT master will recognize this and inform the
application (see chapter 7.4.2.2.1.2). With the object CFM_ConfCNRequest_AU32 the NMT master
application is able to tell the Configuration Manager to configure that CN.

Another example is the connection of a new machine part with several devices. The application needs
the ability to start the Configuration Manager at least for the new nodes.

Configuration may be also requested by the target CN itself or by a tool residing on another CN.

To initiate the configuration process of a single CN, the requester writes the signature “conf” to the
sub-index equal to the CN’s Node ID.

A SDO Write Request to sub-index FFh is used to start an overall re-configuration of all CNs on the
system. This function enables simple applications to request the Configuration Management without
knowing the actual project configuration.

EPSG DS 301 V1.5.1 -194-

6.7.3 Object Dictionary Entries

6.7.3.1 Object 1020h: CFM_VerifyConfiguration_REC

CFM_VerifyConfiguration_REC holds device local Configuration date and time.

Index 1020h Object Type RECORD

Name CFM_VerifyConfiguration_REC

Data Type CFM_VerifyConfiguration_TYPE Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 .. 4 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: ConfDate_U32

Sub-Index 01h

Name ConfDate_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

ConfDate_U32 holds the local configuration date. It contains the number of days since January
1, 1984.

• Sub-Index 02h: ConfTime_U32

Sub-Index 02h

Name ConfTime_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

ConfDate_U32 holds the local configuration time. It contains the number of ms since midnight.

• Sub-Index 03h: ConfId_U32

Sub-Index 03h

Name ConfId_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

ConfId_U32 holds a configuration ID value.

The value shall be created by a configuration tool in a manufacturer specific way.

In a POWERLINK network it should be identical only on those nodes, that have an identical HW
and configuration besides some node specific objects like POWERLINK Node ID
(NMT_EPLNodeID_REC.NodeID_U8), SerialNumber (NMT_IdentityObject_REC.SerialNo_U32)
etc. Otherwise ConfId_U32 should be unique for each node in an Ethernet POWERLINK
network segment.

EPSG DS 301 V1.5.1 -195-

• Sub-Index 04h: VerifyConfInvalid_BOOL

Sub-Index 04h

Name VerifyConfInvalid_BOOL

Data Type BOOLEAN Category O

Value Range BOOLEAN Access ro

Default Value TRUE PDO Mapping No

VerifyConfInvalid_BOOL enables temporary local modifications of configuration parameters for
test purpose while maintaining the bootability of the network.

VerifyConfInvalid_BOOL = FALSE indicates that the configuration was not modified since the
last storage of ConfId_U32 (sub-index 03h).

A change of a parameter defined in this specification which is stored in permanent memory shall
set VerifyConfInvalid_BOOL to TRUE. It may be set also by the application.

VerifyConfInvalid_BOOL shall be set to FALSE upon writing a value > 0 to ConfId_U32.

A configuration tool or an application may use this information to display a warning if the
configuration of a node was modified.

6.7.3.2 Object 1021h: CFM_StoreDevDescrFile_DOM

CFM_StoreDevDescrFile_DOM holds the device local Device Description File.

Index 1021h Object Type VAR

Name CFM_StoreDevDescrFile_DOM

Data Type DOMAIN Category O

Value Range DOMAIN Access ro or rws

Default Value - PDO Mapping No

The object is read-only if the Device Description File stored by CFM_StoreDevDescrFile_DOM
is unchangable.
Otherwise a Device Description File may be downloaded from a configuration tool by writing the
file as a domain to CFM_StoreDevDescrFile_DOM. Reading the object uploads to the tool.

The availability of a Device Description File at CFM_StoreDevDescrFile_DOM is indicated by
CFM_StoreDevDescrFormat_U16. If no data had been stored
(CFM_StoreDevDescrFormat_U16 = FFh), a SDO Read Request to
CFM_StoreDevDescrFile_DOM is aborted with the error code E_CFM_DATA_SET_EMPTY.

6.7.3.3 Object 1022h: CFM_StoreDevDescrFormat_U16

CFM_StoreDevDescrFormat_U16 holds the format of the Device Description File stored by
CFM_StoreDevDescrFile_DOM.

Index 1022h Object Type VAR

Name CFM_StoreDevDescrFormat_U16

Data Type UNSIGNED16 Category Cond

Value Range refer Tab. 101 Access ro or rws

Default Value - PDO Mapping No

The object shall be implemented if CFM_StoreDevDescrFile_DOM is implemented.

The object is read-only if the Device Description File stored by CFM_StoreDevDescrFile_DOM
is unchangable.

CFM_StoreDevDescrFormat_U16 describes the format of the storage. This allows the use of
compressed formats. The device may always store the file in a compressed format internally.
The CFM_StoreDevDescrFormat_U16 object describes the external behavior.

Valid values are:

EPSG DS 301 V1.5.1 -196-

Value Format

00h XML XDD format as defined in
separate paper, not compressed

01h to FEh reserved

FFh no Device Description File available

 Device description file and device configuration storage formats

6.7.3.4 Object 1F20h: CFM_StoreDcfList_ADOM

CFM_StoreDcfList_ADOM holds XDC files for configured CNs. The object may be implemented on the
MN only, if object CFM_DcfStorageFormatList_AU8 is implemented.

Index 1F20h Object Type ARRAY

Name CFM_StoreDcfList_ADOM

Data Type DOMAIN Category Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNDcf

Sub-Index 01h .. FEh

Name CNDcf

-- -- Category Cond

Value Range DOMAIN Access rws

Default Value - PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

A XDC is downloaded from a Configuration Tool to the Configuration Manager by writing the
XDC File to the respective CFM_StoreDcfList_ADOM sub-index. The tool uploads the XDC by
reading the sub-index.

The availability of XDC data at a CFM_StoreDcfList_ADOM sub-index is indicated by the
corresponding CFM_DcfStorageFormatList_AU8 sub-index. If no data is stored
(CFM_DcfStorageFormatList_AU8.CNDcfFormat[sub-index] = FFh), a SDO Read Request to
the CFM_StoreDcfList_ADOM sub-index is aborted with the error code
E_CFM_DATA_SET_EMPTY.

6.7.3.5 Object 1F21h: CFM_DcfStorageFormatList_AU8

CFM_DcfStorageFormatList_AU8 holds the format of the XDC files for configured CNs. The object
may be implemented on the MN only.

EPSG DS 301 V1.5.1 -197-

Index 1F21h Object Type ARRAY

Name CFM_DcfStorageFormatList_AU8

Data Type UNSIGNED8 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNDcfFormat

Sub-Index 01h .. FEh

Name CNDcfFormat

-- -- Category Cond

Value Range refer Tab. 101 Access rws

Default Value FFh PDO Mapping No

CNDcfFormat describes the format of the storage. This allows the use of compressed formats.
The device may always store the file in a compressed format internally. The CNDcfFormat
object describes the external behavior.

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0 and 1.

If no data is stored (CNDcfFormat[sub-index] = FFh), a SDO Read Request to the
CFM_StoreDcfList_ADOM sub-index is aborted with the error code
E_CFM_DATA_SET_EMPTY.

6.7.3.6 Object 1F22h: CFM_ConciseDcfList_ADOM

CFM_ConciseDcfList_ADOM holds Concise Configuration data for configured CNs. The object may
be implemented on the MN only.

Index 1F22h Object Type ARRAY

Name CFM_ConciseDcfList_ADOM

Data Type DOMAIN Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNConciseDcfData

Sub-Index 01h .. FEh

Name CNConciseDcfData

-- -- Category O

Value Range DOMAIN Access rws

Default Value - PDO Mapping No

The content of CNConciseDcfData is a stream with the following structure:

EPSG DS 301 V1.5.1 -198-

Number of supported entries UNSIGNED32

It
e
m

 1
 Index 1 UNSIGNED16

Sub-index 1 UNSIGNED8

Data size of parameter 1 UNSIGNED32

Data of parameter 1 DOMAIN
It
e
m

 2
 Index 2 UNSIGNED16

Sub-index 2 UNSIGNED8

Data size of parameter 2 UNSIGNED32

Data of parameter 2 DOMAIN

:::::::

It
e
m

 n
 Index n UNSIGNED16

Sub-index n UNSIGNED8

Data size of parameter n UNSIGNED32

Data of parameter n DOMAIN

 Concise DCF stream format

The Data Size is measured in octets (i.e. UNSIGNED16 has size 2; size of BOOL is given as 1).

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

Device configuration is uploaded from a Configuration Tool to the Configuration Manager by
writing the stream as domain to the respective CNConciseDcfData sub-index. Reading the
stream uploads to a tool.

An empty data set is written by the following concise stream:

Number of supported entries 0 (UNSIGNED32)

If no data has been stored, a SDO Read Request will return a valid concise stream with the
following content:

Number of supported entries 0 (UNSIGNED32)

6.7.3.7 Object 1F23h: CFM_StoreDevDescrFileList_ADOM

CFM_StoreDevDescrFileList_ADOM holds Device Description Files of configured CNs. The object
may be implemented on the MN only, if object CFM_DevDescrFileFormatList_AU8 is implemented.

Index 1F23h Object Type ARRAY

Name CFM_StoreDevDescrFileList_ADOM

Data Type DOMAIN Category Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

EPSG DS 301 V1.5.1 -199-

• Sub-Index 01h .. FEh: CNDevDescrFile

Sub-Index 01h .. FEh

Name CNDevDescrFile

-- -- Category O

Value Range DOMAIN Access rws

Default Value - PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

A Device Description File is downloaded from a Configuration Tool to the Configuration
Manager by writing the file to the respective CFM_StoreDevDescrFileList_ADOM sub-index.
Reading the the sub-index uploads to the tool.

The availability of a Device Description File at a CFM_StoreDevDescrFileList_ADOM sub-index
is indicated by the corresponding CFM_DevDescrFileFormatList_AU8 sub-index. If no data had
been stored (CFM_DevDescrFileFormatList_AU8. CNDevDescrFileFormat [sub-index] = FFh), a
SDO Read Request to the CFM_StoreDevDescrFileList_ADOM sub-index is aborted with the
error code E_CFM_DATA_SET_EMPTY.

6.7.3.8 Object 1F24h: CFM_DevDescrFileFormatList_AU8

CFM_DevDescrFileFormatList_AU8 holds the format of the Device Description Files for configured
CNs. The object may be implemented on the MN only.

Index 1F24h Object Type ARRAY

Name CFM_DevDescrFileFormatList_AU8

Data Type UNSIGNED8 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNDevDescrFileFormat

Sub-Index 01h .. FEh

Name CNDevDescrFileFormat

-- -- Category Cond

Value Range refer Tab. 101 Access rws

Default Value FFh PDO Mapping No

CNDevDescrFileFormat describes the format of the storage. This allows the usage of
compressed formats. The device may always store the file in a compressed format internally.
The object describes the external behavior.

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

A sub-index is implemented if the corresponding sub-index of
CFM_StoreDevDescrFileList_ADOM is implemented.

6.7.3.9 Object 1F25h: CFM_ConfCNRequest_AU32

CFM_ConfCNRequest_AU32 is used to request configuration data by a CN from the Configuration
Manager under runtime conditions. The object may be implemented on the MN only.

EPSG DS 301 V1.5.1 -200-

Index 1F25h Object Type ARRAY

Name CFM_ConfCNRequest_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNConfigurationRequest

Sub-Index 01h .. FEh

Name CNConfigurationRequest

-- -- Category O

Value Range UNSIGNED32 Access wo

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

To initiate the configuration process, the CN writes the signature “conf” to the respective sub-
index.

Signature MSB LSB

ISO 8859 (“ASCII”) f n o c

hex 66h 6Eh 6Fh 63h

 CNConfigurationRequest write access signature

If no data had been stored, a SDO Write Request to 01h to FEh is aborted with the error code
E_CFM_DATA_SET_EMPTY.

A SDO Write Request to sub-index FFh returns without error.

6.7.3.10 Object 1F26h: CFM_ExpConfDateList_AU32

CFM_ExpConfDateList_AU32 holds a list of expected Configuration dates of configured CNs. The
object may be implemented on the MN only.

Index 1F26h Object Type ARRAY

Name CFM_ExpConfDateList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

EPSG DS 301 V1.5.1 -201-

• Sub-Index 01h .. FEh: CNConfigurationDate

Sub-Index 01h .. FEh

Name CNConfigurationDate

-- -- Category O

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

Each sub-index holds the configuration date of the respective CN. It contains the number of
days since January 1, 1984. It is evaluated in conjunction with the corresponding
CFM_ExpConfTimeList_AU32 sub-index.

6.7.3.11 Object 1F27h: CFM_ExpConfTimeList_AU32

CFM_ExpConfTimeList_AU32 holds a list of expected Configuration times of configured CNs. The
object may be implemented on the MN only.

Index 1F27h Object Type ARRAY

Name CFM_ExpConfTimeList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNConfigurationTime

Sub-Index 01h .. FEh

Name CNConfigurationTime

-- -- Category Cond

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

Each Sub-index holds the configuration time of the respective CN. It contains the number of ms
since midnight. It is evaluated in conjunction with the corresponding
CFM_ExpConfDateList_AU32 sub-index.

A sub-index is implemented if the corresponding sub-index of CFM_ExpConfDateList_AU32 is
implemented.

6.7.3.12 Object 1F28h: CFM_ExpConfIdList_AU32

CFM_ExpConfIdList_AU32 holds a list of expected Configuration IDs of configured CNs. The object
may be implemented on the MN only.

Index 1F28h Object Type ARRAY

Name CFM_ExpConfIdList_AU32

Data Type UNSIGNED32 Category O

EPSG DS 301 V1.5.1 -202-

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access ro

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: CNConfigurationId

Sub-Index 01h .. FEh

Name CNConfigurationId

-- -- Category Cond

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] bits 0 and 1.

Each Sub-index holds the configuration ID of the respective CN.

6.7.3.13 Object 0435h: CFM_VerifyConfiguration_TYPE

Index 0435h Object Type DEFSTRUCT

Name CFM_VerifyConfiguration_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h ConfDate_U32 0007h UNSIGNED32

02h ConfTime_U32 0007h UNSIGNED32

03h ConfId_U32 0007h UNSIGNED32

04h VerifyConfInvalid_BOOL 0001h BOOLEAN

6.8 Input from a Programmable Device

6.8.1 Basics

In a network a programmable node can be characterised as a process having input and output
variables. The set of variables will be arguments of the program and hence their values will not be
determined until after the programm is written. The arguments must be handled as variables located in
the object dictionary.

The definition of such parameters depends on the programming system (e.g. IEC61131-3) and can
not be standardised here. It can be assumed, however, that there exists a set of network variables
with the logic attribute EXTERN.

Compiling/Linking (or interpreting) a program including EXTERN variables requires relocation
information. Within POWERLINK devices this information is the index (and sub-index) of the variable.
Most programming systems use the mechanism of a resource definition, used to assign the
POWERLINK attributes (index, sub-index, rw, assignment of POWERLINK data type to local data
type, etc.) to the corresponding symbolic names (variable name in the program). The resource
definition may be created by the user with a simple editor, or, more conveniently using a configuration
tool. On systems with a disk-based file system a direct exchange via the DCF format is possible.

Variable names must meet the rules of the underlying programming system. POWERLINK imposes no
system-specific restrictions on variable names: correct naming is the responsibility of the
programmer/manufacturer.

Defining EXTERN variables requires a rule for distributing the indices, called “dynamic index
assignment”.

EPSG DS 301 V1.5.1 -203-

6.8.2 Dynamic index assignment

The index area used for dynamic index assignment is dependent on the device. Each data type and
direction (Input/Output) has its own area, called a segment. Segments must not overlap. Variables of
the same data type are gathered in an array. If all elements of an array are defined (sub-index 01h to
FEh), the next free object of the area is allocated.

In order to allow programmable devices the use of a process image, they may implement a conversion
formula to calculate the offset of a variable in the process image directly from the index and sub-index.

Definition of the abstract object segment (also called dynamic channel):

A segment is a range of indices in the object dictionary with the following attributes:

• Data type

The data type of the objects which can be defined in this segment.

• Direction

The direction flag distinguishes between inputs and outputs. The values are ‘wo’ for outputs and
‘ro’ for inputs. The distinction is important to enable the correct mapping of the variable into a
receive PDO (wo) or transmit PDO (ro). This does not affect the access possibilities via SDO.

• Index range

The range of indices with start index and end index.

• PIOffset

The offset in the process image, where the first object of this segment is allocated.

For byte and multi-byte variables the PIOffset is a 32-bit unsigned offset value.

For Boolean variables it is the offset and additionally the address difference between two
Boolean variables counted in bits. If Boolean variables are packed in bytes one bit after the
other, the value is 1. If Booleans are each stored in a byte cell, the value is 8.

• Maximum count

The maximum number of variables in this segment.

Some devices distinguish strictly between different segments in the process image for different data
types. For these devices the PIOffset of the first segment will be 0, the PIOffset of the second segment
will be the maximum count of the first segment multiplied by the data type size of the first segment and
so on. If the result does not exactly meet the physical configuration, the device software is free to map
the segments into the object dictionary in a logical fashion using internal segment descriptors/offsets.

Some devices mix different data types in the same segment. For these devices all PIOffset attributes
will have the value 0. Configuration Tools that allocate space in the process image by assigning
indices must ensure that under these circumstances indices are omitted to avoid overlapping. (For
special applications there may be a feature to explicitly overlap variables – for example, to aid
debuggers interpreting memory cells as different data types.)

Any mixed form of these two device types is possible.

6.8.3 Object dictionary entries

The network variables are accessed via the entries described by the segments. In some applications it
is desirable to read or write the complete process image as one block:

EPSG DS 301 V1.5.1 -204-

6.8.3.1 Object 1F70h: INP_ProcessImage_REC

INP_ProcessImage_REC provides access to process image segments.

Index 1F70h Object Type RECORD

Name INP_ProcessImage_REC

Data Type INP_ProcessImage_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 Access const

Default Value 2 PDO Mapping No

• Sub-Index 01h: SelectedRange_U32

Sub-Index 01h

Name SelectedRange_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value 0 PDO Mapping No

Defines the process image segment to be accessed. After writing to SelectedRange_U32 the
corresponding data can be read from or written to the addressed area with
ProcessImageDomain_DOM as an unstructured stream of bytes.

The structure of SelectedRange_U32 is as follows:

MSB LSB

31 16 15 0

Data length Object segment

 Structure of SelectedRange_U32

The Object Segment to be addressed is given by the Index. If several Segments are
overlapping, the same memory area can be addressed with each of the indices.

The Data Length gives the maximum size of the transfer in bytes. If the value is 0, the complete
segment is to be accessed.

• Sub-Index 02h: ProcessImageDomain_DOM

Sub-Index 02h

Name ProcessImageDomain_DOM

Data Type DOMAIN Category M

Value Range DOMAIN Access rw

Default Value 0 PDO Mapping No

Holds the data of the segment addressed by SelectedRange_U32 as an unstructured stream of
bytes.

6.8.3.2 Object 0428h: INP_ProcessImage_TYPE

Index 0428h Object Type DEFSTRUCT

Name INP_ProcessImage_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h SelectedRange_U32 0007h UNSIGNED32

02h ProcessImageDomain_DOM 000Fh DOMAIN

EPSG DS 301 V1.5.1 -205-

7 Network Management (NMT)

7.1 NMT State Machine

7.1.1 Overview

The NMT state machine determines the behaviour of the communication function unit (see 2.2.1). The
coupling of the application state machine to the NMT state machine is device dependent and falls into
the scope of device profiles.

Both MN and CN start up by common initialisation process. At the end of this process, the node
specific POWERLINK Node ID is evaluated in order to decide, if the node is setup to be an MN or a
CN. The further process differentiates between an MN specific branch and a CN specific one.

The common initialisation process is described by 7.1.2. The paragraph also handles PowerOn,
PowerOff and reset levels common to MN and CN.

The MN specific branch is described by Tab. 105, the CN specific one by 7.1.4. Only one of these
branches shall be executed on a node.

7.1.2 Common Initialisation NMT State Machine

In Fig. 72 the initialisation of the NMT state machine, common to MN and CN is shown. Fig. 72 also
displays PowerOn, PowerOff and common reset levels that affect both MN and CN.

The common initialisation NMT state machine is the nodes upper layer NMT state machine. The MN
and CN specific NMT state machines are nested into this state machine. Only one of these nested
state machines shall be executed on a node. PowerOff and Reset displayed by the upper layer
machine affect each of the nested state machines.

7.1.2.1 States

7.1.2.1.1 NMT_GS_POWERED
All the states handled by this paragraph are states that are valid when the device is powered, e.g. they
shall be regarded to be sub-states of the super-state NMT_GS_POWERED.

NMT_GS_POWERED shall be entered on PowerOn (NMT_GT1). It shall be left on PowerOff
(NMT_GT3).

NMT_GS_POWERED is a super-state that will not be signalled over the network by an individual NMT
state value.

7.1.2.1.1.1 NMT_GS_INITIALISATION
After system start, the node attains the state NMT_GS_INITIALISATION. The node automatically shall
enter this state, an NMT command shall not be necessary. In the state NMT_GS_INITIALISATION,
the network functionality shall be initialised.

NMT_GS_INITIALISATION and its sub-states are node internal states only. They will not be signalled
over the network by NMT state.

EPSG DS 301 V1.5.1 -206-

Fig. 72. Common initialisation NMT state machine

7.1.2.1.1.1.1 Sub-states

The state NMT_GS_INITIALISATION is divided into four sub-states in order to enable a complete or
partial reset of a node (see Fig. 72).

• NMT_GS_INITIALISING

This is the first sub-state the POWERLINK node shall enter after Power On (NMT_GT1),
hardware resp. software Reset (NMT_GT2) or the reception of an NMTSwReset (NMT_GT8)
command. After finishing the basic node initialisation, the POWERLINK node shall
autonomously enter the sub-state NMT_GS_RESET_APPLICATION (NMT_GT10).

• NMT_GS_RESET_APPLICATION

In this sub-state, the parameters of the manufacturer-specific profile area and of the
standardised device profile area shall be set to their PowerOn values. After setting the PowerOn
values, the sub-state NMT_GS_RESET_COMMUNICATION shall be entered autonomously
(NMT_GT11).

NMT_GS_RESET_APPLICATION shall be entered upon the reception of an NMTResetNode
command from all sub-states of NMT_GS_COMMUNICATING, e.g. the NMT MN resp. CN state
machine.

NMT_GS_POWERED

NMT_GS_INITIALISATION

NMT_GS_COMMUNICATING

NMT_CS

NMT CN STATE

MACHINE

NMT_MN

NMT MN STATE

MACHINE

NMT_GS_RESET_CONFIGURATION

NMT_GS_RESET_COMMUNICATION

(NMT_GT12)

auto

NMT_GS_RESET_APPLICATION

NMT_GS_INITIALISING

(NMT_GT11)

auto

(NMT_GT10)

auto

(NMT_GT1)

PowerOn

(NMT_CT1)

Auto

[NodeID !=

C_ADR_MN_DEF_NODE_ID]

(NMT_MT1)

Auto

[NodeID ==

C_ADR_MN_DEF_NODE_ID]

(NMT_GT3)

PowerOff

(NMT_GT8)

NMT_SwReset

(NMT_GT4)

NMT_ResetNode

(NMT_GT5)

NMT_ResetCommunication

(NMT_GT6)

Internal Communication Error

(NMT_GT7)

NMT_ResetConfiguration

(NMT_GT2)

Reset

EPSG DS 301 V1.5.1 -207-

• NMT_GS_RESET_COMMUNICATION

In this sub-state the parameters of the communication profile area (except
ERR_History_ADOM) shall be set to their PowerOn values.

NMT_GS_RESET_COMMUNICATION shall be entered upon the recognition of an internal
communication error or the reception of an NMTResetCommunication command from all sub-
states of NMT_GS_COMMUNICATING, e.g. the MN resp. CN NMT state machine.

PowerOn values are the last stored parameters. If no stored configuration is available or if the
Reset was preceded by a restore default command (object NMT_RestoreDefParam_REC), the
PowerOn values shall be set to the default values according to the communication and device
profile specifications.

• NMT_GS_RESET_CONFIGURATION

In this sub-state the configuration parameters set in the object dictionary are used to generate
the active device configuration. The node shall examine its Node ID in order to decide if it’s
configured to be an MN or a CN. If the node is equal to C_ADR_MN_DEF_NODE_ID , the node
shall enter the MN NMT state machine (NMT_MT1), otherwise the CN NMT state machine shall
be entered (NMT_CT1).

NMT_GS_RESET_CONFIGURATION shall be entered upon the reception of an
NMTResetConfiguration command from all substates of NMT_GS_COMMUNICATING.

This sub-state is used to re-configure devices which do not support storing of communication
parameters.

7.1.2.1.1.2 NMT_GS_COMMUNICATING
When leaving the state NMT_GS_INITIALISATION (NMT_MT1 resp. NMT_CT1) the super-state
NMT_GS_COMMUNICATING will be entered. NMT_GS_COMMUNICATING includes the MN NMT
state machine (refer 7.1.3) as well as the CN NMT state machine (refer 7.1.4).

There shall be a transition from NMT_GS_COMMUNICATING to NMT_GS_INITIALISATION if an
NMTSwReset (NMT_GT8), NMTResetNode (NMT_GT4), NMTResetCommunication (NMT_GT5) or
NMTResetConfiguration (NMT_GT7) command is received or an internal communication error occurs
(NMT_GT6).

NMT_GS_COMMUNICATING is a super-state that won’t be signalled over the network by an
individual NMT state value.

7.1.2.2 Transitions

(NMT_GT1) PowerOn [] / start basic node initialisation

On PowerOn, NMT_GS_INITIALISATION sub-state NMT_GS_INITIALISING shall be entered
autonomously.
NMT_GT1, NMT_GT2 and NMT_GT8 are equivalent transitions, triggered by different reset
sources.

(NMT_GT2) Reset [] / start basic node initialisation

After Hardware or local software Reset, NMT_GS_INITIALISATION sub-state
NMT_GS_INITIALISING shall be entered autonomously.
NMT_GT1, NMT_GT2 and NMT_GT8 are equivalent transitions, triggered by different reset
sources.

(NMT_GT3) PowerOff []

POWERLINK node was powered off in NMT_GS_POWERED

 (NMT_GT4) NMTResetNode [] / start application initialisation

If an NMTResetNode command is received in NMT_GS_COMMUNICATING,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_APPLICATION shall be entered.

(NMT_GT5) NMTResetCommunication [] / start communication initialisation

If an NMTResetCommunication command is received in NMT_GS_COMMUNICATING,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_COMMUNICATION shall be entered.

EPSG DS 301 V1.5.1 -208-

(NMT_GT6) Internal Communication Error [] / start communication initialisation

If an Internal Communication Error is recognized in NMT_GS_COMMUNICATING,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_COMMUNICATION shall be entered.

(NMT_GT7) NMTResetConfiguration [] / activate device configuration

If an NMTResetConfiguration command is received in NMT_GS_COMMUNICATING,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_CONFIGURATION shall be entered.

If parameters of the object dictionary concerning the device’s cycle configuration (node assigment
and timing) are changed, the modification shall take effect after the NMTResetConfiguration
command is received.

 (NMT_GT8) NMTSwReset [] / start basic node initialisation

If an NMTSwReset command is received in NMT_GS_COMMUNICATING,
NMT_GS_INITIALISATION sub-state NMT_GS_INITIALISING shall be entered.
NMT_GT1, NMT_GT2 and NMT_GT8 are equivalent transitions, triggered by different reset
sources.

(NMT_GT10) Auto [basic node initialisation completed] / start application initialisation

NMT_GS_INITIALISATION sub-state NMT_GS_INITIALISING completed,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_APPLICATION shall be entered
autonomously.

(NMT_GT11) Auto [application initialisation completed] / start communication initialisation

NMT_GS_INITIALISATION sub-state NMT_GS_RESET_APPLICATION completed,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_COMMUNICATION shall be entered
autonomously.

(NMT_GT12)

Auto [communication initialisation completed] / start configuration setup

NMT_GS_INITIALISATION sub-state NMT_GS_RESET_COMMUNICATION completed,
NMT_GS_INITIALISATION sub-state NMT_GS_RESET_CONFIGURATION shall be entered
autonomously.

(NMT_MT1) Auto [configuration setup completed, Node ID = C_ADR_MN_DEF_NODE_ID] / start observing
network traffic

If NMT_GS_INITIALISATION sub-state NMT_GS_RESET_CONFIGURATION is completed and
Node ID configuration is equal to the default MN address (C_ADR_MN_DEF_NODE_ID), state
NMT_MS_NOT_ACTIVE shall be entered autonomously, e.g. the MN NMT state machine shall be
entered.

(NMT_CT1) Auto [communication initialisation completed, Node ID not equal to C_ADR_MN_DEF_NODE_ID] /
start observing network traffic

If NMT_GS_INITIALISATION sub-state NMT_GS_RESET_CONFIGURATION is completed and
Node ID configuration is not equal to the default MN address (C_ADR_MN_DEF_NODE_ID), state
NMT_CS_NOT_ACTIVE shall be entered autonomously, e.g. the CN NMT state machine shall be
entered.

 Common initialisation NMT state transitions

EPSG DS 301 V1.5.1 -209-

7.1.3 MN NMT State Machine

7.1.3.1 Overview

Fig. 73. NMT state diagram of an MN

The MN NMT state machine shall be regarded to be hosted by the common initialisation NMT state
machine (7.1.2). The MN NMT state machine represents a sub-state of the super-states
NMT_GS_POWERED (7.1.2.1.1) and NMT_GS_COMMUNICATING (7.1.2.1.1.2). The transitions
defined by these states shall be valid at the MN NMT state machine.

7.1.3.2 States

The current state of the MN shall define the current state of the POWERLINK network.

7.1.3.2.1 NMT_MS_NOT_ACTIVE
The MN shall observe network traffic in NMT_MS_NOT_ACTIVE in order to ensure, that there is no
other MN active on the network.

Reception of a SoC or a SoA frame indicates that there is another MN active. On SoC or SoA, the
node shall freeze boot-up. An error shall be signalled to the MN application and the current MN state
shall be maintained.

NMT_MS

NMT MN State Machine

NMT_MS_EPL_MODE

(NMT_MT2)

Timeout (SoC, SoA)

[NMT_StartUp_U32.Bit13 == 0]

NMT_GS_

INITIALISATION

(NMT_MT3)

auto

NMT_MS_

OPERATIONAL

NMT_MS_

NOT_ACTIVE

(NMT_MT1)

auto

[NodeID ==C_ADR_MN_DEF_NODE_ID]

NMT_MS_

READY_TO_OPERATE

 (NMT_MT5)

auto

NMT_MS_

PRE_OPERATIONAL_1

(NMT_MT4)

auto

(NMT_MT6)

Error Condition

NMT_MS_

BASIC_ETHERNET

Type of Communication

Listen Only
Legacy Ethernet

(IP and others)

POWERLINK

Reduced Cycle

(SoA-ASnd)

POWERLINK Cycle

(SoC-PReq-PRes-

SoA-Asnd)

 no Communication

(NMT_MT7)

Timout (SoC, SoA)

[NMT_StartUp_U32.Bit13 == 1]

NMT_MS_

PRE_OPERATIONAL_2

EPSG DS 301 V1.5.1 -210-

The node shall be not authorised to send any frame in NMT_MS_NOT_ACTIVE.

Depending on NMT_StartUp_U32.Bit13 the transition to NMT_MS_PRE_OPERATIONAL_1
(NMT_MT2) or NMT_MS_BASIC_ETHERNET (NMT_MT7) shall be triggered, if there are no SoA or
SoC frames received inside the time interval defined by index
NMT_BootTime_REC.MNWaitNoAct_U32.

A node that does not support MN mode shall stay in state NMT_MS_NOT_ACTIVE. An error message
E_NMT_BA1_NO_MN_SUPPORT shall be issued to the application.

7.1.3.2.2 NMT_MS_EPL_MODE
NMT_MS_EPL_MODE is a super-state that is not signalled over the network by an individual NMT
state value.

7.1.3.2.2.1 NMT_MS_PRE_OPERATIONAL_1
In the state NMT_MS_PRE_OPERATIONAL_1, the MN shall start executing the reduced
POWERLINK cycle.

Communication in NMT_MS_PRE_OPERATIONAL_1 shall be robust to collisions. Collisions shall be
resolved by CSMA/CD.

After entering NMT_MS_PRE_OPERATIONAL_1, the MN shall transmit a sequence of
C_DLL_PREOP1_START_CYCLES SoA frames, not assigning the asynchrous slot to any node
including the MN. This start sequence allows collisions pending from pre-NMT_MS_EPL_MODE
phase to be resolved.

It shall identify the configured nodes (index NMT_NodeAssignment_AU32[Node ID].Bit1) and may
check their identification. Identification check completion may be delayed if application SW or
configuration data have to be downloaded by the node.

Identified nodes shall be cyclically accessed via StatusRequest.

There is no PDO exchange in NMT_MS_PRE_OPERATIONAL_1.

The transition from NMT_MS_PRE_OPERATIONAL_1 to NMT_MS_PRE_OPERATIONAL_2
(NMT_MT3) may be triggered if all mandatory CNs have been successfully identified.

It’s recommended, that the MN has completed it’s configuration in NMT_MS_PRE_OPERATIONAL_1.

Refer 7.4.1.3 for further information about NMT_MS_PRE_OPERATIONAL_1.

7.1.3.2.2.2 NMT_MS_PRE_OPERATIONAL_2
In the state NMT_MS_PRE_OPERATIONAL_2, the MN shall start executing the isochronous
POWERLINK cycle.

It shall start polling the identified CNs, that are in state NMT_CS_PRE_OPERATIONAL_2 and that are
not marked as AsyncOnly CNs, by Preq frames in order to start PDO transfer, synchronisation and
heartbeat. The transmitted Preq frames may differ to the PDO mapping requirements. The data shall
be declared invalid by not setting the RD flag.

The received Pres frames from the polled CNs shall be ignored.

Identified async-only CNs (index NMT_NodeAssignment_AU32[Node ID].Bit8) shall be cyclically
accessed via StatusRequest.

Configured but unidentified CNs shall be searched for via SoA IdentRequest frames.

The MN state transition from NMT_MS_PRE_OPERATIONAL_2 to
NMT_MS_READY_TO_OPERATE (NMT_MT4) shall be triggered when all mandatory CNs have
signalled to be in state NMT_CS_READY_TO_OPERATE and the MN has completed its
configuration.

Refer 7.4.1.4 for further information about NMT_MS_PRE_OPERATIONAL_2.

7.1.3.2.2.3 NMT_MS_READY_TO_OPERATE
In NMT_MS_READY_TO_OPERATE, the MN shall execute the isochronous POWERLINK cycle.

When entering NMT_MS_READY_TO_OPERATE, the MN shall start transmitting PDO data to the
identified isochronous CNs according to the requirements of the PDO mapping. The transmitted data
shall be declared invalid by resetting the RD flag. The length of the Preq frames shall be equal to the
configured Preq payload size of the respective CN (index NMT_MNPReqPayloadLimitList_AU16[Node
ID]).

EPSG DS 301 V1.5.1 -211-

PDO data received from the CNs shall be ignored.

Identified async-only CNs shall be cyclically accessed via SoA StatusRequest frames.

Configured but unidentified CNs shall be searched via SoA IdentRequest frames.

The MN state transition from NMT_MS_READY_TO_OPERATE to NMT_MS_OPERATIONAL
(NMT_MT5) shall be triggered if all mandatory CNs transmit their Pres frames with correct frame
length and timing.

Refer 7.4.1.5 for further information about NMT_MS_READY_TO_OPERATE.

7.1.3.2.2.4 NMT_MS_OPERATIONAL
NMT_MS_OPERATIONAL is the normal operating state of the POWERLINK MN. The MN shall
execute the isochronous POWERLINK cycle.

The MN shall transmit PDO data to the identified isochronous CNs according to the requirements of
the PDO mapping. The transmitted data may be declared valid by setting the RD flag, if requested by
the application. The length of the Preq frames shall be equal to the configured Preq payload size of
the respective CN.

The MN may transmit NMTStartNode commands to force CNs state transition from
NMT_CS_READY_TO_OPERATE to NMT_CS_OPERATIONAL. The NMTStartNode transmission is
controlled by index NMT_StartUp_U32.Bits1 and NMT_StartUp_U32.Bit3.

Identified Async-only CNs shall be cyclically accessed via SoA StatusRequest frames.

Configured but unidentified CNs shall be searched for via SoA IdentRequest frames.

All mandatory CNs shall be in NMT_CS_OPERATIONAL and free of POWERLINK protocol relevant
errors. If a mandatory CN is lost, if it has a state not equal to NMT_CS_OPERATIONAL or if it has
signalled an error, the MN shall change over to NMT_MS_PRE_OPERATIONAL_1 (NMT_MT6).

The error reaction of the MN is controlled by index NMT_StartUp_U32.Bit4 and
NMT_StartUp_U32.Bit6.

Refer 7.4.1.6 for further information about NMT_MS_OPERATIONAL.

7.1.3.2.3 NMT_MS_BASIC_ETHERNET
In NMT_MS_BASIC_ETHERNET the MN may perform Legacy Ethernet communication according to
IEEE 802.3. There is no POWERLINK specific network traffic control. The CSMA/CD collision
handling shall control the network access. The node is allowed to transmit autonomously.

Any Legacy Ethernet protocol may be applied. Asnd frames may be transmitted by the MN in state
NMT_MS_BASIC_ETHERNET.

To leave NMT_MS_BASIC_ETHERNET, NMT_MS_EPL_MODE has to be enabled by setting
NMT_StartUp_U32.Bit13 to 0b and the device has to be reset by NMTResetCommunication or another
reset command.

Support of NMT_MS_BASIC_ETHERNET is optional. Support shall be indicated by
D_NMT_MNBasicEthernet_BOOL.

EPSG DS 301 V1.5.1 -212-

7.1.3.3 Transitions

(NMT_MT1) Refer Tab. 105

(NMT_MT2) Timeout (SoC, SoA) [NMT_StartUp_U32.Bit13 = 0b] / enable POWERLINK reduced cycle
communication

If NMT_MS_EPL_MODE is enabled by NMT_StartUp_U32.Bit13 = 0b and the node does not
receive any SoA or SoC frame during a definable timeout interval after entering the
NMT_MS_NOT_ACTIVE state, the node shall change over to NMT_MS_PRE_OPERATIONAL_1.

Timeout defined by NMT_BootTime_REC.MNWaitNoAct_U32

(NMT_MT3) Auto [All mandatory CNs identified] / enable isochronous POWERLINK cycle communication,
invalid PDO, dummy Preq allowed

If the node has identified all mandatory CNs, the node shall change to
NMT_MS_PRE_OPERATIONAL_2.

The state transition may be delayed by the application.

(NMT_MT4) Auto [MN configuration completed, all mandatory CNs in NMT_CS_READY_TO_OPERATE] /
invalid PDO, configured Preq, Pres

If the MN has completed its configuration and if all mandatory CNs are in state
NMT_CS_READY_TO_OPERATE, the node shall change to the state
NMT_MS_READY_TO_OPERATE.

The state transition may be delayed by the application.

(NMT_MT5) Auto [The isochronous communication is error free] / enable configured Preq and Pres, start
operation

If all mandatory CNs transmit their Pres frames with correct frame length and timing, the MN shall
change to the state NMT_MS_OPERATIONAL.

The state transition may be delayed by the application

(NMT_MT6) Auto [Mandatory CN lost, mandatory CN not in NMT_CS_OPERATIONAL, error] / enable
POWERLINK reduced cycle communication

If the MN detects errors of a mandatory CN, it shall change over to
NMT_MS_PRE_OPERATIONAL_1

(NMT_MT7)22 Timeout (SoC, SoA) [NMT_StartUp_U32.Bit13 = 1b] / enable Legacy Ethernet communication

If NMT_StartUp_U32.Bit13 is set, the MN shall change over to NMT_MS_BASIC_ETHERNET

 MN specific state transitions

Refer Fig. 72 and Tab. 105 for state transitions defined by the common Initialisation NMT state, which
have to be applied to the MN NMT state machine.

22 optional transition (cf. 7.1.3.2.3)

EPSG DS 301 V1.5.1 -213-

7.1.4 CN NMT State Machine

The CN NMT state machine shall be regarded to be hosted by the common initialisation NMT state
machine (7.1.2). The CN NMT state machine represents a sub-state of the super-states
NMT_GS_POWERED (7.1.2.1.1) and NMT_GS_COMMUNICATING (7.1.2.1.1.2). The transitions
defined by these states shall be valid at the CN NMT state machine.

Fig. 74. State diagram of a CN

7.1.4.1 States

7.1.4.1.1 NMT_CS_NOT_ACTIVE
NMT_CS_NOT_ACTIVE is a non-permanent state which allows a starting node to recognize the
current network state.

The CN shall observe network traffic. The node shall be not authorised to send frames autonomously.
There shall be no Legacy Ethernet frame transmission allowed at NMT_CS_NOT_ACTIVE. The node
shall be able to recognize NMTReset commands sent via Asnd.

The transition from NMT_CS_NOT_ACTIVE to NMT_CS_PRE_OPERATIONAL_1 shall be triggered
by a SoA or SoC frame being received.

NMT_CS

NMT CN State Machine

NMT_CS_EPL_MODE

(NMT_CT2)

SoA,SoC

NMT_CS_
PRE_OPERATIONAL_2

NMT_GS_
INITIALISATION

(NMT_CT4)
SoC

NMT_CS_
OPERATIONAL

NMT_CS_
NOT_ACTIVE

(NMT_CT1)

auto,
[NodeID !=

C_ADR_MN_DEF_NODE_ID]

NMT_CS_

READY_TO_OPERATE

 (NMT_CT7)
NMT

StartNode

NMT_CS_
STOPPED

(NMT_CT8)

NMT
StopNode

NMT_CS_
BASIC_ETHERNET

(NMT_CT12)

SoA,SoC,PReq,PRes

(NMT_CT3)

Timeout

(SoA,SoC,PReq,PRes)

(NMT_CT11)

Error Condition

Type of Communication

Listen Only
Legacy Ethernet
(IP and others)

POWERLINK

Reduced Cycle

(SoA-Asnd)

POWERLINK Cycle

(SoC-PReq-PRes-SoA-

Asnd)

no Communication

NMT_CS_

PRE_OPERATIONAL_1

(NMT_CT10)

NMT
EnterPreoperational2

(NMT_CT9)
NMT

EnterPreoperational2

(NMT_CT6)
auto

(NMT_CT5)

NMT

EnableReadyToOperate

EPSG DS 301 V1.5.1 -214-

The transition from NMT_CS_NOT_ACTIVE to NMT_CS_BASIC_ETHERNET shall be triggered by
timeout for SoC, Preq, Pres and SoA frames.

7.1.4.1.2 NMT_CS_EPL_MODE
NMT_CS_EPL_MODE is a super-state that won’t be signalled over the network by an individual NMT
state value.

7.1.4.1.2.1 NMT_CS_PRE_OPERATIONAL_1
In the state NMT_CS_PRE_OPERATIONAL_1, the CN shall send a frame only if the MN has
authorised it to do so by a SoA AsyncInvite command.

In NMT_CS_PRE_OPERATIONAL_1 the node shall be identified by the MN via IdentRequest (see
7.3.3.2). If required the CN shall download its configuration data from a configuration server. Both
processes may be completely or partially shifted to NMT_CS_PRE_OPERATIONAL_2, if the MN is
not in NMT_MS_PRE_OPERATIONAL_1 resp. leaves NMT_MS_PRE_OPERATIONAL_1 before the
CN has completed its configuration.

Communication in NMT_CS_PRE_OPERATIONAL_1 shall be robust to collisions. Collisions shall be
resolved by CSMA/CD.

The transition from NMT_CS_PRE_OPERATIONAL_1 to the following state shall be triggered by a
SoC frame being received (see Fig. 74).

There is no PDO communication in NMT_CS_PRE_OPERATIONAL_1.

7.1.4.1.2.2 NMT_CS_PRE_OPERATIONAL_2
In the state NMT_CS_PRE_OPERATIONAL_2, the CN shall wait for the configuration to be
completed.

The node is queried by the MN via Preq. The received PDO data may be invalid, they may differ to the
PDO mapping requirements.

The PDO data received from the MN via Preq and from other CNs and the MN via Pres shall be
ignored by the CN.

The transmitted Pres frames may differ to the PDO mapping requirements. The data shall be declared
invalid by not setting the RD flag.

Async-only CNs shall not be queried by the MN via Preq and thus shall not respond via Pres.

Both types of CN shall respond to AsyncInvite commands via SoA. If not invited by the MN, there shall
be no Ethernet frame transmission allowed at the NMT_CS_PRE_OPERATIONAL_2 state.

Precondition for the transition from NMT_CS_PRE_OPERATIONAL_2 to
NMT_CS_READY_TO_OPERATE shall be the reception of an NMTEnableReadyToOperate
command. The transition shall be triggered if the application is ready for operation. The maximum
transition time from reception of NMTEnableReadyToOperate until the CN is in
NMT_CS_READY_TO_OPERATE may be given by D_NMT_CNPreOp2ToReady2Op_U32.

The transition from NMT_CS_PRE_OPERATIONAL_2 to NMT_CS_PRE_OPERATIONAL_1 shall be
triggered by an error recognition (see 4.7.7).

The transition from NMT_CS_PRE_OPERATIONAL_2 to NMT_CS_STOPPED shall be triggered by
reception of NMT state command NMTStopNode (see 7.3.1.2.1).

7.1.4.1.2.3 NMT_CS_READY_TO_OPERATE
With the state NMT_CS_READY_TO_OPERATE, the CN shall signal its readiness to operation to the
MN.

The node may participate in cyclic frame exchange. Cyclic nodes shall respond via Pres when queried
via Preq by the MN.

Async-only CNs shall not be queried by the MN via Preq and thus shall not respond via Pres.

Both types of CN shall respond to AsyncInvite commands via SoA. If not invited by the MN, there shall
be no Ethernet frame transmission allowed at the NMT_CS_READY_TO_OPERATE state.

The RD flag shall be set to 0, regardless if valid process data is available.

The length of the Pres payload shall be less or equal to the configured limit (Object
NMT_CycleTiming_REC.PresActPayloadLimit_U16). The transmitted data shall correspond to the
requirements defined by the PDO mapping (see 6.4.4).

EPSG DS 301 V1.5.1 -215-

The transition from NMT_CS_READY_TO_OPERATE to NMT_CS_OPERATIONAL shall be triggered
by the reception of NMT state command NMTStartNode (see 7.3.1.2.1)

The transition from NMT_CS_READY_TO_OPERATE to NMT_CS_PRE_OPERATIONAL_1 shall be
triggered by an error recognition (see 4.7.7).

The transition from NMT_CS_READY_TO_OPERATE to NMT_CS_STOPPED shall be triggered by
reception of NMT state command NMTStopNode (see 7.3.1.2.1).

7.1.4.1.2.4 NMT_CS_OPERATIONAL
NMT_CS_OPERATIONAL is the normal operating state of a CN.

The CN may participate in cyclic frame exchange. A cyclic CN shall respond via Pres when queried
via Preq by the MN.

An Async-only CN isn’t queried by the MN via Preq and thus does not respond via Pres.

Both types of CN shall respond to AsyncInvite commands via SoA. If not invited by the MN, there is no
Ethernet frame transmission allowed at the NMT_CS_OPERATIONAL state.

The CN may perform surveillance of other nodes using the NMT guarding mechanism (7.3.5).

The PDO data received from the MN via Preq and from other CNs and the MN via Pres shall be
interpreted if selected by the CN application.

The RD flag is controlled by the application. Temporary clearing the RD flag is allowed if PDO data are
not valid. The length of the Pres payload shall be less or equal to the configured limit (Object
NMT_CycleTiming_REC.PresActPayloadLimit_U16). The transmitted data shall correspond to the
requirements defined by the PDO mapping (see 6.4.4).

The transition from NMT_CS_OPERATIONAL to NMT_CS_PRE_OPERATIONAL_2 shall be triggered
by the reception of NMT state command NMTEnterPreOperational2 (see 7.3.1.2.1).

The transition from NMT_CS_OPERATIONAL to NMT_CS_PRE_OPERATIONAL_1 shall be triggered
by an error recognition(see 4.7.7).

The transition from NMT_CS_OPERATIONAL to NMT_CS_STOPPED shall be triggered by reception
of NMT state command NMTStopNode (see 7.3.1.2.1).

7.1.4.1.2.5 NMT_CS_STOPPED
In the NMT_CS_STOPPED state, the node shall be largely passive. NMT_CS_STOPPED shall be
used for controlled shutdown of a selected CN while the system is still running.

The node shall not participate in cyclic frame exchange, but still observes SoA frames.

It shall not be queried by the MN via Preq.

The node shall not respond via Pres when queried by the MN via Preq.

The node shall respond to AsyncInvite commands via SoA. If not invited by the MN, there is no
Ethernet frame transmission allowed at the NMT_CS_STOPPED state.

The transition from NMT_CS_STOPPED to NMT_CS_PRE_OPERATIONAL_2 shall be triggered by
the reception of NMT state command NMTEnterPreOperational2 (see 7.3.1.2.1)

The transition from NMT_CS_STOPPED to NMT_CS_PRE_OPERATIONAL_1 shall be triggered by
an error recognition (see 4.7.7).

7.1.4.1.3 NMT_CS_BASIC_ETHERNET
In the NMT_CS_BASIC_ETHERNET state the node may perform Legacy Ethernet communication
according to IEEE 802.3. There is no POWERLINK specific network traffic control. The CSMA/CD
collision handling shall control the network access. The node is allowed to transmit autonomiously.

Any Legacy Ethernet protocol may be applied.

Asnd frames may be transmitted by a CN in state NMT_CS_BASIC_ETHERNET.

To avoid disturbance of POWERLINK network traffic when the node is in
NMT_CS_BASIC_ETHERNET , the node shall recognize SoC, Preq, Pres and SoA frames. On the
reception of such a frame, the CN shall immediately stall any autonomous frame transmission and
change over to. NMT_CS_PRE_OPERATIONAL_1.

EPSG DS 301 V1.5.1 -216-

7.1.4.2 Transitions

(NMT_CT1) Refer Tab. 105

(NMT_CT2) SoA, SoC [] / enable POWERLINK reduced cycle communication

If a SoA or SoC frame is received in NMT_CS_NOT_ACTIVE, the node shall change over to the
state NMT_CS_PRE_OPERATIONAL_1.

(NMT_CT3) Timeout (SoC, Preq, Pres and SoA) [] / enable Legacy Ethernet communication

If the node does not receive any SoC, Preq, Pres or SoA frame during a definable timeout interval
after entering the NMT_CS_NOT_ACTIVE state, the node shall change over to
NMT_CS_BASIC_ETHERNET.

The timeout interval shall be defined by Object NMT_CNBasicEthernetTimeout_U32.

(NMT_CT4) SoC [] / enable POWERLINK cycle communication, not valid, dummy Pres allowed

If the node receives a SoC frame in NMT_CS_PRE_OPERATIONAL_1, the node shall change
over to NMT_CS_PRE_OPERATIONAL_2.

(NMT_CT5) NMTEnableReadyToOperate [] / enable transition to NMT_CS_READY_TO_OPERATE

The CN is free to change over to NMT_CS_READY_TO_OPERATE after configuration and
synchronisation is completed

(NMT_CT6) Auto [application is ready and NMTEnableReadyToOperate was received] / enable configured
Pres, not valid

The CN shall automatically change over to NMT_CS_READY_TO_OPERATE

(NMT_CT7) NMTStartNode [configuration valid] / enable configured Pres, start operation

If the CN receives the NMTStartNode command in NMT_CS_READY_TO_OPERATE, it shall
change over to NMT_CS_OPERATIONAL

(NMT_CT8) NMTStopNode [] / freeze cyclic communication

If the node receives an NMTStopNode command in NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE or NMT_CS_OPERATIONAL, it shall change over to

NMT_CS_STOPPED.

(NMT_CT9) NMTEnterPreoperational2 [] / reset RD flag in Pres, dummy Pres only

If the node receives the NMTEnterPreoperational2 command in NMT_CS_OPERATIONAL, it
shall change over to NMT_CS_PRE_OPERATIONAL_2

(NMT_CT10) NMTEnterPreoperational2 [] / re-enable POWERLINK cycle communication, dummy Pres only

If the node receives the NMTEnterPreoperational2 command in NMT_CS_STOPPED, it shall
change over to NMT_CS_PRE_OPERATIONAL_2.

(NMT_CT11) Error condition [] / enable POWERLINK reduced cycle communication

If the node recognizes an error condition (refer 4.7.7) in NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE, NMT_CS_OPERATIONAL or NMT_CS_STOPPED, the node
shall change over to NMT_CS_PRE_OPERATIONAL_1

(NMT_CT12) SoC, Preq, Pres or SoA [] / stall autonomous frame transmission

If a SoC, Preq, Pres or SoA frame is received in NMT_CS_BASIC_ETHERNET, the node shall
change over to NMT_CS_PRE_OPERATIONAL_1.

It’s extremely important that the node immediately stops any autonomous frame
transmission, when it recognizes a SoC, Preq, Pres or SoA frame.

 CN specific state transitions

Refer Fig. 72 and Tab. 105 for state transitions defined by the common Initialisation NMT state, that
have to applied to the CN NMT state machine.

7.1.4.3 States and Communication Object Relation

Tab. 108 shows the relation between communication states and communication objects. Services on
the listed communication objects may only be executed if the devices involved in the communication
are in the appropriate communication states.

EPSG DS 301 V1.5.1 -217-

 N

M
T

_
G

S
_
IN

IT
IA

L
IS

A
T

IO
N

N
M

T
_
C

S
_
N

O
T

_
A

C
T

IV
E

N
M

T
_
C

S
_
P

R
E

_
O

P
E

R
A

T
IO

N
A

L
_
1

N
M

T
_
C

S
_
P

R
E

_
O

P
E

R
A

T
IO

N
A

L
_
2

N
M

T
_
C

S
_
R

E
A

D
Y

_
T

O
_
O

P
E

R
A

T
E

N
M

T
_
C

S
_
O

P
E

R
A

T
IO

N
A

L

N
M

T
_
C

S
_
S

T
O

P
P

E
D

N
M

T
_
C

S
_
B

A
S

IC
_
E

T
H

E
R

N
E

T

POWERLINK controlled network traffic

 SoC - R/S R/S R R R - R/S

 Preq - - - R R R - R/S

 PDO reception - - - - (x)1 x - -

 Pres receive - - - - R R - R/S

 Pres transmit - - - (T) T T - -

 PDO transmission - - - - (x)2 x - -

 SoA - R/S R R R R R R/S

 IdentRequest - - x x x x x -

 StatusRequest - - x x x x x -

 NMTRequestInvite - - x x x x x -

 UnspecifiedInvite - - x x x x x -

 Reception of asynchronous frames - R R R R R R R

 SDO reception - - x x x x x -

 NMT Command - (x)3 (x)4 (x)4 (x)4 (x)4 (x)4 (x)3

 other protocols - - x x x x x -

 Transmission, assigned by SoA - - T T T T T -

 SDO transmission - - x x x x x -

 NMTRequest transmission - - x x x x x -

 IdentResponse - - x x x x x -

 StatusResponse - - x x x x x -

 other protocols - - x x x x x -

Network traffic not controlled by POWERLINK

 Legacy Ethernet reception - - - - - - - R

 UDP/IP reception - - - - - - - (x)5

 SDO reception (UDP/IP) - - - - - - - (x)5

 POWERLINK-Asnd reception - - - - - - - (x)5

 SDO reception (POWERLINK-Asnd) - - - - - - - (x)5

 Legacy Ethernet transmission - - - - - - - T

 UDP/IP, autonomiously sent - - - - - - - (x)5

 SDO transmission (UDP/IP) - - - - - - - (x)5

 POWERLINK-Asnd, autonomiously sent - - - - - - - (x)5

 SDO transmission (POWERLINK-Asnd) - - - - - - - (x)5

R frame accepted
R/S frame accepted, triggers state transition
T frame transmitted
(T) dummy Pres only
x frame data interpreted resp. transmitted
(x)1 frame data may be interpreted
(x)2 data invalidated by resetting the RD flag
(x)3 only selected NMT commands accepted, shall cause state transition, refer 7.3.1.2.1
(x)4 may cause state transition, refer 7.3.1.2.1
(x)5 depends on protocol support
- no frame handling

 States and communication objects

7.1.4.4 Relationship to other state machines

The CN NMT state machine is commanded by the MN NMT state machine via NMT commands.

The NMT state machines are operating in close relationship to the cycle state machines (refer 4.2.4.5
resp. 4.2.4.6).

EPSG DS 301 V1.5.1 -218-

7.2 NMT Object Dictionary Entries
NMT Object Dictionary hosts entries defining node internal parameters that control the isochronous
POWERLINK cycle. These internal parameters shall not be changed when the isochronous
POWERLINK cycle is in operation.

Modifications of the respective OD entries shall be restricted to the OD data handling but shall not
immediately influence the internal parameter set controlling the current POWERLINK cycle. To make
POWERLINK cycle relevant OD entries valid, the device shall be set to
NMT_GS_RESET_CONFIGURATION by NMTResetConfiguration, a more powerful NMT reset
command or a HW reset.

OD entries that require a such type handling are indicated by the access type supplement “valid on
reset”.

7.2.1 NMT General Objects

Most of the objects decribed by this paragraph apply to all nodes.

Some sub-indices of objects otherwise mandatory to the MN may not be implemented on the MN.
Refer to the Category entry to identify unsupported items on the MN (Category = No).

7.2.1.1 Identification

7.2.1.1.1 Object 1000h: NMT_DeviceType_U32
Contains information about the device type. The object describes the type of device and its
functionality.

The value shall be setup by the device firmware during system initialisation.

Index 1000h Object Type VAR

Name NMT_DeviceType_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

• Value Interpretation

Byte: MSB LSB

 Additional Information Device Profile Number

 NMT_DeviceType_U32 value interpretation

NMT_DeviceType_U32 is composed of a 16-bit field which describes the device profile that is
used and a second 16-bit field which gives additional information about optional functionality of
the device.

The Additional Information parameter is device profile specific. Its specification does not fall
within the scope of this document, it is defined in the appropriate device profile. The value 0000h
indicates a device that does not follow a standardised device profile.

For multiple device modules the Additional Information parameter contains FFFFh and the
device profile number referenced by object 1000h is the device profile of the first device in the
Object Dictionary. All other devices of a multiple device module identify their profiles at objects
67FFh + x * 800h with x = internal number of the device (0 – 7). These entries describe the
device type of the preceding device.

7.2.1.1.2 Object 1008h: NMT_ManufactDevName_VS
Contains the manufacturer device name.

If implemented, it shall be setup by the device firmware during system initialisation.

Remark: In the device description file (see separate paper) the sub element “productName” of element
“DeviceIdentity” must be equal to NMT_ManufactDevName_VS.

EPSG DS 301 V1.5.1 -219-

Index 1008h Object Type VAR

Name NMT_ManufactDevName_VS

Data Type VISIBLE_STRING Category O

Value Range - Access const

Default Value - PDO Mapping No

7.2.1.1.3 Object 1009h: NMT_ManufactHwVers_VS
Contains the manufacturer hardware version description.

Remark: In the device description file (see separate paper) the sub element “version” (with attribute
“versionType” set to “HW”) of element “DeviceIdentity” must be equal to NMT_ManufactHwVers_VS.

Index 1009h Object Type VAR

Name NMT_ManufactHwVers_VS

Data Type VISIBLE_STRING Category O

Value Range - Access const

Default Value - PDO Mapping No

7.2.1.1.4 Object 100Ah: NMT_ManufactSwVers_VS
Contains the manufacturer software version description.

Remark: In the device description file (see separate paper) the sub element “version” (with attribute
“versionType” set to “FW”) of element “DeviceIdentity” must be equal to NMT_ManufactSwVers_VS.

Index 100Ah Object Type VAR

Name NMT_ManufactSwVers_VS

Data Type VISIBLE_STRING Category O

Value Range - Access const

Default Value - PDO Mapping No

7.2.1.1.5 Object 1018h: NMT_IdentityObject_REC
The object at index 1018h contains general information about the device.

The values shall be setup by the device firmware during system initialisation.

Index 1018h Object Type RECORD

Name NMT_IdentityObject_REC

Data Type IDENTITY Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 4 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: VendorId_U32

Sub-Index 01h

Name VendorId_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

The sub-index provides the manufacturer-specific vendor ID.

The POWERLINK vendor ID is equal to the CANopen vendor ID.

Note: A CANopen vendor ID can be obtained from CAN in Automation (CiA).

EPSG DS 301 V1.5.1 -220-

• Sub-Index 02h: ProductCode_U32

Sub-Index 02h

Name ProductCode_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

The manufacturer-specific Product code identifies a specific device version. The value shall be
equal to the device description entry D_NMT_ProductCode_U32.

• Sub-Index 03h: RevisionNo_U32

Sub-Index 03h

Name RevisionNo_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

The manufacturer-specific revision number consists of a major revision number and a minor
revision number. The major revision number identifies a specific device behaviour. If the device
functionality is expanded, the major revision has to be incremented. The minor revision number
identifies different versions with the same device behaviour. The value shall be equal to the
device description entry D_NMT_RevisionNo_U32.

31 16 15 0

major revision number minor revision number

MSB LSB

 Structure of Revision number

• Sub-Index 04h: SerialNo_U32

Sub-Index 04h

Name SerialNo_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

The sub-index provides the Serial Number of the device.

7.2.1.1.6 Object 1F82h: NMT_FeatureFlags_U32
Feature Flags indicate communication profile specific properties of the device given by it’s design.

The object shall be setup by the device firmware during system initialisation.

Index 1F82h Object Type VAR

Name NMT_FeatureFlags_U32

Data Type UNSIGNED32 Category M

Value Range - Access const

Default Value - PDO Mapping No

EPSG DS 301 V1.5.1 -221-

• Value Interpretation

Octet Bit Name TRUE FALSE

0 0 Isochronous device may be
isochronously accessed via
PReq, it may be operated
as isochronous CN
(see 4.2.2.2.1)

device does not support
isochronous access via
PReq, it may be exclusively
used as async-only CN
(see 4.2.2.2.2)

D_NMT_Isochronous_BOOL

 1 SDO by UDP/IP device supports device does not support

 SDO communication via UDP/IP frames (see 6.3.3.1)
D_SDO_SupportUdpIp_BOOL

 2 SDO by Asnd device supports device does not support

 SDO communication via POWERLINK ASnd frames (see
6.3.3.1)
D_SDO_SupportASnd_BOOL

 3 SDO by PDO device supports device does not support

 SDO communication via container embedded in PDO
communication (see 6.3.3.1)

D_SDO_SupportPDO_BOOL

 4 NMT Info Services device supports device does not support

 NMT Info Services (see 7.3.4)
Note: Device description entries are defined for each service.

 5 Extended NMT State
Commands

device supports device does not support

 reception of Extended NMT State Commands (see
7.3.1.2.2) D_NMT_ExtNmtCmds_BOOL

 6 Dynamic PDO Mapping device supports device does not support

 dynamic PDO mapping (see 6.4.2)
D_PDO_DynamicMapping_BOOL

 7 NMT Services by UDP/IP device supports device does not support

 NMT Services by UDP/IP (see 7.3.8)

D_NMT_ServiceUdpIp_BOOL

1 8 Configuration Manager device supports device does not support

 Configuration manager functions (see 6.7)
D_CFM_ConfigManager_BOOL

 9 Multiplexed Access CN device supports CN device does not support

 Multiplexed isochronous access (see 4.2.4.1.1.1)
D_DLL_CNFeatureMultiplex_BOOL

 10 Node ID setup by SW device supports device does not support

 Node ID setup by SW (see 7.2.1.3.1)
D_NMT_NodeIDBySW_BOOL

 11 MN Basic Ethernet Mode MN device supports MN device does not support

Basic Ethernet Mode (see 7.1.3.2.3)
D_NMT_MNBasicEthernet_BOOL

 12 Routing Type 1 Support device supports device does not support

Routing Type 1 functions (see 9.1)
D_RT1_RT1Support_BOOL

 13 Routing Type 2 Support device supports device does not support

Routing Type 2 functions (see 9.2)
D_RT2_RT2Support_BOOL

 14 SDO Read/Write All by
Index

device supports device does not support

SDO commands Read and Write All by Index (see
6.3.2.4.2)
D_SDO_CmdReadAllByIndex_BOOL,
D_SDO_CmdWriteAllByIndex_BOOL

 15 SDO Read/Write Multiple
Parameter by Index

device supports device does not support

SDO commands Read and Write Multiple Parameter by
Index (see 6.3.2.4.2)
D_SDO_CmdReadMultParam_BOOL,

EPSG DS 301 V1.5.1 -222-

Octet Bit Name TRUE FALSE

D_SDO_CmdWriteMultParam_BOOL

2 16 reserved Used by EPSG DS302-B [2]

17 reserved Used by EPSG DS302-A [1]

18 reserved Used by EPSG DS302-C [3]

19 reserved Used by EPSG DS302-D [4]

20 reserved Used by EPSG DS302-E [5]

21 reserved Used by EPSG DS302-F [6]

22 ..
23

reserved -- --

3 24 ..
31

reserved -- --

 NMT_FeatureFlags_U32 interpretation

7.2.1.1.7 Object 1F83h: NMT_EPLVersion_U8
The index holds the POWERLINK communication profile version that is implemented by device.

The value shall be setup by the device firmware during system initialisation.

Index 1F83h Object Type VAR

Name NMT_EPLVersion_U8

Data Type UNSIGNED8 Category M

Value Range - Access const

Default Value - PDO Mapping No

• Value Interpretation

High Nibble Low Nibble

POWERLINK Main
Version

POWERLINK Sub
Version

 NMT_EPLVersion_U8 encoding

7.2.1.2 Parameter Storage

7.2.1.2.1 Object 1010h: NMT_StoreParam_REC
This object supports the saving of parameters in non volatile memory. By read access the device
provides information about its saving capabilities.

Index 1010h Object Type RECORD

Name NMT_StoreParam_REC

Data Type NMT_ParameterStorage_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 01h .. 7Fh Access const

Default Value - PDO Mapping No

NumberOfEntries is implemetation specific.

EPSG DS 301 V1.5.1 -223-

• Sub-Index 01h: AllParam_U32

Sub-Index 01h

Name AllParam_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

Refers to all parameters that can be stored on the device.

• Sub-Index 02h: CommunicationParam_U32

Sub-Index 02h

Name CommunicationParam_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

Refers to communication related parameters (Index 1000h .. 1FFFh: manufacturer specific
communication parameters).

• Sub-Index 03h: ApplicationParam_U32

Sub-Index 03h

Name ApplicationParam_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

Refers to application related parameters (Index 6000h .. 9FFFh: manufacturer specific
application parameters).

• Sub-Index 04h .. 7Fh: ManufacturerParam_XXh_U32

Sub-Index 04h .. 7Fh

Name ManufacturerParam_XXh_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw

Default Value - PDO Mapping No

ManufacturerParam_XXh_U32 provide means to store manufacturer specific lists of data.

To allow access by name “_XXh” is replaced with a name index. For example, the name index
is “_04h” if the sub-index is 04h. The name index is incremented up to “_7Fh” corresponding to
sub-index 7Fh.

• Value Interpretation of Sub-Index 01h .. 7Fh

In order to avoid storage of parameters by mistake, storage is only executed when a specific
signature is written to the appropriate sub-index. The signature is „save“.

Signature MSB LSB

ISO 8859 (“ASCII”) e v a s

hex 65h 76h 61h 73h

 NMT_StoreParam_REC storage write access signature

On reception of the correct signature in the appropriate sub-index the device stores the
parameter and then confirms the SDO transmission. If the storing fails, the device responds with
an Abort SDO Transfer.

If a wrong signature is written, the device refuses to store it and responds with Abort SDO
Transfer.

EPSG DS 301 V1.5.1 -224-

On read access to the appropriate sub-index the device provides information about its storage
functionality with the following format:

 UNSIGNED32

 MSB LSB

bits 31 .. 2 1 0

 reserved (=0) 0/1 0/1

 NMT_StoreParam_REC storage read access structure

bit value meaning

31 .. 2 0 Reserved (=0b)

1 0 Device does not save parameters autonomously

1 Device saves parameters autonomously

0 0 Device does not save parameters on command

1 Device saves parameters on command

 NMT_StoreParam_REC structure of read access

Autonomous saving means that a device stores the storable parameters in a non-volatile memory
without user request.

7.2.1.2.2 Object 1011h: NMT_RestoreDefParam_REC
With this object the default values of parameters according to the communication or device profile are
restored. By read access the device provides information about its capabilities to restore these values.
Several parameter groups are distinguished:

Index 1011h Object Type RECORD

Name NMT_RestoreDefParam_REC

Data Type NMT_ParameterStorage_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 01h .. 7Fh Access const

Default Value - PDO Mapping No

NumberOfEntries is implemetation specific.

• Sub-Index 01h: AllParam_U32

Sub-Index 01h

Name AllParam_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rw, cf. Validation
information

Default Value - PDO Mapping No

Refers to all parameters that can be stored on the device.

EPSG DS 301 V1.5.1 -225-

• Sub-Index 02h: CommunicationParam_U32

Sub-Index 02h

Name CommunicationParam_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw, cf. Validation
information

Default Value - PDO Mapping No

Restore communication default parameters, refers to communication related parameters (Index
1000h .. 1FFFh: manufacturer specific communication parameters).

• Sub-Index 03h: ApplicationParam_U32

Sub-Index 03h

Name ApplicationParam_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw, cf. Validation
information

Default Value - PDO Mapping No

Restore application default parameters, refers to application related parameters (Index 6000h –
9FFFh manufacturer specific application parameters).

• Sub-Index 04h .. 7Fh: ManufacturerParam_XXh_U32

Sub-Index 04h .. 7Fh

Name ManufacturerParam_XXh_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rw, cf. Validation
information

Default Value - PDO Mapping No

Restore manufacturer defined default parameters. Manufacturers may restore their individual
choice of parameters.

To allow access by name “_XXh” is replaced with a name index. For example, the name index
is “_04h” if the sub-index is 04h. The name index is incremented up to “_7Fh” corresponding to
sub-index 7Fh.

• Sub-Index 01h – 7Fh Value Interpretation

In order to avoid the restoring of default parameters by mistake, restoring is only executed when
a specific signature is written to the appropriate sub-index. The signature is „load“.

Signature MSB LSB

ISO 8859 (“ASCII”) d a o l

hex 64h 61h 6Fh 6Ch

 NMT_RestoreDefParam_REC restoring write access signature

On reception of the correct signature in the appropriate sub-index the device restores the
default parameters and then confirms the SDO transmission. If the restoring failed, the device
responds with an Abort SDO Transfer. If a wrong signature is written, the device refuses to
restore the defaults and responds with an Abort SDO Transfer.

On read access to the appropriate sub-index the device provides information about its default
parameter restoring capability with the following format:

EPSG DS 301 V1.5.1 -226-

 UNSIGNED32

 MSB LSB

bits 31 .. 1 0

 reserved (=0) 0/1

 NMT_RestoreDefParam_REC restoring default values read access structure

bit number value meaning

31 .. 1 0 reserved (=0)

0 0 Device does not restore default parameters

1 Device restores parameters

 NMT_RestoreDefParam_REC structure of restore read access

• Validation Information

Following a restore-default-parameter SDO command the objects initially keep their current
values and are set to their default values after the device is reset (NMTResetNode for sub-index
01h, 03h .. 7Fh, NMTResetCommunicationsufficient for sub-index 2h) or power cycled.

Fig. 75. NMT_RestoreDefParam_REC restore procedure

7.2.1.3 Communication Interface Description

7.2.1.3.1 Object 1F93h: NMT_EPLNodeID_REC
The object stores the devices’s POWERLINK Node ID.

Index 1F93h Object Type RECORD

Name NMT_EPLNodeID_REC

Data Type NMT_EPLNodeID_TYPE Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2,3 Access const

Default Value depends on presence of Sub-Index 03h PDO Mapping No

• Sub-Index 01h: NodeID_U8

Sub-Index 01h

Name NodeID_U8

Data Type UNSIGNED8 Category M

Value Range 1 .. 240, 253, 254 Access ro

Default Value - PDO Mapping No

The sub-index holds the device’s actual Node ID. NodeID_U8 may be provided by hardware
settings (dip switch etc.) or set up by software.

restore default

reset / power cycle

default values valid

EPSG DS 301 V1.5.1 -227-

• Sub-Index 02h: NodeIDByHW_BOOL

Sub-Index 02h

Name NodeIDByHW_BOOL

Data Type BOOLEAN Category M

Value Range BOOLEAN Access ro

Default Value - PDO Mapping No

The sub-index displays the Node ID setup mode of the device. It shall be setup during system
initialisation.

• On devices, that setup the POWERLINK Node ID exclusively by HW, the object sub-
index be set to TRUE.

• On devices, that setup the POWERLINK Node ID exclusively by SW, the object sub-
index be set to FALSE.

• On devices, that enable SW POWERLINK Node ID setup by a special HW setup, the
sub-index shall be set to FALSE, if POWERLINK Node ID setup by SW is enabled.

If SW POWERLINK Node ID setup is enabled by a Node ID HW switch, it’s
recommended to use Node ID setup = 0.

The ability to define the POWERLINK Node ID by SW shall be indicated in the object dictionary
entry NMT_FeatureFlags_U32 Bit 10 and in the device description by
D_NMT_NodeIDBySW_BOOL. HW setup ability is indicated in the device description by
D_NMT_NodeIDByHW_BOOL .

• Sub-Index 03h: SWNodeID_U8

Sub-Index 03h

Name SWNodeID_U8

Data Type UNSIGNED8 Category Cond

Value Range 1 .. 240, 253, 254 Access cond,
valid on reset

Default Value - PDO Mapping No

The sub-index may be used to setup the Node ID by SW.

If the device supports Node ID setup by SW (NMT_FeatureFlags_U32 Bit 10 is set and
D_NMT_NodeIDBySW_BOOL is true), the sub-index shall be mandatory. Access shall be rws.
Activation of the setting shall be indicated by sub_index 02h.

If the device does not support Node ID setup by SW, the sub-index shall be optional. If
implemented, access shall be ro.

7.2.1.3.2 Object 1030h .. 1039h : NMT_InterfaceGroup_Xh_REC
The following objects are used to configure and retrieve parameters of the network interfaces (physical
or virtual) via SDO. Each interface has one entry. The InterfaceGroup_REC object is a subset of the
Interface Group RFC1213.

POWERLINK interfaces shall be described by the low order objects (e.g. 1030h, 1031h, …).

Index 1030h .. 1039h Object Type RECORD

Name NMT_InterfaceGroup_Xh_REC

Data Type NMT_InterfaceGroup_TYPE Category 1030h: M
1031h .. 1039h: O

To allow access by name “_Xh” is replaced with a name index. For example, the name index is
“_0h” if the object index is 1030h. The name index is incremented up to “_9h” corresponding to
object index 1039h.

EPSG DS 301 V1.5.1 -228-

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 9 Access const

Default Value 9 PDO Mapping No

• Sub-Index 01h: InterfaceIndex_U16

Sub-Index 01h

Name InterfaceIndex_U16

Data Type UNSIGNED16 Category M

Value Range 1..10 Access ro

Default Value - PDO Mapping No

Interface index of the physical interface. This number is the index number subtracted by 102Fh.
The POWERLINK node that adds an interface generates the respective value.

The interface identified by a particular value of this index is the same interface as identified by
the same value of NWL_IpAddrTable_Xh_REC.IfIndex_U16.

• Sub-Index 02h: InterfaceDescription_VSTR

Sub-Index 02h

Name InterfaceDescription_VSTR

Data Type VISIBLE_STRING Category M

Value Range - Access const

Default Value - PDO Mapping No

A textual string containing information about the interface. This string should include the name
of the manufacturer, the product name and the version of the hardware interface.

The value shall be setup by the device firmware during system initialisation.

• Sub-Index 03h: InterfaceType_U8

Sub-Index 03h

Name InterfaceType_U8

Data Type UNSIGNED8 Category M

Value Range 1 – other

6 – ethernet-csmacd
7 – iso88023-csmacd
see RFC1213 Interface Group object
if Type for further numbers

Access const

Default Value 6 – ethernet-csmacd PDO Mapping No

The type of interface, distinguished according to the physical/link protocol(s) immediately
‘below’ the network layer in the protocol stack.

The value shall be setup by the device firmware during system initialisation.

• Sub-Index 04h: InterfaceMtu_U16

Sub-Index 04h

Name InterfaceMtu_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access const

Default Value - PDO Mapping No

The size of the largest datagram which can be sent/received on the interface, specified in
octets. This size also includes the header of the data link layer.

Example: for Ethernet this is the size of the largest frame including MAC addresses, EtherType
and checksum at the end of the frame.

EPSG DS 301 V1.5.1 -229-

The value shall be setup by the device firmware during system initialisation.

• Sub-Index 05h: InterfacePhysAddress_OSTR

Sub-Index 05h

Name InterfacePhysAddress_OSTR

Data Type OCTET_STRING Category M

Value Range - Access const

Default Value - PDO Mapping No

The interface’s address at the protocol layer immediately ‘below’ the network layer in the
protocol stack, e.g. the MAC address of an Ethernet interface. For interfaces which do not have
such an address (e.g. a serial line), this object should contain an octet string of zero length.

The value shall be setup by the device firmware during system initialisation. It shall be read from
the hardware.

• Sub-Index 06h: InterfaceName_VSTR

Sub-Index 06h

Name InterfaceName_VSTR

Data Type VISIBLE_STRING Category M

Value Range - Access ro

Default Value - PDO Mapping No

A user reference name for the interface. This name shall be the name used by the device driver
to access the interface (e.g. for Linux “eth0”).

• Sub-Index 07h: InterfaceOperStatus_U8

Sub-Index 07h

Name InterfaceOperStatus_U8

Data Type UNSIGNED8 Category M

Value Range 0 – Down
1 – Up

Access ro

Default Value - PDO Mapping No

The current operational state of the interface.

• Sub-Index 08h: InterfaceAdminState_U8

Sub-Index 08h

Name InterfaceAdminState_U8

Data Type UNSIGNED8 Category M

Value Range 0 – Down
1 – Up

Access rws

Default Value Up PDO Mapping No

The current administration state (Down/Up) of the interface.

The value shall not be set to “Down” if this is the only interface that is “Up”.

• Sub-Index 09h: Valid_BOOL

Sub-Index 09h

Name Valid_BOOL

Data Type BOOLEAN Category M

Value Range BOOLEAN Access rws

Default Value - PDO Mapping No

Specifies whether or not the data of this object is valid. If the value is TRUE the data of this
object is valid. If the value is FALSE the data of this object is invalid.

EPSG DS 301 V1.5.1 -230-

• Sub-Index 0Ah:

Used by EPSG DS302-E [5]

7.2.1.3.3 Object 1F9Ah: NMT_HostName_VSTR
Provides the node’s DNS hostname.

The Object shall be supported only if IP is supported by the device. (refer 5.1)

Index 1F9Ah Object Type VAR

Name NMT_HostName_VSTR

Data Type VISIBLE_STRING32 Category Cond

Value Range see 5.1.4 Access rws

Default Value - PDO Mapping No

EPSG DS 301 V1.5.1 -231-

7.2.1.4 Node List

7.2.1.4.1 Object 1F81h: NMT_NodeAssignment_AU32
This object assigns nodes to the NMT Master (MN).

On the CN the object is conditional. It shall be supplied if one of the following the ARRAY type objects
are implemented by the CN: NMT_MultiplCycleAssign_AU8, NMT_ConsumerHeartbeatTime_AU32,
or NMT_PresPayloadLimitList_AU16.

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.

Available Node IDs may be restricted by the device description entries D_NMT_MaxCNNumber_U8
and D_NMT_MaxCNNodeID_U8 (cf 4.5). Sub-Indices corresponding to invalid Node IDs shall be set
to 0.

The sub-index equal to the MN’s Node ID C_ADR_MN_DEF_NODE_ID shall represent the MN.

The object should be set by the system configuration. It should be equal on all nodes providing this
object.

On the MN, the object controls the identification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1, the identification process shall be restarted.

Index 1F81h Object Type ARRAY

Name NMT_NodeAssignment_AU32

Data Type UNSIGNED32 Category MN: M
CN: Cond

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h .. FEh: NodeAssignment

Sub-Index 01h .. FEh

Name NodeAssignment

-- -- Category M

Value Range Bit field, see below Access rws, valid on reset

Default Value 0 PDO Mapping No

EPSG DS 301 V1.5.1 -232-

• NodeAssignment Value Interpretation

Octet Bit23 Value Description Property Evaluate

0 0 0b Node with this ID does not exist, Bits 1 to 30
above are not used.

MN, CN MN, CN

1b Node with this ID exists.

1 0b Node with this ID is not a CN, Bits 2 .. 7, 9, 13 .. 30
are not used.

MN, CN MN, CN

1b Node with this ID is a CN. After configuration (with
Configuration Manager) the Node will be set to
state NMT_CS_OPERATIONAL.

2 0b On detection of a booting CN inform the
application but do NOT automatically configure
and start the node.

CN MN

1b On detection of a booting CN inform the
application and continue the process “START_CN”
(see 7.4.2.2.4)

3 0b Optional CN. CN MN, CN

1b Mandatory CN.

4 0b The CN node may be reset by the NMTSwReset,
NMTResetNode, NMTResetCommunication or
NMTResetConfiguration command independent of
its state. Hence no checking of its state needs to
be performed prior to NMT Reset Communication.

CN MN

1b MN must not send any of the reset commands
listed above to this node if it notices that the CN is
in NMT_CS_OPERATIONAL state.

5 0b Application software version verification for this
node is not required.

CN MN

1b Application software version verification for this
node is required.

6 0b Automatic application software update (download)
is not allowed.

CN MN

1b Automatic application software update (download)
is allowed.

7 --- Reserved (0b). --- ---

1 8 0b Isochronously accessed node MN, CN MN, CN

1b AsyncOnly node

9 0b continuously accessed CN CN MN, CN

1b multiplexed CN

10 0b device is not a Router Type 1 MN, CN MN, CN

1b device is a Router Type 1

11 0b device is not a Router Type 2 MN, CN MN, CN

1b device is a Router Type 2

12 0b MN does not transmit Pres MN MN, CN

1b MN transmits Pres

13 --- Reserved (0b), used by EPSG DS302-B [2] --- ---

14 --- Reserved (0b), used by EPSG DS302-C [3] --- ---

15 --- Reserved (0b), used by EPSG DS302-E [5] --- ---

2 16 .. 23 --- Reserved (00h). --- ---

3 24 .. 30 --- Reserved (000 0000b). --- ---

23 Bit 0 and further bits may be used to control allocation of memory for depending OD entries

EPSG DS 301 V1.5.1 -233-

Octet Bit23 Value Description Property Evaluate

31 0b Bit 0 .. 30 not valid MN, CN MN, CN

1b Bit 0 .. 30 valid

 NMT_NodeAssignment_AU32 interpretation

Bits that control a feature that is not supported by the implementation are ro.

Bit 31 may be used to control memory allocation for Node list array sub-indices located on the
MN and the CN.

7.2.1.5 Timing

The indices described by this paragraph control the timing behavior of the POWERLINK network
traffic. They are common for MN and CN as well. Additional values, that are provided by the MN
implementation only, are listed in 7.2.2.3.

7.2.1.5.1 Object 1006h: NMT_CycleLen_U32
This object defines the communication cycle time interval in µs. This period defines the SYNC interval.

The object should be set by the system configuration.

Index 1006h Object Type VAR

Name NMT_CycleLen_U32

Data Type UNSIGNED32 Category M

Value Range refer below Access rws, valid on reset

Default Value - PDO Mapping No

Communication cycle period setup values shall be limited by the device description entries
D_NMT_CycleTimeMin_U32 and D_NMT_CycleTimeMax_U32. Both limits shall be multiples of
D_NMT_CycleTimeGranularity_U32. Between the limits, values may be taken from the
continuum (D_NMT_CycleTimeGranularity_U32 = 1) or stepwise setup may be applied
(D_NMT_CycleTimeGranularity_U32 > 1).

To avoid incompatible step sizes that lead to a huge cycle time,
D_NMT_CycleTimeGranularity_U32 should be a multiple of the two base granularities 100 µs or
125 µs.

7.2.1.5.2 Object 1F98h: NMT_CycleTiming_REC
NMT_CycleTiming_REC provides node specific timing parameters, that influence the POWERLINK
cycle timing.

Index 1F98h Object Type RECORD

Name NMT_CycleTiming_REC

Data Type NMT_CycleTiming_TYPE Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range MN: 9; CN: 8 .. 9 Access const

Default Value MN: 9, CN: - PDO Mapping No

EPSG DS 301 V1.5.1 -234-

• Sub-Index 01h: IsochrTxMaxPayload_U16

Sub-
Index

01h

Name IsochrTxMaxPayload_U16

Data
Type

UNSIGNED16
Category

M

Value
Range

36 .. C_DLL_ISOCHR_MAX_PAYL
Access const

Default
Value

-
PDO
Mapping

No

Provides the device specific upper limit for payload data size in octets of isochronous messages
to be transmitted by the device.

On all nodes, the sub-index limits the size of the Pres frame issued by the node (sub-index
PresActPayloadLimit_U16, refer below). Additionally on the MN, the size of transmitted Preq
messages (object NMT_MNPReqPayloadLimitList_AU16) is affected.

The limit shall be setup by the device firmware during system initialisation.

• Sub-Index 02h: IsochrRxMaxPayload_U16

Sub-
Index

02h

Name IsochrRxMaxPayload_U16

Data
Type

UNSIGNED16
Category

M

Value
Range

36 .. C_DLL_ISOCHR_MAX_PAYL
Access const

Default
Value

-
PDO
Mapping

No

Provides the device specific upper limit for payload data size in octets of isochronous messages
to be received by the device.

On all nodes, the sub-index limits the size of the Pres frames received by the node (object
NMT_PresPayloadLimitList_AU16, see 7.2.1.5.5). Additionally on the CN, the size of the
received Preq message (sub-index PreqActPayloadLimit_U16, refer below) is affected.

The limit shall be setup by the device firmware during system initialisation.

• Sub-Index 03h: PresMaxLatency_U32

Sub-Index 03h

Name PresMaxLatency_U32

Data Type UNSIGNED32 Category CN: M
MN: -

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

Provides the maximum time in ns, that is required by the CN to respond to Preq.

The value shall be setup by the device firmware during system initialisation.

EPSG DS 301 V1.5.1 -235-

• Sub-Index 04h: PreqActPayloadLimit_U16

Sub-Index 04h

Name PreqActPayloadLimit_U16

Data Type UNSIGNED16 Category CN: M
MN: -

Value Range 36 .. sub-index 02h Access rws, valid on reset *)

Default Value - PDO Mapping No

Provides the configured Preq payload data slot size in octets expected by the CN. The payload
data slot size plus headers gives the size of the Preq frame. The data slot may be filled by PDO
data up to this limit.

Note: This results in a fixed frame size regardless of the size of PDO data used.

*) The current value of PreqActPayloadLimit_U16 shall be used for checking the mapping at
activation.

Note: The new mapping is active immediately. If the mapping is active but the mapped data are
larger than frame size the received frame shall be ignored. See 6.4.8.2
However the frame size shall change to the current version of PreqActPayloadLimit_U16 after a
reset configuration only.

The MN holds a list of node specific Preq payload data slot values to be transmitted in object
NMT_MNPReqPayloadLimitList_AU16.

• Sub-Index 05h: PresActPayloadLimit_U16

Sub-Index 05h

Name PresActPayloadLimit_U16

Data Type UNSIGNED16 Category CN: M
MN: O

Value Range 36 .. sub-index 01h Access rws, valid on reset *)

Default Value - PDO Mapping No

Provides the configured Pres payload data slot size in octets sent by the CN. The payload data
slot size plus headers gives the size of the Pres frame. The data slot may be filled by PDO data
up to this limit.

Note: This results in a fixed frame size regardless of the size of PDO data used

*) The current value of PresActPayloadLimit_U16 shall be used for checking the mapping at
activation.

Note: The new mapping is active immediately. If the mapping is active but the mapped data are
larger than the frame size the RD flag shall be reset. See 6.4.8.2
However the frame size shall change to the current version of PresActPayloadLimit_U16 after a
reset configuration only.

The Pres payload values expected to be received by the node are listed in object
NMT_PresPayloadLimitList_AU16.

• Sub-Index 06h: AsndMaxLatency_U32

Sub-Index 06h

Name AsndMaxLatency_U32

Data Type UNSIGNED32 Category CN: M
MN: -

Value Range UNSIGNED32 Access const

Default Value - PDO Mapping No

Provides the maximum time in ns, that is required by the CN to respond to SoA.

The value shall be setup by the device firmware during system initialisation.

EPSG DS 301 V1.5.1 -236-

• Sub-Index 07h: MultiplCycleCnt_U8

Sub-Index 07h

Name MultiplCycleCnt_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws, valid on reset

Default Value 0 PDO Mapping No

This sub-index describes the length of the multiplexed cycle in multiples of the POWERLINK
cycle.

The MultiplCycleCnt_U8 value shall be upper limited by the MN’s device description entry
D_NMT_MNMultiplCycMax_U8. It shall be equal in all nodes of the segment.

If MultiplCycleCnt_U8 is zero, there is no support of multiplexed cycle on the network.

Note: A value of one is a valid value despite the fact that this does not result in a multiplexing.

• Sub-Index 08h: AsyncMTU_U16

Sub-Index 08h

Name AsyncMTU_U16

Data Type UNSIGNED16 Category M

Value
Range

C_DLL_MIN_ASYNC_MTU .. see below Access rws, valid
on reset

Default
Value

C_DLL_MIN_ASYNC_MTU
PDO
Mapping

No

This sub-index describes the maximum asynchronous frame size in octets. The value applies to
Asnd frames as well as to UDP/IP and other legacy Ethernet type frames. For this reason the
value describes the length of the complete Ethernet frame minus 14 octets Ethernet header and
4 octets checksum.

AsyncMTU_U16 is upper limited by the NMT_InterfaceGroup_Xh_REC.InterfaceMTU_U16
values of all devices in the segment. This limit shall be 18 octets less than the minimum
InterfaceMTU_U16 value provided by any node in the segment. AsyncMTU_U16 may grow up
to C_DLL_MAX_ASYNC_MTU.

AsyncMTU_U16 shall be equal in all nodes of the segment.

Sub-Index 08h shall be valid in all NMT states.

• Sub-Index 09h: Prescaler_U16

Sub-Index 09h

Name Prescaler_U16

Data Type UNSIGNED16 Category MN: M, CN: O

Value Range 0, 1 .. 1000 Access rws, valid on reset

Default Value 2 PDO Mapping No

This sub-index configurates the toggle rate of the SoC PS flag. The value provides the number
of cycles that have to be completed to toggle the flag by the MN.

If Prescaler_U16 is 0, there shall be no toggling of the SoC PS flag.
If Prescaler_U16 is 1 the flag shall be toggled every cycle, if its value is 2 every 2nd cycle and so
on.

Prescaler_U16 shall be equal in all nodes of the segment.

• Sub-Index 0Ah:

Used by EPSG DS302-C [3]

• Sub-Index 0Bh:

Used by EPSG DS302-C [3]

• Sub-Index 0Ch:

Used by EPSG DS302-C [3]

EPSG DS 301 V1.5.1 -237-

• Sub-Index 0Dh:

Used by EPSG DS302-C [3]

• Sub-Index 0Eh:

Used by EPSG DS302-C [3]

• Sub-Index 0Fh:

Used by EPSG DS302-E [5]

7.2.1.5.3 Object 1F9Bh: NMT_MultiplCycleAssign_AU8
This object assigns nodes to the particular POWERLINK cycles of the multiplexed cycle period defined
by NMT_CycleTiming_REC.MultiplCycleCnt_U8. The value shall be equal in all nodes of the segment.

Index 1F9Bh Object Type ARRAY

Name NMT_MultiplCycleAssign_AU8

Data Type UNSIGNED8 Category Cond

The index shall be supported if the node supports Multiplexing (see NMT_FeatureFlags_U32,
D_DLL_CNFeatureMultiplex_BOOL resp. D_DLL_MNFeatureMultiplex_BOOL) and is valid only
if NMT_CycleTiming_REC.MultiplCycleCnt_U8 is not zero.

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 0 .. 254 Access rws, valid on reset

Default Value - PDO Mapping No

• Sub-Index 01h – FEh: CycleNo

Sub-Index 01h – FEh

Name CycleNo

-- -- Category O

Value Range 0 .. NMT_CycleTiming_REC.
MultiplCycleCnt_U8

Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a multiplexed node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 9.

CycleNo defines the POWERLINK cycle index in the multiplexed cycle, when the respective
node shall be accessed. If CycleNo is zero, the node shall be accessed continuously (see
4.2.4.4).

7.2.1.5.4 Object 1016h: NMT_ConsumerHeartbeatTime_AU32
The consumer heartbeat time defines the expected heartbeat cycle time (see 7.3.5). Monitoring starts
after the reception of the first heartbeat. If the consumer heartbeat time is 0 the corresponding entry is
not used. The time must be a multiple of 1ms.

EPSG DS 301 V1.5.1 -238-

Index 1016h Object Type ARRAY

Name NMT_ConsumerHeartbeatTime_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value
Range

1 .. D_NMT_MaxHeartbeats_U8
Access rws

Default
Value

-
PDO
Mapping

No

Number of Entries, e.g. number of guard channels, may be limited by the device description
entry D_NMT_MaxHeartbeats_U8.

• Sub-Index 01h – FEh: HeartbeatDescription

Sub-Index 01h – FEh

Name HeartbeatDescription

-- -- Category O

Value Range UNSIGNED32 Access rws

Default Value 0 PDO Mapping No

• Sub-Index 01h – FEh Value Description

 UNSIGNED32

 MSB LSB

Bits 31-24 23-16 15-0

Value reserved (value: 00h) Node ID heartbeat time

Encoded as - UNSIGNED8 UNSIGNED16

 HeartbeatDescription value interpretation

If an attempt is made to configure several non-zero consumer heartbeat times for the same
Node ID the device aborts the SDO download with abort code E_NMT_INVALID_HEARTBEAT.

7.2.1.5.5 Object 1F8Dh: NMT_PresPayloadLimitList_AU16
This object holds a list of the expected Pres payload data slot size in octets for each configured node
that is isochronously accessed, e.g. via Preq / Pres frame exchange. The payload data slot size is a
measure for the configured size of the Pres frame. The data slot may be filled by PDO data up to this
limit.

EPSG DS 301 V1.5.1 -239-

Index 1F8Dh Object Type ARRAY

Name NMT_PresPayloadLimitList_AU16

Data Type UNSIGNED16 Category MN: M
CN: O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: PresPayloadLimit

Sub-
Index

01h .. FEh

Name PresPayloadLimit

-- -- Category M

Value
Range

36 .. C_DLL_ISOCHR_MAX_PAYL,
0, FFFFh

Access rws,
valid on
reset

Default
Value

36
PDO
Mapping

No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is an isochronous node assigned to the Node ID by
index NMT_NodeAssignment_AU32[sub-index] Bits 0 and 8.

Sub-index C_ADR_MN_DEF_NODE_ID indicates the payload size of the Pres frame issued by
the MN.

A CN shall support the object only if it listens to Pres messages issued by another node (cross
traffic). If the value of NMT_PresPayloadLimitList_AU16 [Node ID] equals 0, the node does not
listen to the Pres of that Node ID. If the value equals FFFFh, the Pres payload limit of this node
equals NMT_CycleTiming_REC.IsochrRxMaxPayload_U16.

Values should be equal on all nodes of the segment.

7.2.1.6 NMT Service Interface

7.2.1.6.1 Object 1F9Eh: NMT_ResetCmd_U8
NMT_ResetCmd_U8 may be used to initiate the reset of a node.

Index 1F9Eh Object Type VAR

Name NMT_ResetCmd_U8

Data Type UNSIGNED8 Category M

Value
Range

NMTInvalidService, NMTResetNode,
NMTResetConfiguration, NMTResetCommunication,
NMTSwReset

Access rw

Default
Value

NMTInvalidService PDO
Mapping

No

Setting NMT_ResetCmd_U8 to the NMT Command ID NMTResetNode,
NMTResetConfiguration, NMTResetCommunication or NMTSwReset (see App. 3.7) shall
trigger the node internal generation of a respective NMT command to itself.

On read access, NMT_ResetCmd_U8 will always show NMTInvalidService.

If applied in NMT_CS_EPL_MODE or NMT_MS_EPL_MODE, resets by NMT_ResetCmd_U8
may violate the NMT rules and stimulate DLL and NMT Guarding errors.

EPSG DS 301 V1.5.1 -240-

7.2.1.7 NMT Diagnostics

7.2.1.7.1 Object 1F8Ch: NMT_CurrNMTState_U8
The index holds the node’s current NMT state.

Index 1F8Ch Object Type VAR

Name NMT_CurrNMTState_U8

Data Type UNSIGNED8 Category M

Value
Range

see App. 3.6
Access ro

Default
Value

NMT_CS_NOT_ACTIVE resp.
NMT_MS_NOT_ACTIVE

PDO
Mapping

No

An overview list containing the NMT states of all nodes in the segment is provided by MN object
NMT_MNNodeCurrState_AU8.

7.2.2 NMT MN Objects

The NMT Master provides services for controlling the network behavior of nodes. Only one NMT
Master can exist in an Ethernet POWERLINK Network. In POWERLINK the NMT Master is located in
the MN.

The NMT Master Control Settings activate the MN functions and define the boot behavior and error
reactions.

7.2.2.1 MN Start Up Behavior

Hint: MN and CN startup timing should be well balanced. System power up sequence should be
considered.

7.2.2.1.1 Object 1F80h: NMT_StartUp_U32
This object configures the boot behavior of a device that is able to become the MN.

Object NMT_StartUp_U32 is a configuration object. Internal state transitions must not change this
object.

The object should be set by the system configuration.

The object controls the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted.

EPSG DS 301 V1.5.1 -241-

Index 1F80h Object Type VAR

Name NMT_StartUp_U32

Data Type UNSIGNED32 Category M

Value Range Bit field, see below Access rws, valid on reset

Default Value - PDO Mapping No

• NMT_StartUp_U32 Value Interpretation

Octet Bit Value Description

0 0 --- Reserved (0b).

1 0b Start only explicitly assigned CNs (if Bit 3 = 0b).

1b Perform the service NMTStartNode with broadcast addressing (if Bit 3 = 0b).

2 0b Automatically enter state NMT_MS_OPERATIONAL.

1b Do not automatically enter state NMT_MS_OPERATIONAL. Application will
decide when to enter the state.

3 0b Allow to start up the CNs (i.e. to send NMTStartNode).

1b Do not allow to send NMTStartNode; the application may start the CNs.

4 0b On error event from guarding a mandatory CN deal with the CN individually.

1b On error event from guarding a mandatory CN perform NMTResetNode with
broadcast addressing. Refer to Bit 6 and NMT_NodeAssignment_AU32 Bit

3.

5 --- Reserved (0b).

6 0b On error event from guarding a mandatory CN deal with the CN according to
Bit 4.

1b On error event from guarding a mandatory CN send NMTStopNode with
broadcast addressing. Ignore Bit 4.

7 0b Automatically enter state NMT_MS_PRE_OPERATIONAL_2.

1b Do not automatically enter NMT_MS_PRE_OPERATIONAL_2. Application
will decide when to enter the state.

1 8 0b Automatically enter state NMT_MS_READY_TO_OPERATE.

1b Do not automatically enter NMT_MS_READY_TO_OPERATE. Application
will decide when to enter the state.

9 0b The identification of the CNs shall be limited to verification of the respective
NMT_MNDeviceTypeIdList_AU32 sub-index.

1b The identification of the CNs shall be completely checked.

10 0b The SW-Version of the CNs shall not be checked.

1b The SW-Version of the CNs shall be checked. If the check fails, the CN’s
SW has to be updated.

11 0b The Configuration of the CNs shall not be checked.

1b The Configuration of the CNs shall be checked. If the check fails, the CN’s
configuration has to be updated.

12 0b In case of error event return automatically from NMT_MS_OPERATIONAL
to NMT_MS_PRE_OPERATIONAL_1.

1b Do not return to NMT_MS_PRE_OPERATIONAL_1. Application will decide
whether to enter the state.

13 0b NMT_MS_EPL_MODE activation:
in NMT_MS_NOT_ACTIVE observe the network and change over to
NMT_MS_PRE_OPERATIONAL_1 if there is no other MN detected

1b NMT_MS_BASIC_ETHERNET released:
from NMT_MS_NOT_ACTIVE change over to
NMT_MS_BASIC_ETHERNET

14 --- Reserved (0b), used by EPSG DS302-A [1]

15 --- Reserved (0b)

2 – 3 16 – 31 --- Reserved (00 00h)

 NMT_StartUp_U32 interpretation

EPSG DS 301 V1.5.1 -242-

7.2.2.1.2 Object 1F89h: NMT_BootTime_REC
This object describes time interval values to be used by the MN when it starts the network.

It gives the maximum time, in µs, the master will wait for all mandatory CNs before signaling an error.
If the time is zero (0), it will wait indefinitely.

Hint: MN and CN startup timing should be well balanced. System power up sequence should be
considered.

Index 1F89h Object Type RECORD

Name NMT_BootTime_REC

Data Type NMT_BootTime_TYPE Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 9 Access const

Default Value 9 PDO Mapping No

• Sub-Index 01h: MNWaitNotAct_U32

Sub-Index 01h

Name MNWaitNotAct_U32

Data Type UNSIGNED32 Category M

Value Range >=250 Access rws, valid on reset

Default Value 1 000 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall remain in state
NMT_MS_NOT_ACTIVE and listen for POWERLINK frames on the network before it changes
over to NMT_MS_PRE_OPERATIONAL_1.

• Sub-Index 02h: MNTimeoutPreOp1_U32

Sub-Index 02h

Name MNTimeoutPreOp1_U32

Data Type UNSIGNED32 Category M

Value Range 0, 50 000 – 5 000 000 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait in state
NMT_MS_PRE_OPERATIONAL_1 for all mandatory CNs to be identified via the IdentRequest /
IdentResponse mechanism before it signals an error to the application.

If the timeout value is zero (0), there shall be no timeout for CN identification.

• Sub-Index 03h: MNWaitPreOp1_U32

Sub-Index 03h

Name MNWaitPreOp1_U32

Data Type UNSIGNED32 Category O

Value Range 0, 50 000 – 5 000 000 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall remain in state
NMT_MS_PRE_OPERATIONAL_1.

If the wait value is zero (0), NMT_MS_PRE_OPERATIONAL_1 shall be left as soon as all
mandatory CNs have been identified.

EPSG DS 301 V1.5.1 -243-

• Sub-Index 04h: MNTimeoutPreOp2_U32

Sub-Index 04h

Name MNTimeoutPreOp2_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait in state
NMT_MS_PRE_OPERATIONAL_2 for all mandatory CNs to complete the initialisation of the
error signaling and to be in state NMT_CS_READY_TO_OPERATE before it signals an error to
the application.

For all optional CNs this sub-index describes the time interval in µs that the MN shall wait after
sending the NMT command NMTEnableReadyToOperate to a CN before BOOT_STEP2
returns with an error.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

• Sub-Index 05h: MNTimeoutReadyToOp_U32

Sub-Index 05h

Name MNTimeoutReadyToOp_U32

Data Type UNSIGNED32 Category M

Value Range 0, 50 000 – 5 000 000 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait in state
NMT_MS_READY_TO_OPERATE for all mandatory CNs to be in state
NMT_CS_OPERATIONAL before it signals an error to the application.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

• Sub-Index 06h: MNIdentificationTimeout_U32

Sub-Index 06h

Name MNIdentificationTimeout_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait in the
CHECK_IDENTIFICATION state of the boot process until a device must be able to reply to an
Ident Request message before an error is signaled to the application.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

• Sub-Index 07h: MNSoftwareTimeout_U32

Sub-Index 07h

Name MNSoftwareTimeout_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait after the software update
in the CHECK_SOFTWARE state until a device must be able to reply to an Ident Request
message before an error is signaled to the application.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

EPSG DS 301 V1.5.1 -244-

• Sub-Index 08h: MNConfigurationTimeout_U32

Sub-Index 08h

Name MNConfigurationTimeout_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait after the configuration of
a CN was updated in the CHECK_CONFIGURATION state until a device must be able to reply
to an Ident Request message before an error is signaled to the application.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

• Sub-Index 09h: MNStartCNTimeout_U32

Sub-Index 09h

Name MNStartCNTimeout_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 500 000 PDO Mapping No

This sub-index describes the time interval in µs that the MN shall wait for a CN in the
START_CN state to switch over to NMT_CS_OPERATIONAL before an error is signaled to the
application.

If the timeout value is zero (0), there shall be no timeout, i.e. the MN will wait indefinitely.

• Sub-Index 0Ah

Used by EPSG DS302-A [1]

• Sub-Index 0Bh

Used by EPSG DS302-A [1]

• Sub-Index 0Ch

Used by EPSG DS302-A [1]

7.2.2.2 NMT Master Network Node Lists

The Network List consists of objects that give information about which CNs must be managed, how
they should be booted and information concerning requested actions on Error events.

7.2.2.2.1 Object 1F84h: NMT_MNDeviceTypeIdList_AU32
This object holds a list of the expected NMT_DeviceTypeId_U32 value for each configured CN.

The object should be set by the system configuration. It shall be filled with the NMT_DeviceType_U32
object dictionary entry of the respective device.

It may be used by the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted.

Index 1F84h Object Type ARRAY

Name NMT_MNDeviceTypeIdList_AU32

Data Type UNSIGNED32 Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

EPSG DS 301 V1.5.1 -245-

• Sub-Index 01h .. FEh: CNDeviceTypeId

Sub-Index 01h .. FEh

Name CNDeviceTypeId

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID may represent the MN.

On Boot-Up, the CN’s NMT_DeviceType_U32 value is reported to the MN via IdentResponse.
The MN shall compare the received value with the respective CNDeviceTypeId sub-index value.
The Boot-Up for that device is only continued when the two values are equal.

If the value in CNDeviceTypeId is 0, this read access only gives information about the mere
existence of a device with this Node ID. There is no comparison to the reported
NMT_DeviceType_U32 value.

For multi-device-modules the application may perform additional checks.

7.2.2.2.2 Object 1F85h: NMT_MNVendorIdList_AU32
This object holds a list of the expected NMT_IdentityObject_REC.VendorId_U32 value for each
configured CN.

The object should be set by the system configuration. It shall be filled with the
NMT_IdentityObject_REC.VendorId_U32 object dictionary entry of the respective device.

It may be used by the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted.

Index 1F85h Object Type ARRAY

Name NMT_MNVendorIdList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CNVendorId

Sub-Index 01h .. FEh

Name CNVendorId

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID may represent the MN.

On Boot-Up, the CN’s NMT_IdentityObject_REC.VendorId_U32 value is reported to the MN via
IdentResponse. The MN compares the received value with the respective CNVendorId sub-
index value. The Boot-Up for that device is only continued when the two values are equal.

If the value in CNVendorId is 0, this read access only gives information about the mere
existence of a device with this Node ID. There is no comparison with the reported
NMT_IdentityObject_REC.VendorId_U32 value.

EPSG DS 301 V1.5.1 -246-

For multi-device-modules the application may perform additional checks.

7.2.2.2.3 Object 1F86h: NMT_MNProductCodeList_AU32
This object holds a list of the expected NMT_IdentityObject_REC.ProductCode_U32 value for each
configured CN.

The object should be set by the system configuration. It shall be filled with the
D_NMT_ProductCode_U32 device descrition entry of the respective device.

It may be used by the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted

Index 1F86h Object Type ARRAY

Name NMT_MNProductCodeList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CNProductCode

Sub-Index 01h .. FEh

Name CNProductCode

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID may represent the MN.

On Boot-Up, the CN’s NMT_IdentityObject_REC.ProductCode_U32 value is reported to the MN
via IdentResponse. The MN compares the received value with the respective CNProductCode
sub-index value. The Boot-Up for that device is only continued when the two values are equal.

If the value in CNProductCode is 0, this read access only gives information about the mere
existence of a device with this Node ID. There is no comparison with the reported
NMT_IdentityObject_REC.ProductCode_U32 value.

For multi-device-modules the application may perform additional checks.

7.2.2.2.4 Object 1F87h: NMT_MNRevisionNoList_AU32
This object holds a list of the expected NMT_IdentityObject_REC.RevisionNo_U32 value for each
configured CN.

The object should be set by the system configuration. It shall be filled with the
D_NMT_RevisionNo_U32 device descrition entry of the respective device.

It may be used by the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted

EPSG DS 301 V1.5.1 -247-

Index 1F87h Object Type ARRAY

Name NMT_MNRevisionNoList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CNRevisionNo

Sub-Index 01h .. FEh

Name CNRevisionNo

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID may represent the MN.

On Boot-Up, the CN’s NMT_IdentityObject_REC.RevisionNo_U32 is reported to the MN via
IdentResponse. The MN compares the received value with the respective CNRevisionNo sub-
index value. The Boot-Up for that device is only continued when the two values are equal.

If the value in CNRevisionNo is 0, this read access only gives information about the mere
existence of a device with this Node ID. There is no comparison with the reported
NMT_IdentityObject_REC.RevisionNo_U32 value.

For multi-device-modules the application may perform additional checks.

7.2.2.2.5 Object 1F88h: NMT_MNSerialNoList_AU32
This object holds a list of the expected NMT_IdentityObject_REC.SerialNo_U32 value for each
configured CN.

The object should be set by the system configuration.

It may be used by the verification of CNs. If the object is modified in state
NMT_MS_PRE_OPERATIONAL_1 after start of verification, verification process shall be restarted

Index 1F88h Object Type ARRAY

Name NMT_MNSerialNoList_AU32

Data Type UNSIGNED32 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

EPSG DS 301 V1.5.1 -248-

• Sub-Index 01h – FEh: CNSerialNo

Sub-Index 01h .. FEh

Name CNSerialNo

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID may represent the MN.

On Boot-Up, the CN’s NMT_IdentityObject_REC.SerialNo_U32 is reported to the MN via
IdentResponse. The MN compares the received value with the respective CNSerialNo sub-
index value. If the values are different a warning is issued.

If the value in CNSerialNo is 0, this read access only gives information about the mere
existence of a device with this Node ID. There is no comparison with the reported
NMT_IdentityObject_REC.SerialNo_U32 value.

For multi-device-modules the application may perform additional checks.

7.2.2.3 Timing

The indices described by this paragraph shall be implemented by the MN only. They control the timing
behavior of the POWERLINK network traffic. They are supplemetal to the the objects described by
7.2.1.4.

7.2.2.3.1 Object 1F8Ah: NMT_MNCycleTiming_REC
This object holds timing parameter use by the MN only to control the POWERLINK cycle.

Index 1F8Ah Object
Type

RECORD

Nam
e

NMT_MNCycleTiming_REC

Data
Type

NMT_MNCycleTiming_TYPE
Categor
y

M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 4 Access ro

Default Value - PDO Mapping No

• Sub-Index 01h: WaitSoCPReq_U32

Sub-Index 01h

Name WaitSoCPReq_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 1000 PDO Mapping No

The sub-index provides a time interval in ns between end of SoC transmission and begin of the
next frame transmission (Preq or PresMN). This wait interval enables the CN first accessed
after SoC to complete it’s SoC handling.

WaitSoCPReq_U32 shall be set to the maximum of
D_NMT_MNSoC2PReq_U32D_NMT_MNSoC2PReq_U32 and the D_NMT_CNSoC2PReq_U32
values of all configured isochronous CNs (cf. NMT_NodeAssignment_AU32[sub-index] Bits 0, 1
and 8).

WaitSoCPReq_U32 handling may be implemented in 2 ways (see 4.2.4.3):

EPSG DS 301 V1.5.1 -249-

a. delayed transmision of 1st Preq following SoC by MN, sub-index provides time interval
between the end of the SoC transmission and the start of the first Preq

b. Transmission of the 1st Preq to the non existing node addressed by

C_ADR_DUMMY_NODE_ID. The Pres frame receive timeout shall be set to
WaitSoCPReq_U32. Timeout error handling (see 4.7.6.2, 4.7.6.3) shall be disabled for
this dummy message.

• Sub-Index 02h: AsyncSlotTimeout_U32

Sub-Index 02h

Name AsyncSlotTimeout_U32

Data Type UNSIGNED32 Category O

Value Range >=250 Access rws, valid on reset

Default Value 100 000 PDO Mapping No

The sub-index describes the worst case time interval in ns between the end of the SoA
transmission and the begin of the reception of an Asnd frame issued by a CN.

• Sub-Index 03h:

Used by EPSG DS302-B [2]

• Sub-Index 04h: MinRedCycleTime_U32

Sub-Index 04h

Name MinRedCycleTime_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access rws, valid on reset

Default Value - PDO Mapping No

The minimum reduced cycle time (MinRedCycleTime_U32) holds the minimum time between
SoA frames in the reduced cycle.

MinRedCycleTime_U32 shall be set to the maximum of D_NMT_MinRedCycleTime_U32 of the
CNs.

7.2.2.3.2 Object 1F8Bh: NMT_MNPReqPayloadLimitList_AU16
This object holds a list of the Preq payload data slot size in octets for each configured node that is
isochronously accessed, e.g. via Preq / Pres frame exchange. The payload data slot size is a measure
for the configured size of the Preq frame. The data slot may be filled by PDO data up to this limit.

EPSG DS 301 V1.5.1 -250-

Index 1F8Bh Object Type ARRAY

Name NMT_MNPReqPayloadLimitList_AU16

Data Type UNSIGNED16 Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CNPReqPayload

Sub-
Index

01h .. FEh

Name CNPReqPayload

-- -- Category M

Value
Range 36 .. C_DLL_ISOCHR_MAX_PAYL

Access rws,
valid on
reset

Default
Value

36
PDO
Mapping

No

Each sub-index in the array corresponds to the CN with the Node ID equal to the sub-index.
The sub-index value is valid only if there is an isochronous CN assigned to the Node ID by
index NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

7.2.2.3.3 Object 1F92h: NMT_MNCNPResTimeout_AU32
This object holds a list of all configured CNs in [ns] with PollRequest to PollResponse timeouts (see
4.7.6.2, 4.7.6.3).

The object should be set by the system configuration.

Index 1F92h Object Type ARRAY

Name NMT_MNCNPResTimeout_AU32

Data Type UNSIGNED32 Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CNPResTimeout

Sub-Index 01h .. FEh

Name CNPResTimeout

-- -- Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 25 000 PDO Mapping No

Each sub-index in the array corresponds to a CN with the Node ID equal to the sub-index. The
sub-index value is valid only if there is an isochronous CN assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bits 0, 1 and 8.

This parameter describes the POWERLINK node specific timeout values in ns. Whenever a
PollRequest frame is sent to a CN this timer is started. (refer 4.7.6.1.1)

EPSG DS 301 V1.5.1 -251-

7.2.2.3.4 Object 1F9Ch: NMT_IsochrSlotAssign_AU8
This object assigns nodes to a particular isochronous slot. The isochronous POWERLINK cycle can
be divided into communication slots each consisting of Preq and Pres message for a particular node
(see slot 1 to n in Fig. 76).

Fig. 76. POWERLINK communication slots

The object 1F9Ch can be used to request fast processing nodes first and give slower nodes enough
time for the SoC processing for example.

Index 1F9Ch Object Type ARRAY

Name NMT_IsochrSlotAssign_AU8

Data Type UNSIGNED8 Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 1 .. 254 Access rws, valid on reset

Default Value 254 PDO Mapping No

Sub-index 0 may be used to limit the number of isochronous slots per cycle to be checked by
the cycle producing in the DLL_MS.

• Sub-Index 01h – Feh: NodeId

Sub-Index 01h-FEh

Name NodeId

-- -- Category O

Value Range 0 .. 254 Access rws, valid on reset

Default Value 0 PDO Mapping No

Each sub-index in the array corresponds to an individual communication slot which is equal to
the sub-index. The slot shall only be used if there is an isochronous node with the Node ID
assigned by index NMT_NodeAssignment_AU32[sub-index] Bits 0, 1, 8 and 9. Value 0
indicates that there is no particular node assigned to the communication slot.

The sub-indices can also be used for the slot assignment of multiplexed nodes. If multiplexed
and non-multiplexed nodes shall be assigned to particular communication slots, it must be
ensured that all the isochronous non-multiplexed stations are configured on the lower sub-
indices of object 1F9Ch. Care has also to be taken that the multiplex slots are mapped to the
communication slots in ascending order. That means the first multiplexed node assigned to
object 1F9Ch must be configured in the first multiplex slot in object 1F9Bh and so on.

EPSG DS 301 V1.5.1 -252-

Gaps in the NMT_IsochrSlotAssign_AU8 are allowed as unused communication slots are
skipped.

Example:

Let’s assume nodes 10 to 14 are non-multiplexed nodes and nodes 15-18 are multiplexed
nodes. Furthermore node 10 is a slow processing node which must be shifted away from the
cycle beginning. The slot diagram for the isochronous cycle will look as follows:

Cycle i

Slot

Station

1

11

2

12

3

13

4

14

non-multiplexed

5

10

6

16

7

17

multiplexed

Cycle i+1

1

11

2

12

3

13

4

14

non-multiplexed

5

10

6

18

7

15

multiplexed

The above example results in the following setup of object NMT_IsochrSlotAssign_AU8:

Index 1F9Ch

sub-index 0 1 2 3 4 5 6 7 8 9

value 9 11 12 13 14 10 16 17 18 15

EPSG DS 301 V1.5.1 -253-

The setup of object 1F9Bh NMT_MultiplCycleAssign_AU8 for the multiplexed nodes 15 to 18
must look as follows:

Index 1F9Bh

sub-index 10 11 12 13 14 15 16 17 18

value 0 0 0 0 0 2 1 1 2

7.2.2.4 CN NMT State Surveillance

The objects described by this paragraph are used by the MN surveillance of the CN NMT states as
described at 7.1.4.

7.2.2.4.1 Object 1F8Eh: NMT_MNNodeCurrState_AU8
This object holds a list of the current NMT states of the configured nodes.

Index 1F8Eh Object Type ARRAY

Name NMT_MNNodeCurrState_AU8

Data Type UNSIGNED8 Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 254 Access const

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: CurrState

Sub-Index 01h .. FEh

Name CurrState

-- -- Category M

Value
Range

see App. 3.6
Access ro

Default
Value

NMT_CS_NOT_ACTIVE resp.
NMT_MS_NOT_ACTIVE

PDO
Mapping

No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID indicates the current state of the MN state machine. It
holds values described by Tab. 105.

The individual states of the nodes may be locally accessed via NMT_CurrNMTState_U8.

7.2.2.4.2 Object 1F8Fh: NMT_MNNodeExpState_AU8
This object holds a list of the expected NMT states of the configured nodes in accordance with the
CNs’ boot-up behavior and the NMT state commands transmitted by the MN. See 7.1.4.

The sub-indices of NMT_MNNodeExpState_AU8 should be equal to those of
NMT_MNNodeCurrState_AU8 expect for an interval of C_NMT_STATE_TOLERANCE after an NMT
state command to the respective CN.

Index 1F8Fh Object Type ARRAY

Name NMT_MNNodeExpState_AU8

Data Type UNSIGNED8 Category O

EPSG DS 301 V1.5.1 -254-

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 254 Access const

Default Value 254 PDO Mapping No

• Sub-Index 01h – FEh: ExpState

Sub-Index 01h .. FEh

Name ExpState

-- -- Category M

Value
Range

see App. 3.6
Access ro

Default
Value

NMT_CS_NOT_ACTIVE resp.
NMT_MS_NOT_ACTIVE

PDO
Mapping

No

Each sub-index in the array corresponds to the node with the Node ID equal to the sub-index.
The sub-index value is valid only if there is a node assigned to the Node ID by index
NMT_NodeAssignment_AU32[sub-index] Bit 0.

Sub-index C_ADR_MN_DEF_NODE_ID indicates the current state of the MN state machine. It
holds values described by Tab. 105.

7.2.2.5 NMT Service Interface

7.2.2.5.1 Object 1F9Fh: NMT_RequestCmd_REC
NMT_RequestCmd_REC may be used by a diagnostic node outside of the POWERLINK segment
connected via a router to initiate an NMT command by the MN.

Index 1F9Fh Object Type RECORD

Name NMT_RequestCmd_REC

Data Type NMT_RequestCmd_TYPE Category M

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 3 .. 4 Access const

Default Value - PDO Mapping No

• Sub-Index 01h: Release_BOOL

Sub-Index 01h

Name Release_BOOL

Data Type BOOLEAN Category M

Value Range BOOLEAN Access rw

Default Value FALSE PDO Mapping No

Writing TRUE to Release_BOOL shall trigger the positioning of the NMT command described
by sub-indices 02h to 04h to the transmission queues of the MN.

Release_BOOL shall be automatically reset to FALSE by the MN, when queuing of the NMT
services has been completed.

EPSG DS 301 V1.5.1 -255-

• Sub-Index 02h: CmdID_U8

Sub-Index 02h

Name CmdID_U8

Data Type UNSIGNED8 Category M

Value Range see.App. 3.7 Access rw

Default Value NMTInvalidService PDO Mapping No

CmdID_U8 indicates the requested NMT service. It is equivalent to the
NMTRequestedCommandID entry of the NMTRequest Frame NMT Service Slot (see 7.3.6.1)

• Sub-Index 03h: CmdTarget_U8

Sub-Index 03h

Name CmdTarget_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rw

Default Value C_ADR_INVALID PDO Mapping No

CmdTarget_U8 indicates POWERLINK address of the target node of the requested NMT
service. It is equivalent to the NMTRequestedCommandTarget entry of the NMTRequest Frame
NMT Service Slot (see 7.3.6.1)

• Sub-Index 04h: CmdData_DOM

Sub-Index 04h

Name CmdData_DOM

Data Type DOMAIN Category Cond

Value Range DOMAIN Access rw

Default Value - PDO Mapping No

CmdData_DOM provides data specific to the requested NMT service. It is equivalent to the
NMTRequestedCommandData entry of the NMTRequest Frame NMT Service Slot (see 7.3.6.1)

CmdData_DOM shall be supported if extended NMT State Command Services are supported
by the MN, support shall be indicated by the object dictionary index NMT_FeatureFlags_U32 Bit
5.

7.2.3 NMT CN Objects

7.2.3.1 CN StartUp Behaviour

Hint: MN and CN startup timing should be well balanced. System power up sequence should be
considered.

7.2.3.1.1 Object 1F99h: NMT_CNBasicEthernetTimeout_U32
Provide the time in µs to be applied before changing from NMT_CS_NOT_ACTIVE to
NMT_CS_BASIC_ETHERNET.

Index 1F99h Object Type VAR

Name NMT_CNBasicEthernetTimeout_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access rws, valid on reset

Default Value 5 000 000 PDO Mapping No

Value 0 shall mean, never change to NMT_CS_BASIC_ETHERNET. If not 0, the value shall be
greater than NMT_CycleLen_U32.

To avoid erroneous change over to NMT_CS_BASIC_ETHERNET at system startup,
NMT_CNBasicEthernetTimeout_U32 should be greater than the MN’s
NMT_BootTime_REC.MNWaitNotAct_U32.

Note: It is the responsibility of the user resp. configuration tool to set an appropriate value.

EPSG DS 301 V1.5.1 -256-

7.2.4 NMT Object Types

7.2.4.1 Object 0023h: IDENTITY

Index 0023h Object Type DEFSTRUCT

Name IDENTITY

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h VendorId_U32 0007h UNSIGNED32

02h ProductCode_U32 0007h UNSIGNED32

03h RevisionNo_U32 0007h UNSIGNED32

04h SerialNo_U32 0007h UNSIGNED32

7.2.4.2 Object 0429h: NMT_ParameterStorage_TYPE

Index 0429h Object Type DEFSTRUCT

Name NMT_ParameterStorage_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 7Fh

01h AllParam_U32 0007h UNSIGNED32

02h CommunicationParam_U32 0007h UNSIGNED32

03h ApplicationParam_U32 0007h UNSIGNED32

04h .. 7Fh ManufacturerParam_XXh_U32 0007h UNSIGNED32

7.2.4.3 Object 042Bh: NMT_InterfaceGroup_TYPE

Index 042Bh Object Type DEFSTRUCT

Name NMT_InterfaceGroup_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 09h

01h InterfaceIndex_U16 0006h UNSIGNED16

02h InterfaceDescription_VSTR 0009h VISIBLE_STRING

03h InterfaceType_U8 0005h UNSIGNED8

04h InterfaceMtu_U16 0006h UNSIGNED16

05h InterfacePhysAddress_OSTR 000Ah OCTET_STRING

06h InterfaceName_VSTR 0009h VISIBLE_STRING

07h InterfaceOperStatus_U8 0005h UNSIGNED8

08h InterfaceAdminState_U8 0005h UNSIGNED8

09h Valid_BOOL 0001h BOOLEAN

7.2.4.4 Object 042Ch: NMT_CycleTiming_TYPE

Index 042Ch Object Type DEFSTRUCT

Name NMT_CycleTiming_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 09h

01h IsochrTxMaxPayload_U16 0006h UNSIGNED16

02h IsochrRxMaxPayload_U16 0006h UNSIGNED16

03h PresMaxLatency_U32 0007h UNSIGNED32

04h PreqActPayloadLimit_U16 0006h UNSIGNED16

05h PresActPayloadLimit_U16 0006h UNSIGNED16

EPSG DS 301 V1.5.1 -257-

06h AsndMaxLatency_U32 0007h UNSIGNED32

07h MultiplCycleCnt_U8 0005h UNSIGNED8

08h AsyncMTU_U16 0006h UNSIGNED16

09h Prescaler_U16 0006h UNSIGNED16

7.2.4.5 Object 042Eh: NMT_BootTime_TYPE

Index 042Eh Object Type DEFSTRUCT

Name NMT_BootTime_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 05h

01h MNWaitNotAct_U32 0007h UNSIGNED32

02h MNTimeoutPreOp1_U32 0007h UNSIGNED32

03h MNWaitPreOp1_U32 0007h UNSIGNED32

04h MNTimeoutPreOp2_U32 0007h UNSIGNED32

05h MNTimeoutReadyToOp_U32 0007h UNSIGNED32

06h MNIdentificationTimeout_U32 0007h UNSIGNED32

07h MNSoftwareTimeout_U32 0007h UNSIGNED32

08h MNConfigurationTimeout_U32 0007h UNSIGNED32

09h MNStartCNTimeout_U32 0007h UNSIGNED32

7.2.4.6 Object 042Fh: NMT_MNCycleTiming_TYPE

Index 042Fh Object Type DEFSTRUCT

Name NMT_MNCycleTiming_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h WaitSoCPReq_U32 0007h UNSIGNED32

02h AsyncSlotTimeout_U32 0007h UNSIGNED32

7.2.4.7 Object 0439h: NMT_EPLNodeID_TYPE

Index 0439h Object Type DEFSTRUCT

Name NMT_EPLNodeID_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h NodeID_U8 0005h UNSIGNED8

02h NodeIDByHW_BOOL 0001h BOOLEAN

03h SWNodeID_U8 0005h UNSIGNED8

7.2.4.8 Object 043Ah: NMT_RequestCmd_TYPE

Index 043Ah Object Type DEFSTRUCT

Name NMT_RequestCmd_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h Release_BOOL 0001h BOOLEAN

02h CmdID_U8 0005h UNSIGNED8

03h CmdTarget_U8 0005h UNSIGNED8

04h CmdData_DOM 000Fh DOMAIN

EPSG DS 301 V1.5.1 -258-

7.3 Network Management Services
POWERLINK Network Management (NMT) is node-oriented and follows a master/slave relationship.

The function of the NMT master is carried out by the MN.

CNs are administrated as NMT slaves by the master. An NMT slave is uniquely identified in the
network by its POWERLINK Node ID.

According to the definition, Network Management is directed from the NMT master (MN) to the NMT
slaves (CNs).

POWERLINK defines five categories of NMT services:

• NMT State Command Services

The MN uses NMT State Command Services to control the CN state machine(s).

• NMT Managing Command Services

The MN uses NMT Managing Command Services to access NMT data items of the CN(s) in a
fast coordinated way.

• NMT Response Services

NMT Response Services indicate the current NMT state of a CN to the MN.

• NMT Info Services

NMT Info Services are used to transmit NMT information from the MN to a CN.

• NMT Guard services

NMT Guard Services are used by the MN and CNs to detect failures in a POWERLINK network.

A CN may request NMT command and info services to be issued by the MN (NMTRequest, see
7.3.6).

In NMT_CS_EPL_MODE, a CN shall ignore NMT command services that are not issued by the MN. In
NMT_CS_BASIC_ETHERNET NMT command services shall be accepted regardless their source
node.

7.3.1 NMT State Command Services

The MN controls the state of the CN via NMT State Command Services. The state transitions are
defined by the CN state machine (see 7.1.4).

POWERLINK distinguishes between implicit and explicit NMT State Commands.

7.3.1.1 Implicit NMT State Command Services

At system startup, the reception or the timeout of SoA, PReq, PRes or SoC frames trigger CN state
machine transitions from the state NMT_CS_NOT_ACTIVE to the next states. In
NMT_CS_PRE_OPERATIONAL_1 the reception of SoC triggers the transition to
NMT_CS_PRE_OPERATIONAL_2. SoA, PReq, PRes or SoC are used to synchronise a CN with the
current network mode after system start or reset. (see 7.1.4).

In Basic Ethernet Mode, the reception of POWERLINK SoA, PReq, PRes or SoC will trigger a change
over to NMT_CS_EPL_MODE. (see 7.1.4).

EPSG DS 301 V1.5.1 -259-

Fig. 77. Implicit NMT state command service protocol

SoA, PReq, PRes or SoC acting as shown above are termed implicit NMT state commands. They are
valid regardless of their data content and without further extensions.

Tab. 122 displays implicit NMT state commands in relation to the current CN state when the command
is received. SoA and SoC reception or timeouts not mentioned in the table do not trigger state
transitions.

Current State Implicit NMT State
Command

Destination State

NMT_CS_NOT_ACTIVE SoA, SoC NMT_CS_PRE_OPERATIONAL_1

Timeout (SoA, PReq,
PRes, SoC)

NMT_CS_BASIC_ETHERNET

NMT_CS_PRE_OPERATIONAL_1 SoC NMT_CS_PRE_OPERATIONAL_2

NMT_CS_BASIC_ETHERNET SoA, PReq, PRes, SoC NMT_CS_PRE_OPERATIONAL_1

 Implicit NMT state commands

An NMT Response Service (see 7.3.3) requested by the implicit NMT State Command shall indicate
the current state.

7.3.1.1.1 Implicit NMT State Command Transmission
Implicit NMT State Command services (7.3.1.1) do not require explicit NMT frame transmission by the
MN. Regular SoA, PReq, PRes and SoC frames (refer 4.6.1.1) can be valid Implicit NMT State
Commands on their own.

SoA, PRes and SoC frames cannot be sent directly to a single node – they are multicast. The CN
decides according to its own current state whether a received implicit NMT State command is active
(i.e. is to be carried out).

7.3.1.2 Explicit NMT State Command Services

An explicit NMT State Command shall be transmitted by the MN in the ASnd frame.

The target CN shall be addressed via the ASnd Destination field. The ASnd frame shall be either
unicast to one CN or broadcast to all CNs (using the POWERLINK broadcast address
C_ADR_BROADCAST). A command sent via broadcast shall be ignored at the transmitting MN.

Special broadcast NMT commands may be sent to selected groups of CNs (see 7.3.1.2.2).

The explicit NMT State Command services shall be identified by ASnd ServiceID = NMT_COMMAND.

Fig. 78 shows the protocol used to implement the explicit NMT State Command Services.

CN(s) MN

request indication

indication

Implicit NMT State Command

SoA / SoC / PReq /

PRes

indication

EPSG DS 301 V1.5.1 -260-

Fig. 78. Explicit NMT state command service protocol

The ASnd ServiceID value of explicit NMT State Command Services shall be NMT_COMMAND. The
specific NMT State Command identification and its data shall be located in the ASnd Payload field,
called NMT Service Slot in the following.

 Bit Offset

Octet offset 24 7 6 5 4 3 2 1 0

0 NMTCommandID

1 Reserved

2 .. n NMTCommandData

n ≤ C_DLL_MAX_PAYL_OFFSET – 4

 NMT state command service, NMT managing command service and NMT info service
structure of the NMT Service Slot field

Field Abbr. Description Value

NMTCommandID cid Qualifies the NMT state command. Tab. 125, Tab.
126

NMTCommandData cdat 0..C_DLL_MAX_PAYL_OFFSET – 6 octets of NMT
command-specific data to be issued by the MN.

The lower layer is responsible for padding.

 NMT Service Slot fields of explicit NMT state command services

7.3.1.2.1 Plain NMT State Command
The Plain NMT State Command shall be unicast to a specific CN or broadcast to all CNs.

Plain NMT State Commands shall ignore NMTCommandData.

The following Plain NMT State Commands are defined:

24 Octet offset is measured from the begin of the ASnd Payload field. The offset relative to the
beginning of the Ethernet frame is 18 octets.

CN(s) MN

request (indication)

indication

(indication)

Explicit NMT State Command

ASnd
(ServiceID =

NMT_COMMAND)

EPSG DS 301 V1.5.1 -261-

NMTCommandID Initial state Destination state

NMTStartNode NMT_CS_READY_TO_OPERATE NMT_CS_OPERATIONAL

NMTStopNode NMT_CS_PRE_OPERATIONAL_2 NMT_CS_STOPPED

NMT_CS_READY_TO_OPERATE

NMT_CS_OPERATIONAL

NMTEnterPreOperational2 NMT_CS_OPERATIONAL NMT_CS_PRE_OPERATIONAL_2

NMT_CS_STOPPED

NMTEnableReadyToOperate NMT_CS_PRE_OPERATIONAL_2 NMT_CS_PRE_OPERATIONAL_2

NMTResetNode NMT_CS_NOT_ACTIVE /
NMT_MS_NOT_ACTIVE

NMT_GS_INITIALISATION
sub-state
NMT_GS_RESET_APPLICATION NMT_CS_PRE_OPERATIONAL_1 /

NMT_MS_PRE_OPERATIONAL_1

NMT_CS_PRE_OPERATIONAL_2 /
NMT_MS_PRE_OPERATIONAL_2

NMT_CS_READY_TO_OPERATE /
NMT_MS_READY_TO_OPERATE

NMT_CS_OPERATIONAL /
NMT_MS_OPERATIONAL

NMT_CS_STOPPED

NMT_CS_BASIC_ETHERNET

NMTResetCommunication NMT_CS_NOT_ACTIVE /
NMT_MS_NOT_ACTIVE

NMT_GS_INITIALISATION
sub-state

NMT_GS_RESET_COMMUNICATION NMT_CS_PRE_OPERATIONAL_1 /
NMT_MS_PRE_OPERATIONAL_1

NMT_CS_PRE_OPERATIONAL_2 /
NMT_MS_PRE_OPERATIONAL_2

NMT_CS_READY_TO_OPERATE /
NMT_MS_READY_TO_OPERATE

NMT_CS_OPERATIONAL /
NMT_MS_OPERATIONAL

NMT_CS_STOPPED

NMT_CS_BASIC_ETHERNET

NMTResetConfiguration NMT_CS_NOT_ACTIVE /
NMT_MS_NOT_ACTIVE

NMT_GS_INITIALISATION
sub-state
NMT_GS_RESET_CONFIGURATION NMT_CS_PRE_OPERATIONAL_1 /

NMT_MS_PRE_OPERATIONAL_1

NMT_CS_PRE_OPERATIONAL_2 /
NMT_MS_PRE_OPERATIONAL_2

NMT_CS_READY_TO_OPERATE /
NMT_MS_READY_TO_OPERATE

NMT_CS_OPERATIONAL /
NMT_MS_OPERATIONAL

NMT_CS_STOPPED

NMT_CS_BASIC_ETHERNET

NMTSwReset NMT_CS_NOT_ACTIVE /
NMT_MS_NOT_ACTIVE

NMT_GS_INITIALISATION
sub-state NMT_GS_INITIALISING

NMT_CS_PRE_OPERATIONAL_1 /
NMT_MS_PRE_OPERATIONAL_1

NMT_CS_PRE_OPERATIONAL_2 /
NMT_MS_PRE_OPERATIONAL_2

NMT_CS_READY_TO_OPERATE /
NMT_MS_READY_TO_OPERATE

NMT_CS_OPERATIONAL /
NMT_MS_OPERATIONAL

NMT_CS_STOPPED

NMT_CS_BASIC_ETHERNET

 Plain NMT state commands

EPSG DS 301 V1.5.1 -262-

All commands listed in Tab. 125 are mandatory. The commands shall be only acted on if the CN is in
the appropriate initial state (see Tab. 125); otherwise the command is ignored and an entry made in
the CN error log.

7.3.1.2.1.1 NMT Reset Commands to the MN
NMTSwReset, NMTResetNode, NMTResetConfiguration and NMTResetCommunication addressed to
the MN as unicast may be requested by a diagnostic node (refer 7.3.6). Since MN resets will affect the
complete network they shall be forwarded to all nodes. The requested command shall be performed
by the MN in the following way:

1. route the command to all CNs.

2. perform the requested reset.

7.3.1.2.2 Extended NMT State Command
Extended NMT State Commands are used to access groups of CNs.

The Asnd frame transporting the command is broadcast to all CNs.

The “NMTCommand Specific Data” field contains a POWERLINK Node List according to the
POWERLINK Node List Format (see 7.3.1.2.3). The POWERLINK Node List indicates the validity of
the command for the individual nodes (i.e. whether the node acts on the command). Node IDs to
which the command is addressed are indicated by 1b. Nodes that have to ignore the command are
indicated by 0b.

Tab. 126 lists the Extended NMT State Commands. Initial State, Destination State and the validity of
the commands at the initial states are identical to the respective plain commands (see Tab. 125).

NMTCommandID M/O

NMTStartNodeEx O

NMTStopNodeEx O

NMTEnterPreOperational2Ex O

NMTEnableReadyToOperateEx O

NMTResetNodeEx O

NMTResetCommunicationEx O

NMTResetConfigurationEx O

NMTSwResetEx O

 Extended NMT state commands

Support of Extended NMT State Commands is optional. Support shall be indicated by the object
dictionary index NMT_FeatureFlags_U32 Bit 5 and D_NMT_ExtNmtCmds_BOOL. The Flags don’t
differentiate particular Extended NMT State Commands. They indicate support of all Extended NMT
State Commands defined by this specification.

7.3.1.2.3 POWERLINK Node List Format
The POWERLINK Node List is transmitted by the NMTCommandData field.

The POWERLINK Node List format assigns one bit for each POWERLINK Node ID. The Node ID
assignment is given in Tab. 127.

EPSG DS 301 V1.5.1 -263-

 Bit offset

Octet offset 25 7 6 5 4 3 2 1 0

0 7 6 5 4 3 2 1 -

1 15 14 13 12 11 10 9 8

2 23 22 21 20 19 18 17 16

3 31 30 29 28 27 26 25 24

4 39 38 37 36 35 34 33 32

5 47 46 45 44 43 42 41 40

6 55 54 53 52 51 50 49 48

7 63 62 61 60 59 58 57 56

8 71 70 69 68 67 66 65 64

9 79 78 77 76 75 74 73 72

10 87 86 85 84 83 82 81 80

11 95 94 93 92 91 90 89 88

12 103 102 101 100 99 98 97 96

13 111 110 109 108 107 106 105 104

14 119 118 117 116 115 114 113 112

15 127 126 125 124 123 122 121 120

16 135 135 133 132 131 130 129 128

17 143 142 141 140 139 138 137 136

18 151 150 149 148 147 146 145 144

19 159 158 157 156 155 154 153 152

20 167 166 165 164 163 162 161 160

21 175 174 173 172 171 170 169 168

22 183 182 181 180 179 178 177 176

23 191 190 189 188 187 186 185 184

24 199 198 197 196 195 194 193 192

25 207 206 205 204 203 202 201 200

26 215 214 213 212 211 210 209 208

27 223 222 221 220 219 218 217 216

28 231 230 229 228 227 226 225 224

29 239 238 237 236 235 234 233 232

30 247 246 245 244 243 242 241 240

31 - 254 253 252 251 250 249 248

 POWERLINK node list: Node ID to bit assignment

7.3.2 NMT Managing Command Services

The MN uses NMT Managing Command Services to configure NMT-relevant entries in the database
of the CN. These commands do not directly influence the state machine of the CN.

NMT Managing Commands are transmitted in an ASnd frame by the MN. They are unicast to a single
CN or broadcast to all CNs (using the POWERLINK broadcast address C_ADR_BROADCAST).

The services are identified by ASnd ServiceID set to NMT_COMMAND.

Fig. 79 shows the protocol used to implement the NMT Managing Command Services.

25 Octet offset is measured from the beginning of NMTCommandData. The offset relative to the
Ethernet frame is 20 octets.

EPSG DS 301 V1.5.1 -264-

Fig. 79. NMT managing command service protocol

The ASnd ServiceID value of NMT Managing Command Services is NMT_COMMAND. The specific
NMT Managing Command identification and its data are located in the ASnd Payload field.

Field Abbr. Description Value

NMTCommandID cid qualifies the NMT Managing Command. Tab. 129

NMTCommandData cdat 0..C_DLL_MAX_PAYL_OFFSET – 6 octets of NMT
managing command-specific data to be issued by the MN.

The lower layers are responsible for padding.

 NMT Service Slot fields of NMT managing command services

The following NMT Managing Command Services are defined:

NMTCommandID M/O Short description

NMTNetHostNameSet O Sets hostname of an individual CN.

NMTFlushArpEntry O Clears local MAC and IP address list at all CNs.

 NMT managing command services

Support of particular NMT Managing Command Services shall be indicated by specific device
description entries (see 7.3.2.1.1, 7.3.2.1.2)

7.3.2.1 Service Descriptions

7.3.2.1.1 NMTNetHostNameSet
NMTNetHostNameSet sets the hostname of the CN.

NMTCommandID is NMTNetHostNameSet.

 Bit Offset

Octet offset 26 7 6 5 4 3 2 1 0

0 .. 31 HostName

 NMTCommandData structure of NMTNetHostNameSet

Field Abbr. Description Value

HostName hn May be used to modify CN’s local DNS hostname

 NMTCommandData data fields of NMTNetHostNameSet

The NMTNetHostNameSet command is addressed unicast to an individual CN.

After execution of NMTNetSetHostName command, the modified hostname is published by the CN.
Publishing is carried out in the following manner:

1. The CN indicates an ASnd Transmission Request using the RS bits of the Pres frame or a
StatusResponse ASnd frame using the priority level C_DLL_ASND_PRIO_NMTRQST.

2. The MN assigns the asynchronous phase to the CN via an SoA frame. (RequestedServiceID =
NMT_REQUEST_INVITE).

26 Octet offset is measured from the beginning of NMTCommandData. The offset relative to the
Ethernet frame is 20 octets.

 CN(s) MN

request (indication)

indication

(indication)

NMT Managing Command

ASnd
(ServiceID =

NMT_COMMAND)

EPSG DS 301 V1.5.1 -265-

3. The CN requests an IdentRequest to itself using the NMTRequest ASnd frame (see 7.3.6).

4. The MN transmits an SoA (RequestedServiceID = IDENT_REQUEST) to the requesting CN.

5. The CN publishes its modified HostName via an IdentResponse ASnd frame.

Support shall be indicated by D_NMT_NetHostNameSet_BOOL.

7.3.2.1.2 NMTFlushArpEntry
NMTFlushArpEntry removes the entries for a CN from the address tables of all other CNs. The entry
to be eliminated is indicated by the Node ID of the CN to be removed.

NMTCommandID is NMTFlushArpEntry.

 Bit Offset

Octet offset 27 7 6 5 4 3 2 1 0

0 Node ID

 NMTFlushArpEntry ASnd service slot structure

Field Abbr. Description Value

Node ID nid Identifies the node whose ARP entry is to be deleted. Using
C_ADR_BROADCAST flushes all ARP entries.

 NMTCommandData data fields of NMTFlushArpEntry

The NMTFlushArpEntry command is broadcast to all CNs.

Support shall be indicated by D_NMT_FlushArpEntry_BOOL.

7.3.3 NMT Response Services

NMT Response Services are used by the MN to query NMT information from the CN, e.g. current
state, error and setup data.

7.3.3.1 NMT State Response

The CNs shall signal their state to the MN via NMT State Response services.

CNs that communicate isochronously via PReq / PRes shall use the PRes frame to indicate their
current state.

Fig. 80 shows the protocol used to implement the NMT State Response Service from isochronously
communicating CNs. The service is mandatory on the MN and every CN device, that is able to
communicate isochronously.

Fig. 80. NMT state response service protocol (isochronous CN)

The MN shall receive the NMT State Response. CNs may receive NMT State Response if configured
to do so.

CNs which do not communicate isochronously (i.e. Async-only CNs or ioschronous CNs in state
NMT_CS_PRE_OPERATIONAL_1) shall signal their state via StatusResponse and IdentResponse

27 Octet offset is measured from the beginning of NMTCommandData. The offset relative to the
Ethernet frame is 20 octets.

confirmation

CN (s)

MN CN
(iso chr.)

re quest

NMT State Response

PReq
indication

PRes
response

EPSG DS 301 V1.5.1 -266-

ASnd frames. Isochronous CNs in NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE or NMT_CS_OPERATIONAL may be triggered by the MN to
respond via StatusResponse and IdentResponse ASnd frames.

Fig. 81 shows the protocol used to implement the NMT Response Service from CNs that are not
communicating isochronously. The service is mandatory on the MN and every CN device.

Fig. 81. NMT state response service protocol (async-only CN)

The MN shall receive the NMT State Response. CNs may receive the NMT State Response if
configured to do so and if the NMT State Response is transmitted via an IdentResponse ASnd frame.

NMT State Response shall use the following data fields of the PRes, StatusResponse or
IdentResponse frames:

• NMTState

NMTState shall report the current NMT state of the CN.

If the NMT state reponse requesting message triggers a CN NMT state transition, the pre-
transition state shall be reported. No response shall be issued if the CN is in state
NMT_CS_NOT_ACTIVE when receiving the request.

• Exception New (EN)

EN shall report unread entries at the CN emergency queue (see 6.5.2).

• Exception Clear (EC)

EC shall be used by Error Signaling management (see 6.5.2). EC shall be operated by
StatusResponse and IdentResponse only.

Refer to 4.6.1.1.4, 7.3.3.2.1 and 7.3.3.3.1 for detailed information about frame format.

7.3.3.2 IdentResponse Service

Fig. 82. IdentResponse service protocol

confirmation response

SoA
(RequestedServiceID =

IDENT_REQUEST)

ASnd
(ServiceID =

IDENT_RESPONSE)

CN(s)

MN CN

request

IdentResponse

indication

confirmation response

SoA
(RequestedServiceID =
S TATUS_REQUEST /

IDENT_REQUEST)

ASnd
(Se rviceID =

STATUS_RE SPONSE /
IDENT_RE SPONSE)

CN (s)

MN CN
(a sync .)

re quest

NMT State Response

indication

EPSG DS 301 V1.5.1 -267-

The IdentResponse service is used by the MN to identify configured but unrecognized CNs at system
startup or after loss of communication. The service may be used after start-up to query a CN’s setup
information.

Fig. 82 shows the protocol that is used to implement the IdentResponse service. The service is
mandatory on the MN and every CN device.

ASnd frames transporting IdentResponses are broadcast. The MN shall receive IdentResponses; CNs
may receive IdentResponses if configured to do so.

The IdentResponse service may be initiated by a CN via the NMT Request mechanism (see 7.3.6).
The NMTRequestedCommandID field of the NMT requesting ASnd frame shall be set to
IDENT_REQUEST.

7.3.3.2.1 IdentResponse Frame
The IdentResponse service frames are identified by ASnd ServiceID set to IDENT_RESPONSE.

 Bit Offset

Octet Offset 28 7 5 4 3 2 1 0

0 res res res res res res res res

1 res29 res30 PR RS

2 NMTState

3 Reserved

4 EPLVersion

5 Reserved

6 .. 9 FeatureFlags

10 .. 11 MTU

12 .. 13 PollInSize

14 .. 15 PollOutSize

16 .. 19 ResponseTime

20 .. 21 Reserved

22 .. 25 DeviceType

26 .. 29 VendorID

30 .. 33 ProductCode

34 .. 37 RevisionNumber

38 .. 41 SerialNumber

42 .. 49 VendorSpecificExtension1

50 .. 53 VerifyConfigurationDate

54 .. 57 VerifyConfigurationTime

58 .. 61 ApplicationSwDate

62 .. 65 ApplicationSwTime

66 .. 69 IPAddress

70 .. 73 SubnetMask

74 .. 77 DefaultGateway

78 .. 109 HostName

110 .. 157 VendorSpecificExtension2

 NMT Service Slot structure of IdentResponse

28 Octet Offset is measured from the begin of the ASnd Payload field. The offset relative to the
beginning of the Ethernet frame is 18 octets.
29 Used by EPSG DS302-A [1]
30 Used by EPSG DS302-A [1]

EPSG DS 301 V1.5.1 -268-

Field Abbr Description Value

Priority PR Flags: Indicates the priority of the requested
asynchronous frame.
(see 4.2.4.1.2.3)

RequestToSend RS Flags: Indicates the number of pending requests to
send at the CN. The value C_DLL_MAX_RS indicates
C_DLL_MAX_RS or more requests, 0 indicates no

pending request.

0 – C_DLL_MAX_RS

NMTState stat Reports the current status of the CN’s NMT state
machine.

EPLVersion eplv Indicates the POWERLINK Version to which the CN
conforms.
coding of entry (see Tab. 112)

FeatureFlags feat Reports the device’s feature flags
(NMT_FeatureFlags_U32)

MTU mtu Reports the largest packet-size of the ISO/OSI
network layer that can be transmitted over the
network. See

NMT_MNCycleTiming_REC.AsyncMTU_U16

C_DLL_MIN_ASYNC_MTU –
C_DLL_MAX_ASYNC_MTU

PollInSize pis Reports the actual CN setting for Preq data block size
(NMT_CycleTiming_REC.PreqActPayloadLimit_U16).

PollOutSize pos Reports the actual CN setting for Pres data block size
(NMT_CycleTiming_REC.PresActPayloadLimit_U16).

ResponseTime rst Reports the time required by the CN to respond to
Preq
(NMT_CycleTiming_REC.PresMaxLatency_U32).

DeviceType dt Reports the CN’s Device type
(NMT_DeviceType_U32).

VendorID vid Reports the CN’s Vendor ID, index
(NMT_IdentityObject_REC.VendorId_U32)

ProductCode prdc Reports the CN’s Product Code, index
(NMT_IdentityObject_REC.ProductCode_U32)

RevisionNumber rno Reports the CN’s Revision Number,
(NMT_IdentityObject_REC.RevisionNo_U32).

SerialNumber sno Reports the CN’s Serial Number,
(NMT_IdentityObject_REC.SerialNo_U32).

VendorSpecific-
Extension1

vex1 May be used for vendor specific purpose, to be filled
with zeros if not in use.

Verify-
ConfigurationDate

vcd Reports the CN’s Configuration date
(CFM_VerifyConfiguration_REC.ConfDate_U32).

Verify-
ConfigurationTime

vct Reports the CN’s Configuration time
(CFM_VerifyConfiguration_REC.ConfTime_U32).

ApplicationSW-
Date

ad Reports the CN’s Application SW date
(PDL_LocVerApplSw_REC.ApplSwDate_U32 on
programmable device or date portion of
NMT_ManufactSwVers_VS on non-programmable
device).

ApplicationSW-
Time

at Reports the CN’s Application SW time
(PDL_LocVerApplSw_REC.ApplSwTime_U32 on
programmable device or
time portion of NMT_ManufactSwVers_VS on non-
programmable device).

IPAddress ipa Reports the current IP address value of the CN
(NWL_IpAddrTable_Xh_REC.Addr_IPAD).

SubnetMask snm Reports the current IP subnet mask value of the CN
(NWL_IpAddrTable_Xh_REC.NetMask_IPAD).

DefaultGateway gtw Reports the current IP default gateway value of the
CN (NWL_IpAddrTable_Xh_REC.DefGateway_IPAD).

HostName hn Reports the current DNS hostname of the CN
(NMT_HostName_VSTR).
Unused bytes of the hostname shall be set to 0h in the
IdentResponse.

EPSG DS 301 V1.5.1 -269-

Field Abbr Description Value

VendorSpecific-
Extension2

vex2 May be used for vendor specific purpose, to be filled
with zeros if not in use.

 NMT Service Slot data fields of IdentResponse

If the respective object dictionary entry is not implemented by the device, the data field shall be set to
0 resp. empty string.

7.3.3.3 StatusResponse Service

The StatusResponse service is used by the MN to query the current status of CNs that are not
communicating isochronously.

Fig. 83 shows the protocol used to implement the StatusResponse Service. The service is mandatory
on the MN and every CN device.

ASnd frames transporting StatusResponses are broadcast. The MN shall receive StatusResponses;
CNs may receive StatusResponses if configured to do so.

The StatusResponse service can be initiated by a CN via the NMT Request mechanism (7.3.6). The
NMTRequestedCommandID entry of the NMT requesting ASnd frame is set to STATUS_REQUEST.

confirmation response

SoA
(RequestedServiceID =
STATUS_REQUEST)

ASnd
(ServiceID =

STATUS_RESPONSE)

CN(s)

MN CN

request

StatusResponse

indication

Fig. 83. StatusResponse service protocol

7.3.3.3.1 StatusResponse Frame
The StatusResponse service frames are identified by ASnd ServiceID set to STATUS_RESPONSE.

 Bit Offset

Octet offset 31 7 6 5 4 3 2 1 0

0 res res res EN EC res res res

1 res32 res33 PR RS

2 NMTState

3 .. 5 Reserved

6 .. 13 StaticErrorBitField

14 .. 14+n*20 List of Errors / Events (see 6.5.8)

20 Byte / Entry , minimum n=2

n (2-14) : Number of error/event entries

 NMT Service Slot structure of StatusResponse

31 Octet Offset is measured from the begin of the ASnd Payload field. The offset relative to the
beginning of the Ethernet frame is 18 octets.
32 Used by EPSG DS302-A [1]
33 Used by EPSG DS302-A [1]

EPSG DS 301 V1.5.1 -270-

Field Abbr Description Value

ExceptionNew EN Flag: Error signaling (see 6.5.2).

ExceptionClear EC Flag: Error signaling (see 6.5.2).

Priority PR Flags: indicates the priority of the requested
asynchronous frame. (see 4.2.4.1.2.3).

RequestToSend RS Flags: indicates the number of pending requests to
send at the CN. The value C_DLL_MAX_RS indicates
C_DLL_MAX_RS or more requests, 0 indicates no
pending request.

0 –
C_DLL_MAX_RS

NMTState stat Reports the current status of the CN’s NMT state
machine.

StaticErrorBitfield seb Specific bits are set to indicate pending errors at the
CN
(see 6.5.8.1 for encoding of errors in the bit field).

ErrorCodeList

el Contains a list of errors, that have occurred at the CN.
Each Error Code has a size of 20 octets (see 6.5.8.2).
The lower layer is responsible for padding.
Maximum size of ErrorCodeList is device specific. It is
indicated by D_NMT_ErrorEntries_U32.

 NMT Service Slot data fields of StatusResponse

7.3.4 NMT Info Services

NMT Info Services are used to transmit complex status information in the form of bundles as well as to
distribute system-relevant setup information from the MN to the CNs.

All NMT Info services are transmitted via ASnd by the MN.

The target CNs are unicast via the ASnd Destination field to one CN or broadcast to all CNs.

NMT Info Services are identified by ASnd ServiceID = NMT_COMMAND.

Fig. 84 shows the protocol used to implement the NMT Info services.

Fig. 84. NMT info service protocol

The particular NMT Info services including their data are located in the NMT Service Slot.

The NMT Info Services use the following parameters of the NMT Service slot:

Field Abbr. Description Value

NMTCommandID cid qualifies the NMT Info service. Tab. 139

NMTCommandData cdat 0..C_DLL_MAX_PAYL_OFFSET – 4 octets of NMT Info
Service-specific data to be issued by the MN.

The lower layers are responsible for padding.

 NMT Service Slot data fields of NMT managing info services

The following NMT Info services are defined:

CN(s) MN

request (indication)

indication

(indication)

NMT Info

ASnd
(ServiceID =

NMT_COMMAND)

EPSG DS 301 V1.5.1 -271-

NMTCommandID Producer Consumer Short description

MN CN MN CN

NMTPublishConfiguredNodes Y Y Y Y Provides CNs declared in the configuration of
the MN.

NMTPublishActiveNodes Y N Y Y Provides CNs that have been identified by
the MN.

NMTPublishPreOperational1 Y N Y Y Provides active CNs in the state
NMT_CS_PRE_OPERATIONAL_1.

NMTPublishPreOperational2 Y N Y Y Provides active CNs in the state
NMT_CS_PRE_OPERATIONAL_2.

NMTPublishReadyToOperate Y N Y Y Provides CNs in the state
NMT_CS_READY_TO_OPERATE.

NMTPublishOperational Y N Y Y Provides CNs in the state
NMT_CS_OPERATIONAL.

NMTPublishStopped Y N Y Y Provides CNs in the state
NMT_CS_STOPPED.

NMTPublishNodeStates Y N Y Y Provides current NMT states

NMTPublishEmergencyNew Y N Y Y Provides active CNs with the exception new
flag (EN) set.

NMTPublishTime Y Y Y Y Provides the system time.

 NMT info services

In the object dictionary support shall be indicated by Index NMT_FeatureFlags_U32 Bit 4. The flags do
not differentiate particular NMT Info Services. They indicate support of at least one NMT Info Services
defined by this specification.

Support of particular NMT Info Services shall be indicated by specific device description entries (see
7.3.4.1.1 to 7.3.4.1.10).

7.3.4.1 Service Descriptions

7.3.4.1.1 NMTPublishConfiguredNodes
Using the NMTPublishConfiguredNodes service, the MN or a CN may publish a list of nodes
configured in its configuration.

The NMTPublishConfiguredNodes service uses the POWERLINK Node List format (see 7.3.1.2.3).
Node IDs that correspond to configured CNs are indicated by 1b.

Information to be published is obtained from NMT_NodeAssignment_AU32 sub-index Bit 1.

Support shall be indicated by D_NMT_PublishConfigNodes_BOOL.

7.3.4.1.2 NMTPublishActiveNodes
Using the NMTPublishActiveNodes service, the MN may publish a list of the active nodes.

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices. CNs in the
states NMT_CS_PRE_OPERATIONAL_1, NMT_CS_PRE_OPERATIONAL_2,
NMT_CS_READY_TO_OPERATE, NMT_CS_OPERATIONAL and NMT_CS_STOPPED are
regarded active.

The NMTPublishActiveNodes service uses the POWERLINK Node List format (see 7.3.1.2.3). Node
IDs that correspond to active CNs are indicated by 1b.

The MN itself is regarded to be ever active.

Support shall be indicated by D_NMT_PublishActiveNodes_BOOL.

7.3.4.1.3 NMTPublishPreOperational1
Using the NMTPublishPreOperational1 service, the MN may publish a list of nodes in the state
NMT_CS_PRE_OPERATIONAL_1 resp. NMT_MS_PRE_OPERATIONAL_1.

The NMTPublishPreOperational1 service uses the POWERLINK Node List format (see 7.3.1.2.3).
Node IDs that correspond to active nodes in the state NMT_CS_PRE_OPERATIONAL_1 or
NMT_MS_PRE_OPERATIONAL_1 are indicated by 1b.

EPSG DS 301 V1.5.1 -272-

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices.

Support shall be indicated by D_NMT_PublishPreOp1_BOOL.

7.3.4.1.4 NMTPublishPreOperational2
Using the NMTPublishPreOperational2 service, the MN may publish a list of nodes in the state
NMT_CS_PRE_OPERATIONAL_2 resp. NMT_MS_PRE_OPERATIONAL_2.

The NMTPublishPreOperational2 service uses the POWERLINK Node List format (see 7.3.1.2.3).
Node IDs that correspond to active nodes in the state NMT_CS_PRE_OPERATIONAL_2 or
NMT_MS_PRE_OPERATIONAL_2 are indicated by 1b.

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices.

Support shall be indicated by D_NMT_PublishPreOp2_BOOL.

7.3.4.1.5 NMTPublishReadyToOperate
Using the NMTPublishReadyToOperate service, the MN may publish a list of nodes in the state
NMT_CS_READY_TO_OPERATE resp. NMT_MS_READY_TO_OPERATE.

The NMTPublishReadyToOperate service uses the POWERLINK Node List format (see 7.3.1.2.3).
Node IDs that correspond to active nodes in the state NMT_CS_READY_TO_OPERATE or
NMT_MS_READY_TO_OPERATE are indicated by 1b.

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices.

Support shall be indicated by D_NMT_PublishReadyToOp_BOOL.

7.3.4.1.6 NMTPublishOperational
Using the NMTPublishOperational service, the MN may publish a list of nodes in the state
NMT_CS_OPERATIONAL resp. NMT_MS_OPERATIONAL.

The NMTPublishOperational service uses the POWERLINK Node List format (see 7.3.1.2.3). Node
IDs that correspond to active CNs in the state NMT_CS_OPERATIONAL or
NMT_MS_OPERATIONAL are indicated by 1b.

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices.

Support shall be indicated by D_NMT_PublishOperational_BOOL.

7.3.4.1.7 NMTPublishStopped
Using the NMTPublishStopped service, the MN may publish a list of CNs in the state
NMT_CS_STOPPED.

The NMTPublishStopped service uses the POWERLINK Node List format (see 7.3.1.2.3). Node IDs
that correspond to active CNs in the state NMT_CS_STOPPED are indicated by 1b.

Information to be published is obtained from NMT_MNNodeCurrState_AU8 sub-indices.

Support shall be indicated by D_NMT_PublishStopped_BOOL.

7.3.4.1.8 NMTPublishNodeStates
Using the NMTPublishNodeStates service, the MN may publish the current NMT states of the
POWERLINK nodes as listed in NMT_MNNodeCurrState_AU8 (7.2.2.4.1).

 Bit Offset

Octet Offset 34 7 6 5 4 3 2 1 0

0 reserved

1 .. 254 NMTState

 NMTCommandData structure of NMTPublishNodeStates

Field Abbr. Description Value

NMTState stat Current NMT state of POWERLINK Nodes
Octet Offset = POWERLINK Node ID

 NMTCommandData data fields of NMTPublishNodeStates

34 Octet offset is measured from the beginning of NMTCommandData. The offset relative to the
Ethernet frame is 20 octets.

EPSG DS 301 V1.5.1 -273-

The octet offset not corresponding to a node configured by index NMT_NodeAssignment_AU32[sub-
index] Bits 1 and 2 shall be set to NMT_GS_OFF.

Support shall be indicated by D_NMT_PublishNodeState_BOOL.

7.3.4.1.9 NMTPublishEmergencyNew
Using the NMTPublishEmergencyNew service, the MN may publish a list of nodes with the Exception
New flag (EN) set.

The NMTPublishEmergencyNew service uses the POWERLINK Node List format (see 7.3.1.2.3).
Node IDs that correspond to nodes with the EN flag set are indicated by 1b.

Support shall be indicated by D_NMT_PublishEmergencyNew_BOOL.

7.3.4.1.10 NMTPublishTime
Using the NMTPublishTime service, the MN or a CN publishes date and time.

 Bit Offset

Octet Offset 35 7 6 5 4 3 2 1 0

0 .. 5 DateTime

 NMTCommandData structure of NMTPublishTime

Field Abbr. Description Value

DateTime dt Current RTC time value of the MN coded as TIME_OF_DAY.

 NMTCommandData data fields of NMTPublishTime

Support shall be indicated by D_NMT_PublishTime_BOOL

7.3.5 NMT Guard Services

MN and CNs may detect failures in an Ethernet POWERLINK-based network using NMT Guard
Services. NMT Guard services are optional.

Local errors in a node may for example lead to a reset or change of state. The definition of such local
errors is not within the scope of this specification.

7.3.5.1 Guarding CNs

Ethernet POWERLINK may use a guard mechanism to monitor nodes. The MN queries the CNs and
receives their replies.

In order to query isochronously-addressed CNs in the POWERLINK Mode, the guard mechanism uses
the ioschronous PReq / PRes message exchange.

The supervising node monitors the reception of PRes frames from the monitored node. If the PRes
frames do not arrive in time, the supervising node informs its application.

Due to the multicast transmission of the PRes frame, CNs are able to monitor other CNs.

If the MN transmits PRes, it may be monitored by the CNs too.

The monitoring time is configurable via the object dictionary entry
NMT_ConsumerHeartbeatTime_AU32.

7.3.5.1.1 Guarding Async-Only CNs
An asynchronous channel is allocated to nodes which are not addressed isochronously. They are
queried by the MN via a StatusRequest SoA telegram and respond with a StatusResponse ASnd
message. If no StatusResponse is received within the monitoring time, the MN informs its application.

The guarded CN is the only one that receives the StatusRequest, other CNs shall ignore it. They shall
not rely on a StatusRequest frequency satisfying their guard time requirements regarding the
respective CN. That’s why, no guarding of async-only CNs by other CNs is possible.

Hint: StatusRequest and StatusResponse transmission is affected by the asynchronous scheduling
mechanism. The timing severely influenced by the sum of asynchronous transmission requests in the

35 Octet offset is measured from the beginning of NMTCommandData. The offset relative to the
Ethernet frame is 20 octets.

EPSG DS 301 V1.5.1 -274-

system. That’s why, NMT_ConsumerHeartbeatTime_AU32 of async-only CNs shall be set to large
values.

7.3.5.2 Guarding the MN

The CNs may control the function of the MN by timeout-monitoring the SoC frames (see 7.3.1.1). If a
CN does not receive any frames, it changes to the state NMT_CS_PRE_OPERATIONAL_1. This
transition is signalled to the CN’s application.

7.3.6 Request NMT Services by a CN

A CN may request the execution of explicit NMT State Commands, NMT Management Commands,
NMT Info Services, IdentResponse and StatusResponse services at the MN.

1. The CN indicates an NMTRequest using the RS bits of the PRes frame or a StatusResponse ASnd
Frame using the priority level C_DLL_ASND_PRIO_NMTRQST.

2. The MN assigns the asynchronous phase to the CN via SoA (RequestedServiceID =
NMT_REQUEST_INVITE).

3. The CN requests the desired service using the ASnd NMTRequest frame (ServiceID =
NMT_REQUEST).

The service is mandatory on the MN.

7.3.6.1 NMTRequest Frame

NMTRequests are transmitted by a CN via ASnd upon assignment of the asynchronous phase via an
NMTRequestInvite SoA frame.

The NMTRequest frames are identified by ASnd ServiceID = NMT_REQUEST.

 Bit Offset

Octet offset 36 7 6 5 4 3 2 1 0

0 NMTRequestedCommandID

1 NMTRequestedCommandTarget

2 .. n NMTRequestedCommandData

n ≤ C_DLL_MAX_PAYL_OFFSET – 4

 NMT Service Slot structure of NMTRequest

Field Abbr. Description Value

NMTRequested-
CommandID

rcid The NMT service to be issued by the MN by its
NMTCommandID value.
StatusResponse and IdentResponse services are indicated by
the SoA RequestedServiceID values STATUS_REQUEST
and IDENT_REQUEST.

NMTRequested-
CommandTarget

rct Indicates the target node of the requested NMT command.

NMTRequested-
CommandData

rcd 0..C_DLL_MAX_PAYL_OFFSET – 6 octets of NMT command-
specific data to be issued by the MN.

The lower layers are responsible for padding.

 NMT Service Slot data fields of an NMTRequest frame

The NMTRequest ASnd frame is unicast to the MN.

7.3.6.1.1 Invalid NMTRequests
If the CN requests an NMT service not supported by the MN, the MN responds with a unicast ASnd
frame with ServiceID = NMT_COMMAND to the requesting CN.

The NMTCommandID NMTInvalidService is used:

36 Octet offset is measured from the begin of the ASnd Payload field. The offset relative to the
beginning of the Ethernet frame is 18 octets.

EPSG DS 301 V1.5.1 -275-

This special service is mandatory. It must not influence the state machine of the CNs and must not
transport any data to the CN.

7.3.7 NMT Services via Object Dictionary

7.3.7.1 NMT Reset Commands

The NMT Command Services NMTSwReset, NMTResetNode, NMTResetConfiguration, and
NMTResetCommunication may be initiated by writing the respective NMTServiceID to
NMT_ResetCmd_U8.

NMT Reset via NMT_ResetCmd_U8 should be applied to CNs in NMT_CS_BASIC_ETHERNET only.
If applied to nodes in NMT_CS_EPL_MODE or NMT_MS_EPL_MODE, resets by
NMT_ResetCmd_U8 may violate the NMT rules and stimulate DLL and NMT Guarding errors. Use
NMT Request via Object Dictionary (see 7.3.7.2) instead.

7.3.7.2 NMT Requests to the MN

NMT Requests may be posted to the MN by writing to NMT_RequestCmd_REC.

The objects sub-indices shall be mapped to the NMT Service Slot of a virtual NMTRequest Frame
(see 7.3.6.1):

NMT_RequestCmd_REC.CmdID_U8 → NMTRequested-CommandID

NMT_RequestCmd_REC.CmdTarget_U8 → NMTRequested-CommandTarget

NMT_RequestCmd_REC.CmdData_DOM → NMTRequested-CommandData

The NMT Request shall be triggered by writing TRUE to NMT_RequestCmd_REC.Release_BOOL.

The NMT Services via Object Dictionary mechanism does not provide a response channel. Therefore,
only Explicit NMT State Command Services (see 7.3.1.2) may by requested via Object Dictionary.

7.3.8 NMT Services via UDP/IP

NMT requests coming from a diagnostic node outside of the POWERLINK segment via a router may
be hosted by UDP/IP frames. Hosting shall be in accordance to the POWERLINK compliant UDP/IP
format (see 4.6.1.2).

The NMT Services via UDP/IP mechanism does not provide a response channel. Therefore, only
Explicit NMT State Command Services (see 7.3.1.2) may by requested via UDP/IP.

Support of NMT Services via UDP/IP by an MN is optional. Support shall be indicated by object
dictionary entry NMT_FeatureFlags_U32 Bit 7 and D_NMT_ServiceUdpIp_BOOL.

EPSG DS 301 V1.5.1 -276-

7.4 Boot-up Managing Node

7.4.1 NMT_MS dependant Network Boot-up

7.4.1.1 Overview

When a POWERLINK Node starts after PowerOn (NMT_GT1), Reset (NMT_GT2) or NMTSwReset
(NMT_GT8), the state machine will begin to execute according to the NMT state diagram of a
POWERLINK node (see 7.1.2) and will attain the NMT_GS_INITIALISATION state automatically. After
completion of the initialisation, the node will enter the super state NMT_GS_COMMUNICATING. In
this super state the node will perform as either a Managing Node (MN) or Controlled Node (CN)
depending on the configured Node ID. The state NMT_GS_INITIALISATION is reachable from every
state within the super state after processing the NMT command service NMTResetNode (NMT_GT4),
NMTResetCommunication (NMT_GT5), NMTResetConfiguration (NMT_GT7), NMTSwReset
(NMT_GT8) or after internal errors (NMT_GT6).

7.4.1.2 NMT_MS_NOT_ACTIVE

There shall be only one active MN on a POWERLINK network.The purpose of the state
NMT_MS_NOT_ACTIVE is to enable a potential MN to detect whether the bus is already managed by
another MN.

Detecting SoC or SoA during this state indicates to the potential MN that the network already has an
active MN.

The state NMT_MS_NOT_ACTIVE is entered from the NMT_GS_INITIALISATION state (NMT_MT1).

NMT_MS_NOT_ACTIVE

Enter State
„NMT_MS_NOT_ACTIVE“
from
„NMT_GS_INITIALISATION“

Timeout

SoA/ SoC
received Check bus activity

NMT_BootTime_REC.MnWaitNotAct_U32

Inform application
Error status E_NMT_BA1

Halt network boot-up procedure

NMT_MT2

NMT_MT1

Leave State
„NMT_MS_NOT_ACTIVE“
to
- „NMT_MS_PRE_OPERATIONAL_1“

Fig. 85. State NMT_MS_NOT_ACTIVE

EPSG DS 301 V1.5.1 -277-

In the state NMT_MS_NOT_ACTIVE the MN proceeds as follows:

• Check for bus activity. Reception of SoC or SoA frames indicates that another MN is currently
managing the network. In case of the reception of SoA or SoC frames, the error

• E_NMT_BA1 (see 7.4.3.1)

shall be signalled to the MN application.

The current MN state shall be maintained. The MN shall halt network boot-up procedure.

• If the potential MN does not detect either SoC or SoA frames within a time interval defined by
index NMT_BootTime_REC.MNWaitNoAct_U32, it shall transition from
NMT_MS_NOT_ACTIVE to NMT_MS_PRE_OPERATIONAL_1.

7.4.1.3 NMT_MS_PRE_OPERATIONAL_1

In the state NMT_MS_PRE_OPERATIONAL_1 the MN assumes bus master-ship. It will attempt to
reach all configured CNs and examine their configuration versions. The MN communicates with the
CN using the Reduced POWERLINK Cycle (SoA and Asnd frames) (see 4.2.4.2). In case of
communication errors such as frame losses, the MN signals the error to the application. If the error
was caused by a mandatory node, the MN shall remain in this state.

This state is entered from the NMT_MS_NOT_ACTIVE (NMT_MT2) or the NMT_MS_OPERATIONAL
(NMT_MT6) state.

The steps of the network boot process in NMT_MS_PRE_OPERATIONAL_1 are as follows:

• If the state was entered from NMT_MS_NOT_ACTIVE (NMT_MT2), all nodes of the network will
be reset using the NMT command service NMTResetNode.

• Initiate boot process BOOT_STEP1 for all configured CNs.
Configured CNs are identified by:

• NMT_NodeAssignment_AU32[1..254].Bit0

• NMT_NodeAssignment_AU32[1..254].Bit1

• If mandatory CNs are booted sequentially, the boot process shall not be halted in case of an
error associated with the particular CN. The MN shall continue to attempt to contact all
configured but not responding CNs.

• If an application SW update of one or more nodes was done, the MN must send out the NMT
command

• NMTSwReset

to all CNs and restart the BOOT_STEP1 for all configured CNs.

• When the BOOT_STEP1 process has been successfully terminated for all mandatory CNs, the
MN may switch to the state NMT_MS_PRE_OPERATIONAL_2
Mandatory CNs are identified by :

• NMT_NodeAssignment_AU32[1..254].Bit3

• The MN can switch to the state NMT_MS_PRE_OPERATIONAL_2 either automatically or
under control of the application. The transition policy is defined by:

• NMT_StartUp_U32.Bit7.

If the waiting time interval

• NMT_BootTime_REC.MnWaitPreOp1_U32

has not expired, the MN waits in this state until the waiting time expires.

• If BOOT_STEP1 has not been processed successfully for all mandatory CNs, the MN shall
signal the error

• E_NMT_BPO1 (see 7.4.3.2)

to the MN application.

In this case the MN shall halt the network boot-up procedure and maintain its current state.

• If optional CNs answered with IdentResponse successfully, but could not finish BOOT_STEP1
without errors, the application will be notified. In this case the network boot procedure for these
particular CNs shall be restarted.

EPSG DS 301 V1.5.1 -278-

Fig. 86. Detail state NMT_MS_PRE_OPERATIONAL_1

7.4.1.4 NMT_MS_PRE_OPERATIONAL_2

In the state NMT_MS_PRE_OPERATIONAL_2 the MN will initiate isochronous communication with
the CNs and insure their transition from NMT_CS_PRE_OPERATIONAL_2 to
NMT_CS_READY_TO_OPERATE.

When all mandatory CNs have reached the NMT_CS_READY_TO_OPERATE state, the MN will
change to the state NMT_MS_READY_TO_OPERATE.

In case of an error associated with the mandatory CNs, the MN will signal the error to the application.
In this case the MN shall halt the network boot-up procedure and maintain its current state.

The NMT_MS_PRE_OPERATIONAL_2 state is entered from the NMT_MS_PRE_OPERATIONAL_1
(NMT_MT3) state.

NMT_MS_PRE_OPERATIONAL_1

Enter State

„NMT_MS_PRE_OPERATIONAL_1“

From

„NMT_MS_NOT_ACTIVE“

„NMT_MS_OPERATIONAL“

Inform application
Error status E_NMT_BPO1

Halt network boot- up procedure

Timeout

BOOT_STEP1 E_NOK

Automatically Enter

NMT_MS_PRE_

OPERATIONAL_2

Wait for application

Enter

NMT_MS_PRE_

OPERATIONAL_2

from application expected

Leave State

„NMT_MS_PRE_OPERATIONAL_1“

to

„NMT_MS_PRE_OPERATIONAL_2“

one and more mandatory
BOOT_STEP1

E_NOK

NMT_NodeAssignment_AU32[1..254].Bit0

NMT_NodeAssignment_AU32[1..254].Bit1

CN Boot
Perform BOOT_STEP1

on all CNs

NMT_StartUp_U32.Bit7

Triggered by application

NMT_MT6 NMT_MT2

NMT_NodeAssignment_AU32[1..254].Bit3

NMT_MT3

All mandatory

BOOT_STEP1 E_OK

Wait for end of

NMT_MS_PRE_OPERATIONAL_1

NMT_BootTime_REC.MNWaitPreOp1_U32

One or more

CN with new Software

Send NMT command Service

NMTSwReset to all CNs

Send NMT command Service
NMT ResetNode to all CNs

 No Software Updates

All Nodes

BOOT_STEP1 E_OK

EPSG DS 301 V1.5.1 -279-

Fig. 87. Detail state NMT_MS_PRE_OPERATIONAL_2

The network boot steps and tasks in the NMT_MS_PRE_OPERATIONAL_2 state are as follows:

• Start isochronous POWERLINK Cycle with SoC /SoA frames to synchronise the CNs to the MN
POWERLINK Cycle.

• Start process BOOT_STEP2 for all configured CNs. Configured CNs are identified by:

• NMT_NodeAssignment_AU32[1..254].Bit0

• NMT_NodeAssignment_AU32[1..254].Bit1

• After the BOOT_STEP2 process is successfully terminated for all mandatory CNs (all
mandatory CNs are in the NMT_CS_READY_TO_OPERATE state), the MN itself shall switch to
the state NMT_MS_READY_TO_OPERATE direct or after application trigger, depending on the
following object:

• NMT_StartUp_U32.Bit8

Mandatory CNs are identified by:

• NMT_NodeAssignment_AU32[1..254].Bit3

In case of errors or timeout condition during the BOOT_STEP2 process of one or more mandatory
CN, the error

• E_NMT_BPO2 (see 7.4.3.3)

shall be signaled to the application.

• Errors of optional CNs in BOOT_STEP2 shall be signaled to the application. The network boot-
up process for these CNs shall be restarted.

NMT_MS_PRE_OPERATIONAL_2

Enter State

„NMT_MS_PRE_OPERATIONAL_2“

from

„NMT_MS_PRE_OPERATIONAL_1“

Inform application

Error status E_NMT_BPO2
Halt

 n etwork boot- up procedure

Automatically Enter

NMT_MS_READY_TO_OPERATE

Wait for application

Enter

NMT_MS_READ Y_TO_OPERATE
from application expected

Leave State

„NMT_MS_PRE_OPERATIONAL_2“

to

„NMT_MS_READY_TO_OPERATE“

 Start Isochronous

POWERLINK cycle

NMT_StartU p_U32.Bit8

NMT_MT3

NMT_MT4

Triggered by application

Timeout and / or

BOOT_STEP2 E_NOK

one or more mandatory

BOOT_STEP2
E_NOK

BOOT_STEP2

NMT_NodeAssignment_AU32[1..254].Bit3

All Nodes

BOOT_STEP2 E_OK

All mandatory

BOOT_STEP2

E_OK

EPSG DS 301 V1.5.1 -280-

• Keep trying to engage previous boot-up processes for all configured optional CNs.

7.4.1.5 NMT_MS_READY_TO_OPERATE

Fig. 88. Detail state NMT_MS_READY_TO_OPERATE

The purpose of the network boot process in NMT_MS_READY_TO_OPERATE state is to start and
check the isochronous communication with all identified isochronous CNs. The length of the
isochronous frames shall be checked against the configured values of
NMT_PresPayloadLimitList_AU16.

If isochronous communication with all mandatory CNs operates correctly, the MN may enter the
NMT_MS_OPERATIONAL state.

In case of communication or configuration errors within one or more mandatory CNs, the MN signals
the error to the application and shall remain in this state.

This NMT state is entered from the NMT_MS_PRE_OPERATIONAL_2 state (NMT_MT4).

In the state NMT_MS_READY_TO_OPERATE the MN proceeds as follows:

• Start process CHECK_COMMUNICATION for all configured CN.
Configured CNs are identified by:

• NMT_NodeAssignment_AU32[1..254].Bit0

• NMT_NodeAssignment_AU32[1..254].Bit1

• After the CHECK_COMMUNICATION process is terminated successfully for all mandatory CNs,
the MN shall switch to the state NMT_MS_OPERATIONAL direct or after the application trigger.
The transition policy is defined by:

• NMT_StartUp_U32.Bit2

Mandatory CNs are identified by:

NMT_MS_READY_TO_OPERATE

Enter State „NMT_MS_READY_TO_OPERATE“

from

- „NMT_MS_PRE_OPERATIONAL_2“

Inform application

Error status E_NMT_BRO

Halt network boot up procedure
-

Automatically enter

NMT_MS_OPERATIONAL Wait for application

Enter
NMT_MS_OPERATIONAL

from application expected

Leave State

„NMT_MS_READY_TO_OPERATE“

 to

- „NMT_MS_OPERATIONAL“

NMT_StartUp_U32.Bit2

Triggered by application

NMT_MT4

NMT_MT5

Timeout and / or

CHECK_COMMUNICATION

E_NOK

one or more mandatory

CHECK_COMMUNICATION

E_NOK

CHECK_COMMUNICATION

NMT_NodeAssignment_AU32[1..254].Bit3

All Nodes

CHECK_COMMUNICATION

E_OK

All mandatory

CHECK_COMMUNICATION

E_OK

EPSG DS 301 V1.5.1 -281-

• NMT_NodeAssignment_AU32[1..254].Bit3

If the CHECK_COMMUNICATION process of one or more mandatory CN failed, the error:

• E_NMT_BRO (see 7.4.3.4)

shall be signaled to the application.

The current MN state shall be maintained. The MN shall halt the network boot-up procedure.

• Errors of optional CNs during the CHECK_COMMUNICATION process shall be signaled to the
application. The boot process for these CN shall be halted. The restart of the boot-up process
for these CNs may be triggered by the application.

• Keep trying to engage previous boot processes for all configured optional CNs.

7.4.1.6 NMT_MS_OPERATIONAL

In the state NMT_MS_OPERATIONAL, the MN forces all CNs that are in the state
NMT_CS_READY_TO_OPERATE to the state NMT_CS_OPERATIONAL.

In the NMT_MS_OPERATIONAL state the MN continues isochronous communication with all
identified isochronous CNs.

The MN can force each CN to NMT_CS_OPERATIONAL either individually, with the NMTStartNode
unicast command, or all CNs, with the NMTStartNode broadcast command. After all identified CNs are
in the state NMT_CS_OPERATIONAL, the MN shall start the process OPERATIONAL for all identified
CNs.

In case of communication errors of mandatory nodes, the sub-state ERROR_TREATMENT of the
network boot-up procedure is entered. Finally the MN enters the state
NMT_MS_PRE_OPERATIONAL_1.

The NMT_MS_OPERATIONAL state is entered from the NMT_MS_READY_TO_OPERATE state
(NMT_MT5).

EPSG DS 301 V1.5.1 -282-

Fig. 89. Detail state NMT_MS_OPERATIONAL

The network boot steps and tasks of the NMT_MS_OPERATIONAL state are as follows:

• Start process START_ALL or START_CN either for all CNs or individually

depending on the following object:

• NMT_StartUp_U32.Bit1

Configured CNs are identified by:

• NMT_NodeAssignment_AU32[1..254].Bit0

• NMT_NodeAssignment_AU32[1..254].Bit1,

• In case of errors of mandatory nodes during START_CN or START_ALL, the MN shall start the
ERROR_TREATMENT process. Finally the MN enters state NMT_MS_PRE_OPERATIONAL_1
direct or after application trigger, depending on the following object:

Enter State „NMT_MS_OPERATIONAL“

from

- „NMT_MS_READY_TO_OPERATE“

NMT_MS_OPERATIONAL

Error in one or
more mandatory CN

Wait for application

Leave State

„NMT_MS_OPERATIONAL“

 to

- „NMT_MS_PRE_OPERATIONAL_1“

NMT_StartUp_U32.Bit12

Enter NMT_MS_PRE_OPERATIONAL_1

not automatical

disabled

NMT Start All Node

enabled

START_ALL

NMT_StartUp_U32.Bit1

NMT Start All Node

disabled

Triggered by

application

enabled

one or
more mandatory START_CN

E_NOK

all mandatory START_CN or

 E_OK

NMT_MT5

NMT_MT6

NMT_NodeAssignment_AU32[1..254].Bit3

OPERATIONAL

START_CN or START_ALL

 E_NOK

START_CN or

 E_OK

ERROR_TREATMENT

START_CN

(individually)

START_ALL

START_ALL

EPSG DS 301 V1.5.1 -283-

• NMT_StartUp_U32.Bit12

If START_ALL or START_CN for all mandatory nodes finished successfully, the MN shall enter the
boot-up sub-state OPERATIONAL.

• In case of communication errors during OPERATIONAL of one or more mandatory node, the
MN shall enter the ERROR_TREATMENT sub-state. Finally the MN shall enter
NMT_MS_PRE_OPERATIONAL_1 direct or after the application trigger, depending on the
following object:

• NMT_StartUp_U32.Bit12

• Errors of optional CNs during the START_CN, START_ALL or OPERATIONAL process shall be
signaled to the application. The boot process for these CN shall be halted. The restart of the
boot-up process for these CNs may be triggered by the application.

• Keep trying to engage previous boot processes for all configured optional CNs.

7.4.2 MN Boot-up Procedure on CN Level

7.4.2.1 Overview

The previous chapter describes how the MN performs the network boot-up. This chapter describes
how the MN manages the boot-up procedure for a single CN.

On network level, optional and mandatory CNs are handled differently. On CN level the handling is the
same.

Fig. 90. Overview of the boot process in NMT super-state NMT_MS

7.4.2.2 Boot-up of optional and mandatory CNs

Optional CNs are able to link in the network everytime. For the consistency and errorless working of
the network it is important to run the complete boot process also for the optional nodes. Therefore the
optional CNs must be booted-up without any impact on the MN NMT state. Errors during the boot-up
process of optional CNs do not cause an NMT state change of the MN. The application shall be
informed about the errors.

The mandatory CN boot process correlates directly to the MN NMT states. Only if all mandatory CNs
reach the same target NMT state within a sub-state of the boot process, the MN will proceed with the
boot process.

The MN force all CNs into a specific NMT state. Fig. 91 shows the dependencies between the MN
NMT state and the boot process actions. Optional CNs are able to be linked to the network later, even
if the MN is already in the NMT_MS_OPERATIONAL state .

It is possible to carry out the boot steps of one NMT state in parallel for all nodes or in serial i.e. one
CN after the other. For optional nodes, even boot steps of different NMT states can be carried out in
parallel for different CNs as there must not be a common NMT state for all optional nodes in the
network.

NMT_MS

BOOT CN1 BOOT CN2 BOOT CNn

NMT_NodeAssignment_AU32[1..254].Bit0

NMT_NodeAssignment_AU32[1..254].Bit1

Power On

EPSG DS 301 V1.5.1 -284-

Fig. 91. Network boot process dependencies to the NMT_MS for optional and mandatory CNs

7.4.2.2.1 BOOT_STEP1
The BOOT_STEP1 process is started for all configured CNs. The purpose of the BOOT_STEP1
process is to check the identification of the configured CNs and to check the CN’s software and
configuration.

The BOOT_STEP1[Node ID] returns E_OK after all checks or updates are terminated successfully. If
one of the checks or updates fails, BOOT_STEP1[Node ID] returns E_NOK.

The following steps are performed in BOOT_STEP1:

• Check Identification (see chapter 7.4.2.2.1.1)

• Check Software (see chapter 7.4.2.2.1.2)

• Check Configuration (see chapter 7.4.2.2.1.3)

BOOT_STEP1

NMT_MS

BOOT_STEP2

CHECK_COMMUNICATION

OPERATIONAL

ERROR _TREATMENT

START_CN

NMT_MS_PRE_OPERATIONAL_1

NMT_MS_READY_TO_OPERATE

NMT_MS_OPERATIONAL

NMT_MS_PRE_OPERATIONAL_2

NMT_MS

CHECK_COMMUNICATION

NMT_MS_PRE_OPERATIONAL_1

NMT_MS_READY_TO_OPERATE

NMT_MS_PRE_OPERATIONAL_2

Optional CN Mandatory CN

NMT_StartUp _U32.Bit1

START_ALL

Start all nodes

disabled

Start all nodes

enabled

NMT_StartUp _U32.Bit1

Start all nodes

disabled

Start all nodes

enabled

ERROR_TREATMENT

NMT_MS_OPERATIONAL

BOOT_STEP1

BOOT_STEP2

START_CN START_ALL

OPERATIONAL

EPSG DS 301 V1.5.1 -285-

Fig. 92. Sub-state BOOT_STEP1

7.4.2.2.1.1 CHECK_IDENTIFICATION
The purpose of the CHECK_IDENTIFICATION state is to check the identification of a CN.
CHECK_IDENTIFICATION [Node ID] returns E_OK after all identifications are finished successfully. If
one of the identifications fails, CHECK_IDENTIFICATION [Node ID] returns E_NOK.

In the sub-state CHECK_IDENTIFICATION the MN proceeds as follows:

• Request IdentResponse from the CN (see 7.3.3.2). In case of a timeout, the error
E_NMT_BPO1_GET_IDENT is set and CHECK_IDENTIFICATION[Node ID] is finished with
E_NOK.

• Check the device type of the CN against the following object:

• NMT_MNDeviceTypeIdList_AU32[Node ID].

If the device type checking fails, the Error Status E_NMT_BPO1_DEVICE_TYPE is set and
CHECK_IDENTIFICATION[Node ID] finished with E_NOK, otherwise the next step is
performed.

• If the boot-up process of a CN shall not continue automatically, the boot process waits for an
application trigger to continue. Otherwise the boot process is continued immediately. The
switching policy depends on

• NMT_NodeAssignment_AU32[1..254].Bit2

• If identification check is not required depending on
NMT_StartUp_U32.Bit9, CHECK_IDENTIFICATION[Node ID] returns E_OK.

If the Identification check is required, it is based on the following objects:

• NMT_MNVendorIdList_AU32[Node ID]

• NMT_MNProductCodeList_AU32[Node ID]

• NMT_MNRevisionNoList_AU32[Node ID]

If the identification check fails, CHECK_IDENTIFICATION[Node ID] returns E_NOK and error
E_NMT_BPO1_VENDOR_ID, E_NMT_BPO1_PRODUCT_CODE or
E_NMT_BPO1_REVISION_NO is set, otherwise the boot process continues.

• The CN serial number is checked based on the following object:

BOOT_STEP1[Node ID]

Identification
E_OK

Configuration
 E_OK

CHECK_
CONFIGURATION

Identification

E_NOK

BOOT_STEP1[Node ID]

E_NOK
BOOT_STEP1[Node ID]

E_OK

CHECK_

IDENTIFICATION

Configuration
 E_NOK

CHECK_
SOFTWARE

Software
E_OK

Software
E_NOK

Software

E_UPDATE

EPSG DS 301 V1.5.1 -286-

• NMT_MNSerialNoList_AU32[Node ID].

If the identification check fails, the error E_NMT_BPO1_SERIAL_NO is set and
CHECK_IDENTIFICATION[Node ID] returns E_NOK. Otherwise
CHECK_IDENTIFICATION[Node ID] returns E_OK.

Fig. 93. Sub-state CHECK_IDENTIFICATION[Node ID]

7.4.2.2.1.2 CHECK_SOFTWARE
The purpose of CHECK_SOFTWARE is to check and update the CN software, if required.
The update process itself shall be done by the application. The application signals the result of the
update process to the boot-up process.
CHECK_SOFTWARE [Node ID] returns E_OK after all software checks and updates are finished
successfully. If an error occurred, CHECK_SOFTWARE [Node ID] returns E_NOK.

In the process CHECK_SOFTWARE[Node ID] the MN proceeds as follows:

• If software version check is not required (depending on the following object:

• NMT_StartUp_U32.Bit10,

• NMT_NodeAssignment_AU32[Node ID].Bit5),

CHECK_SOFTWARE[Node ID] returns E_OK, otherwise the reported CN software version is
checked against objects

• PDL_MnExpAppSwDateList_AU32[Node ID],

• PDL_MnExpAppSwTimeList_AU32[Node ID]

GET_IDENT

CHECK _IDENTIFICATION [Node ID]

NMT_MNDeviceTypeIdList_AU32 [Node ID]

Device Type E_OK
or don’t care

Identification Check
not necessary

Identification check

neccesary

Device Type
E_NOK

GET_IDENT E_NOK

NMT_StartUp_U32

CHECK_IDENTIFICATION [Node ID]

E_OK

Set Error Status
E_NMT_BPO1_SERIAL_NO

Set Error Status
E_NMT_BPO1_DEVICE_TYPE

Identification
E_NOK

Set one of the Error Status

 E_NMT_BPO1_VENDOR_ID

E_NMT_BPO1_PRODUCT_CODE

E_NMT_BPO1_REVISION_NO
Identification

E_OK

Serial No
E_OK

Serial No
E_NOK

NMT_MNVendorIdList_AU32 [Node ID]

NMT_MNProductCodeList_AU32 [Node ID]

NMT_MNRevisionNoList_AU32 [Node ID]

NMT_MNSerialNoList_AU32 [Node ID]

Set Error Status
E_NMT_BPO1_GET_IDENT

Application triggered
Boot CN

Wait for Application
Automatically continue

Boot CN

NMT_NodeAssignment_AU32.Bit2

GET_IDENT E_OK

CHECK_IDENTIFICATION [Node ID]

E_NOK

EPSG DS 301 V1.5.1 -287-

Fig. 94. Sub-state CHECK_SOFTWARE[Node ID]

• If the checking of the software version is not possible because the software version information
on the MN is not configured (corresponding node sub-index of
PDL_MnExpAppSwDateList_AU32 or PDL_MnExpAppSwTimeList_AU32 not found), the error
E_NMT_BPO1_SW_INVALID is set and CHECK_SOFTWARE[Node ID] returns E_NOK. If the
received software version matches the expected one, CHECK_SOFTWARE[Node ID] returns
E_OK, otherwise the process continues with the NMT state check of the CN.

• If the current NMT state of the CN is not equal to NMT_CS_PREOPERATIONAL_1 or
NMT_CS_PREOPERATIONAL_2 (check based on object

• NMT_MNNodeCurrState_AU8),

The error E_NMT_BPO1_SW_STATE is set and CHECK_SOFTWARE[Node ID] returns
E_NOK, otherwise the next step is proceeded.

• If software update is not allowed (depending on the setting of object

• NMT_NodeAssignment_AU32[Node ID].Bit6),

the error E_NMT_BPO1_SW_REJECT is set and CHECK_SOFTWARE[Node ID] returns
E_NOK. If the software update is allowed, the application shall be informed. Continue of the
boot-up process shall be triggered by the application update return code.

• The software update itself is always part of the application. Any protocol (SDO, FTP, …) is
allowed to be used for the application software update. A successful completion of the update is
signalled by the application with the event E_OK.

• If there was an error during the application software update, the application will signal this to the
boot-up process by returning E_NOK. In case of a software update error, the boot step returns
E_NOK.

• Running BOOT_STEP1 for an optional CN while the MN is already in
NMT_MS_PRE_OPERATIONAL_2 or higher, the NMTSwReset command shall be sent to the
CNs individually after leaving CHECK_SOFTWARE with E_UPDATE.

CHECK_SOFTWARE[Node ID]

Software Version

Check

neccesary

Software Version Check

not neccesary
Wait for Application

Software Version

E_NOK

Software

Update E_OK

Software Version E_OK
Set Error Status

E_NMT_BPO1_SW_UPDATE

NMT_StartUp_U32.Bit10

NMT_NodeAssignment_AU32.Bit5

PDL_MnExpAppSwDateList_AU32

PDL_MnExpAppSwTimeList_AU32

Software Version

not cofigured
Set Error Status

E_NMT_BPO1_SW_INVALID

Application triggered

Software Update

Set Error Stat

E_NMT_BPO1_SW_REJECT

CHECK_SOFTWARE[Node ID]

 E_NOK

NMT_NodeAssignment_AU32.Bit6

CHECK_SOFTWARE[Node ID]

E_OK

Software Update

E_NOK

Software Update

not allowed

NMT_MNCNCurrState_AU8

NMT_CS_PRE_OPERATIONAL_1

NMT_CS_PRE_OPERATIONAL_2

other
Set Error Status

E_NMT_BPO1_SW_STATE

CHECK_SOFTWARE[Node ID]

 E_UPDATE

EPSG DS 301 V1.5.1 -288-

7.4.2.2.1.3 CHECK_CONFIGURATION
The purpose of CHECK_CONFIGURATION is to check the configuration of a CN and to update the
configuration if necessary. CHECK_CONFIGURATION [Node ID] returns E_OK, if the configuration
fits, otherwise CHECK_ CONFIGURATION [Node ID] returns E_NOK.

The steps of CHECK_CONFIGURATION[Node ID] are as follows:

• If configuration verification is not required (configured by object

• NMT_StartUp_U32.Bit11),

CHECK_CONFIGURATION returns E_OK, otherwise the configuration is checked against
objects

• CFM_ExpConfDateList_AU32[Node ID]

• CFM_ExpConfTimeList_AU32[Node ID]

If the configuration date and time received within the IdentResponse of the CN is correct,
CHECK_CONFIGURATION[Node ID] returns E_OK. Otherwise the boot-up process continues
with the next step.

• After the configuration update is finished successfully, the MN shall request an IdentResponse
from the updated CN (see 7.3.3.2). If a timeout occurs, the error E_NMT_BPO1_GET_IDENT is
set and CHECK_CONFIGURATION[Node ID] returns E_NOK, otherwise the boot-up process
continues with the next step.

• Configuration date and time is checked against objects

• CFM_ExpConfDateList_AU32[Node ID]

• CFM_ExpConfTimeList_AU32[Node ID]

If the configuration check fails, the error E_NMT_BPO1_CF_VERIFY is set and
CHECK_CONFIGURATION[Node ID] returns E_NOK, otherwise it returns E_OK.

_E_OK

CHECK_CONFIGURATION[Node ID]

Configuration
Check

neccesary

Configuration
Check not
neccesary

CN Configuration
Update

Configuration
E_NOK

or not configured

GET_IDENT Set Error Status
E_NMT_BPO1_GET_IDENT

Configuration
E_NOK Configuration E_OK

Configuration E_OK

Set Error Status
E_NMT_BPO1_CF_VERIFY

NMT_StartUp_U32.Bit11 CFM_ExpConfDateList_AU32[Node ID]

CFM_ExpConfTimeList_AU32[Node ID]

CFM_ExpConfDateList_AU32[Node ID]
CFM_ExpConfTimeList_AU32[Node ID]

CHECK_CONFIGURATION[Node ID]
E_NOK

CHECK_CONFIGURATION[Node ID]
 E_OK

NMT_BootTime_REC.MNConfigurationTimeout_U32

GET_IDENT E_OK

GET_IDENT
E_NOK

Fig. 95. Sub-state CHECK_CONFIGURATION[Node ID]

EPSG DS 301 V1.5.1 -289-

7.4.2.2.1.3.1 GET_IDENT

The purpose of the sub-state GET_IDENT is to request the IdentResponse from a CN. GET_IDENT
[Node ID] returns E_OK, if the CN answers within a timeout interval, otherwise GET_IDENT [Node ID]
returns E_NOK. The timeout interval depends on the actual boot-up state.

GET_IDENT[Node ID] proceeds as follows:

• Request IdentResponse from the CN.

• The IdentRequest will be repeated until the CN responds with its Ident Response or a
timeout occurs (timeout value passed by the caller of this sub state).

• If the CN answers with its IdentResponse, GET_IDENT[Node ID] returns E_OK.

• If the CN does not respond within the configured timeout interval, GET_IDENT[Node ID] returns
E_NOK.

no timeout

timeout

Send
SOA:IdentRequest to

Node ID

GET_IDENT [Node ID,

received

not
received

IdentResponse

 E_OK
GET_IDENT

 E_NOK
GET_IDENT

Timeout

 Timeout]

Fig. 96. Sub-state GET_IDENT[Node ID]

EPSG DS 301 V1.5.1 -290-

7.4.2.2.2 BOOT_STEP2
The purpose of BOOT_STEP2 is to send the NMT command NMTEnableReadyToOperate to a CN
and to check the CN’s NMT state change to NMT_CS_READY_TO_OPERATE. Furthermore the
initialisation of the error signaling shall be completed in BOOT_STEP2.

BOOT_STEP2 [Node ID] returns E_OK, if the initialisation of the error signaling is completed and the
CN NMT state is NMT_CS_READY_TO_OPERATE.
BOOT_STEP2 [Node ID] returns E_NOK, if the initialisation of the error signaling is not completed or
the CN NMT state did not change from NMT_CS_PRE_OPERATIONAL_2 to
NMT_CS_READY_TO_OPERATE state within a timeout interval (see MNTimeoutPreOp2_U32).

Fig. 97. Sub-state BOOT_STEP2[Node ID]

BOOT_STEP2[Node ID] proceeds as follows:

• Verify that the CN is in state NMT_CS_PRE_OPERATIONAL_2 by CHECK_STATE.

• Start the process CHANGE_NMT_STATE to send the NMT command
NMTEnableReadyToOperate to the CN and to check the NMT state change of the CN.

• Check for the end of the initialisation of the error signaling.

BOOT_STEP2[Node ID]

NMT_BootTime_REC.

MNTimeOutPreOp2_U32

CHANGE_NMT_STATE[Node ID]

NMTEnableReadyToOperate

E_OK

BOOT_STEP2[Node ID]

E_OK

E_NOK

BOOT_STEP2[Node ID]

E_OK

CHECK_STATE[Node ID]

NMT_CS_PRE_OPERATIONAL_2

E_OK

E_NOK

E_NOK

EPSG DS 301 V1.5.1 -291-

7.4.2.2.3 CHECK_COMMUNICATION
The purpose of CHECK_COMMUNICATION[Node ID] is to check the communication with a CN after
start of the isochronous POWERLINK cycle in the NMT state NMT_MS_READY_TO_OPERATE.
CHECK_COMMUNICATION[Node ID] will return E_OK, if the Pres frame checking of isochronous
CNs returnes no error. Otherwise CHECK_ COMMUNICATION [Node ID] returns E_NOK.

CHECK_COMMUNICATION[Node ID] proceeds as follows:

• Check the received CN Pres:

• No loss of frame occurs

• The payload length is less or equal than the length configured in object

▪ NMT_PresPayloadLimitList_AU16 [Node ID].

• The frame receive time is less or equal than the time configured in object

▪ NMT_MNCNPResTimeout_AU32[Node ID].

• CHECK_COMMUNICATION[Node ID] returns E_NOK, if the communication with the CN fails or
the expected parameter values do not fit. Otherwise CHECK_COMMUNICATION[Node ID] returns
E_OK.

CHECK_COMMUNICATION [Node ID]

CHECK_COMMUNICATION [Node ID]
E_OK

CHECK_COMMUNICATION [Node ID]
E_NOK

PRes
received

Payloadsize E_OK

NMT_M NPResPayloadLimitList_AU16[NodeID]

Payloadsize E_NOK

Telegram receive Time E_OK

No Response

Telegram receive Time E_NOK

NMT_MNCNPResTimeout_AU16[NodeID]

NMT_NodeAssignment_AU32[NodeID].Bit8

Send
PReq [Node ID]

Async.
CN

Isochronous
CN

Fig. 98. Sub-state CHECK_COMMUNICATION[Node ID]

EPSG DS 301 V1.5.1 -292-

7.4.2.2.4 START_CN
In the sub-state START_CN[Node ID] the MN sends NMTStartNode to an individual CN.
START_CN[Node ID] returns E_OK, if the CN changes its state to NMT_CS_OPERATIONAL within a
timeout interval, otherwise E_NOK will be returned.

Fig. 99. Sub-state START_CN[Node ID]

START_CN[Node ID] proceeds as follows:

• START_CN[Node ID] starts immediately or after the application trigger, depending on object

• NMT_StartUp_U32.Bit3.

• The MN checks the current state of the CN. If the CN is in the state NMT_CS_OPERATIONAL,
START_CN[Node ID] returns E_OK.

• If the CN is in the state NMT_CS_READY_TO_OPERATE the boot-up procedure enters the
sub-state CHANGE_NMT_STATE[Node ID] to send NMTStartNode to the CN and control its
state change.

• If CHANGE_NMT_STATE[Node ID] returns E_OK, START_CN[Node ID] returns E_OK.

START_CN[Node ID]

Start CN
trigger expected

Wait for application

Start CN
 automatically

NMT_StartUp_U32.Bit3

Triggered by
application

START_CN[N ode ID]
E_NOK

START_CN[Node ID]
E_OK

Request
NMTStatusResponse

CN State =
NMT_CS_READY_TO_OPERATE

CN State =
NMT_CS_OPERATIONAL

CHANGE_NMT_STATE[Node ID]
NMT_StartNode

NMT_BootTime_REC.MNStartCNTimeout_U32

CN State=
all other states

NMT_MNCNCurrSta te_AU8[Node ID]

from application

E_NOK

E_OK

EPSG DS 301 V1.5.1 -293-

• If the CN is in a wrong state (neither NMT_CS_OPERATIONAL nor
NMT_CS_READY_TO_OPERATE) or if CHANGE_NMT_STATE[Node ID] returns E_NOK,
START_CN[Node ID] returns E_NOK, too.

7.4.2.2.5 START_ALL
In the sub-state START_ALL, NMTStartNode is sent to all CNs as broadcast. START_ALL returns
E_OK, if all CNs change their state to NMT_CS_OPERATIONAL within a timeout interval, otherwise
START_ALL returns E_NOK.

START_ALL

Start CN
 automatically

Start CN

 from application

Send NMT command service
NMTStartNode to all CN

Wait for application

NMT_StartUp_U32.Bit 3

Triggered by
application

CHECK_STATE
NMT_CS_OPERATIONAL

CN 1

START_ALL
E_OK

CHECK_STATE[Node ID] of
all mandatory CN E_OK

START_ALL
E_NOK

CHECK_STATE[Node ID] of
one or more mandatory CN E_NOK

trigger expected

CHECK_STATE
NMT_CS_OPERATIONAL

CN 2

CHECK_STATE
NMT_CS_OPERATIONAL

CN n

Fig. 100. Sub-state START_ALL

START_ALL proceeds as follows:

• START_ALL proceeds immediately or after the application trigger, depending on the following
object:

• NMT_StartUp_U32.Bit3.

• After transmission of the broadcast NMT command NMTStartNode, the MN starts the
sub-state CHECK_STATE for all identified CNs. If all CNs are in the state
NMT_CS_OPERATIONAL, START_ALL returns E_OK. If one or more mandatory CNs
caused an error in CHECK_STATE, START_ALL returns E_NOK.

EPSG DS 301 V1.5.1 -294-

7.4.2.2.6 CHECK_STATE
The purpose of CHECK_STATE is to check the current NMT state of a CN.

CHECK_STATE returns E_OK, if the current CN state is already equal to the expected state. It returns
E_NOK, if the CN did not switch to the target state within a timeout interval.

If the CN is in an unexpected state, CHECK_STATE returns E_NOK.

Fig. 101. Sub-state CHECK_STATE

CHECK_STATE proceeds as follows:

• If the CN state equals to the target state, CHECK_STATE returns E_OK.

• If the CN state corresponds to the last state, the CN state is further checked within a time
interval until the state changes to the target state or a timeout occurs.
For a state change to NMT_CS_READY_TO_OPERATE the timeout is configured via object
NMT_BootTime_REC.MNTimeoutPreOp2_U32.
In all other cases the timeout is defined by C_NMT_STATE_TOLERANCE.
In case of a timeout CHECK_STATE returns E_NOK.

• If the CN is in an unexpected state, CHECK_STATE returns E_NOK.

TargetState

Request

NMTStateResponse[Node ID]

CHECK_STATE [NodeID,

TargetState,

Timeout]

NMT_MNCNCurrState_AU8[Node ID]

Set Error Status

E_NMT_WRONG_STATE

CHECK_STATE

E_OK

CHECK_STATE

E_NOK

No Timeout

Timeout

Last State

all other states

Timeout

EPSG DS 301 V1.5.1 -295-

7.4.2.2.7 CHANGE_NMT_STATE
CHANGE_NMT_COMMAND sends a NMT command to a particular CN. The resulting NMT state
change is checked. Before checking the status, the MN waits for C_NMT_STATE_TOLERANCE
cycles to allow the CN’s NMT state change.

CHANGE_NMT_STATE returns E_OK, if the CN state is equal to the target state. Otherwise E_NOK
will be returned.

If the CN state is not in an expected state, CHANGE_NMT_STATE returns with status E_NOK.

Fig. 102. Sub-state CHANGE_NMT_STATE

7.4.2.2.8 OPERATIONAL
In the OPERATIONAL state, the MN supervises all CNs that are in NMT_CS_OPERATIONAL state. If
a mandatory CN generates an error such as response timeouts or wrong NMT states, the
ERROR_TREATMENT substate shall be entered.

Errors of optional nodes in state OPERATIONAL are reported to the application. The boot-up of these
optional CNs shall be restarted after sending the NMT command NMTResetNode.

7.4.2.2.9 ERROR_TREATMENT
In the sub-state ERROR_TREATMENT the MN will, depending on the NMT_StartUp_U32.Bit4 and
NMT_StartUp_U32.Bit6, either send a NMTResetNode or a NMTStopNode to all CNs or it shall
handle errors on CN in an application specific manner.

Errors of optional CNs do not have any influence on the MN or the other CNs.

The steps of the ERROR_TREATMENT process are as follows:

• Depending on the following bits:

• NMT_StartUp_U32.Bit6

• NMT_StartUp_U32.Bit4

Last State

all other states
timeout

Target State

Timeout

CHANGE_NMT_STATE[Node ID],

Command,

Timeout
Send

SOA:NMT Command to

Node ID

Request

NMTStatusResponse

[Node ID]

NMT_MNCNCurrState_AU8[Node ID]

SEND_NMT_COMMAND
E_OK

SEND_NMT_COMMAND
E_NOK

E_NMT_WRONG_STATE

Set Error Status

no timeout

EPSG DS 301 V1.5.1 -296-

the errors are treated different. For optional nodes these bits are always ignored as only the
individual CN error treatment is allowed.

• If NMT_StartUp_U32.Bit6 is true, the NMT command NMTStopNode shall be transmitted to all
CNs

• If NMT_StartUp_U32.Bit4 is true, the NMT command NMTResetNode shall be transmitted to all
CNs. If NMT_StartUp_U32.Bit4 is false, errors are treated individually by the application.

ERROR_TREATMENT
NMT_StartUp_U32.Bit6

Send NMT command service
NMTStopNode to all CN

FALSE

TRUE

Send NMT command service
NMTResetNode to all CN

TRUE

Inform app lication

NMT_StartUp_U32.Bit4

FALSE
Treat CN individually

by the application

Fig. 103. Sub-state ERROR_TREATMENT

7.4.3 Boot-up Errors

7.4.3.1 Bus activity

• Error Source

The device is configured as an MN and detects another MN (SoC, IdentRequest, …).

• Handling

The MN shall halt the boot procedure. The error is logged in the error history.

• Registration

History Entry Object ERR_History_ADOM:

EPSG DS 301 V1.5.1 -297-

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BA1 XXXX

7.4.3.2 BOOT_STEP1 failed

• Error Source

Boot process in the NMT_MS_PRE_OPERATIONAL_1 state failed. One or more mandatory
CNs failed.

• Handling

The MN shall stop the boot-up procedure. The error is logged in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1 XXXX

7.4.3.3 BOOT_STEP2 failed

• Error Source

Boot process in the NMT_MS_PRE_OPERATIONAL_2 state failed. One or more of the
mandatory configured CNs failed.

• Handling

The MN shall stop the boot-up procedure. The error is logged in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO2 XXXX

7.4.3.4 Boot-up in NMT_MS_READY_TO_OPERATE failed

• Error Source

The process CHECK_COMMUNICATION in the NMT_MS_READY_TO_OPERATE state failed
because of the reception of at least one incorrect or missing Pres.

• Handling

The MN shall stop the boot-up procedure and log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BRO XXXX

7.4.3.5 Get Ident failed

• Error Source

No response on an Ident Request was received.

• Handling

Log the error in the error history.

EPSG DS 301 V1.5.1 -298-

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_GET_IDENT XXXX

7.4.3.6 Device Type Invalid

• Error Source

Actual device type of the CN (value of object NMT_DeviceType_U32 reported via
IdentResponse) did not match the expected device type configured on the MN via object
NMT_MNDeviceTypeIdList_AU32.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_DEVICE_TYPE XXXX

7.4.3.7 Vendor ID invalid

• Error Source

Vendor ID reported via IdentResponse of the CN did not match the expected vendor ID
configured on the MN via object NMT_MNVendorIdList_AU32.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_VENDOR_ID XXXX

7.4.3.8 Configuration failed

• Error Source

Configuration update failed.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_CF_VERIFY XXXX

7.4.3.9 Product Code invalid

• Error Source

Product Code reported via IdentResponse of the CN did not match the expected product code
configured on the MN via object NMT_MNProductCodeList_AU32.

EPSG DS 301 V1.5.1 -299-

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_PRODUCT_CODE XXXX

7.4.3.10 Revision number invalid

• Error Source

Revision number reported via IdentResponse of the CN did not match the expected revision
number configured on the MN via object NMT_MNRevisionNoList_AU32.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_REVISION_NO XXXX

7.4.3.11 Serial number invalid

• Error Source

Serial number reported via IdentResponse of the CN did not match the expected serial number
configured on the MN via object NMT_MNSerialNoList_AU32.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_SERIAL_NO XXXX

7.4.3.12 NMT state invalid

• Error Source

Reported CN NMT state does not match the expected NMT state.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_WRONG_STATE XXXX

7.4.3.13 Invalid Software

• Error Source

Software version information for a certain CN not available on the MN.

EPSG DS 301 V1.5.1 -300-

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_SW_INVALID XXXX

7.4.3.14 Invalid NMT state for SW update

• Error Source

Software update failed due to wrong NMT state of the target CN.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_SW_STATE XXXX

7.4.3.15 SW update not allowed

• Error Source

Software update of a CN not allowed.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_SW_REJECT XXXX

7.4.3.16 SW update failed

• Error Source

An error occurred during the application SW update process.

• Handling

Log the error in the error history.

• Registration

History Entry Object ERR_History_ADOM:

Mode Profile Error Code Timestamp Additional Information

3h 002h E_NMT_BPO1_SW_UPDATE XXXX

EPSG DS 301 V1.5.1 -301-

7.4.4 Minimal Boot-up MN

Fig. 104. Minimal NMT boot-up process

Fig. 104 depicts a minimal MN boot-up, which allows to implement a simple NMT state machine on
low-cost MNs. Only small applications should use this type of boot-up as there is no error treatment or
configuration checking. The minimal MN boot-up guarantees only that all devices reach the
operational state and that no device violates the POWERLINK cycle.

MINIMAL_MN

NMT_MS_INITIALISATION

Power On

NMT_MS_NOT_ACTIVE

– Check bus activity

NMT_MS_PRE_OPERATIONAL_1

- Start POWERLINK reduced cycle

- Identify all CNs

NMT_MS_PRE_OPERATIONAL_2

- Start isochronous POWERLINK cycle

- Check CN state

- Send NMTEnableReadyToOperate

- Check CN Poll_OutSize

NMT_MS_READY_TO_OPERATE

- Check communication

NMT_MS_OPERATIONAL

- Send NMTStartNodeAll

- NORMAL OPERATION

EPSG DS 301 V1.5.1 -302-

7.4.5 Example Boot-up Sequence

In this example a typical boot-up with a single CN and without boot-up errors is depicted. The example
also shows a configuration update of the CN in BOOT_STEP1.

Fig. 105. Boot procedure example for a single CN

7.4.6 Application Notes

• It is permitted to boot-up one device after another (sequential boot-up) or all in parallel. If the
sequential boot-up procedure is implemented, it must be ensured that a particular boot step is
still performed for all devices even if an error of a mandatory node occurred within that boot
step. The reaction of the boot-up process upon an error within a mandatory node shall be
delayed until the boot step was finished for all the other devices, too.

START

CHECK_COMMUNICATION

BOOT_STEP2

BOOT_STEP1SoA (R.- ServiceID: IdentRequest)

NMT_MS_PRE_OPERATIONAL_1

CN

NMT_GS_RESET_APPLICATION

NMT_MS_NOT_ACTIVE NMT_CS_NOT_ACTIVE

NMT_GS_POWERED

NMT_GS_INITIALISING

Operational

MN

NMT_CS_BASIC_ETHERNET_MODE

Start reduced cycle

NMT_GS_RESET_CONFIGURATION

NMT_CS_PRE_OPERATIONAL_1

ASnd (ServiceID: IdentResponse)

SDO Communication [Server]

ASnd (ServiceID: IdentResponse)

NMT_CS_PRE_OPERATIONAL_2

NMT_CS_READY_TO_OPERATE

NMT_CS_OPERATIONAL

SoA (R.- ServiceID: IdentRequest)

SDO Communication [Client]

ASnd (ServiceID: StatusResponse)

Send PRes

ASnd (ServiceID: StatusResponse)

BOOT_STEP1 E_OK

NMT_MS_PRE_OPERATIONAL_2

Start isochronous cycle

Command: NMTEnableReadyToOperate

SoA (R.- ServiceID: StatusRequest)

BOOT_STEP2 E_OK

NMT_MS_READY_TO_OPERATE

NMT_MS_OPERATIONAL

Send PReq

CHECK_COMMUNICATION E_OK

Command: NMTStartNode

SoA (R.- ServiceID: StatusRequest)

START_CN E_OK

SoA

SoA

SoA

SoC

ASnd

SoA

PReq

ASnd

SoA

ASnd

PRes

ASnd

ASnd

*

ASnd

*

* Operation is done several times

EPSG DS 301 V1.5.1 -303-

• The defined processes shall give an overview to the boot-up, they do not define a specific API.
The main purpose is to have common rules for the MN boot-up procedure and to give CNs the
knowledge, what they have to expect on boot-up.

• The same procedure, except for the error handling, will be used if an optional CN has to be
booted while the rest of the system is already running, e.g. after a reset or error. In that case the
NMT command NMTStartNode may always be sent individually.

EPSG DS 301 V1.5.1 -304-

8 Diagnostics

8.1 Diagnostic Object Dictionary Entries

8.1.1 Object 1101h: DIA_NMTTelegrCount_REC

The object’s sub-indices count cycles, synchronous and asynchronous frames, SDO telegrams and
StatusRequests since NMT_GS_RESET_COMMUNICATION. The counters shall be reset in
NMT_GS_RESET_COMMUNICATION.

The application may provide additional means to reset the conters.

Index 1101h Object Type RECORD

Name DIA_NMTTelegrCount_REC

Data Type DIA_NMTTelegrCount_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 8 Access const

Default Value 8 PDO Mapping No

• Sub-Index 01h: IsochrCyc_U32

Sub-Index 01h

Name IsochrCyc_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of transmitted (MN) or received (CN) SoC frames.

• Sub-Index 02h: IsochrRx_U32

Sub-Index 02h

Name IsochrRx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of received Preq and Pres frames.

• Sub-Index 03h: IsochrTx_U32

Sub-Index 03h

Name IsochrTx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of transmitted Preq and Pres frames.

EPSG DS 301 V1.5.1 -305-

• Sub-Index 04h: AsyncRx_U32

Sub-Index 04h

Name AsyncRx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of received asynchronous frames (POWERLINK Asnd, IP
frames etc., but not SoA).

• Sub-Index 05h: AsyncTx_U32

Sub-Index 05h

Name AsyncTx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of transmitted asynchronous frames (POWERLINK Asnd, IP
frames etc., but not SoA).

• Sub-Index 06h: SdoRx_U32

Sub-Index 06h

Name SdoRx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of received SDO telegrams via UDP/IP or POWERLINK Asnd.

• Sub-Index 07h: SdoTx_U32

Sub-Index 07h

Name SdoTx_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of transmitted SDO telegrams via UDP/IP or POWERLINK
Asnd.

• Sub-Index 08h: Status_U32

Sub-Index 08h

Name Status_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of received StatusRequest SoA telegrams.

EPSG DS 301 V1.5.1 -306-

8.1.2 Object 1102h: DIA_ERRStatistics_REC

The object’s sub-indices count events which occurred in the Error Signaling module. When reaching
their maximum value the counters shall continue with 0.

Index 1102h Object Type RECORD

Name DIA_ERRStatistics_REC

Data Type DIA_ERRStatistics_TYPE Category O

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 7 Access const

Default Value 7 PDO Mapping No

• Sub-Index 01h: HistoryEntryWrite_U32

Sub-Index 01h

Name HistoryEntryWrite_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of entries written to the error history (see 6.5.1).

• Sub-Index 02h: EmergencyQueueWrite_U32

Sub-Index 02h

Name EmergencyQueueWrite_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of successful write actions to the emergency queue. Write
actions which can not be performed because the queue is full shall not be counted here.

• Sub-Index 03h: EmergencyQueueOverflow_U32

Sub-Index 03h

Name EmergencyQueueOverflow_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of write actions to the emergency queue which could not be
done because the queue was full.

• Sub-Index 04h: StatusEntryChanged_U32

Sub-Index 04h

Name StatusEntryChanged_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of changes in the StatusEntries.

EPSG DS 301 V1.5.1 -307-

• Sub-Index 05h: StaticErrorBitFieldChanged_U32

Sub-Index 05h

Name StaticErrorBitFieldChanged_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of changes in the Static Error Bit Field.

• Sub-Index 06h: ExceptionResetEdgePos_U32

Sub-Index 06h

Name ExceptionResetEdgePos_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of detected 0 to 1 transitions of the bit ER.

• Sub-Index 07h: ExceptionNewEdge_U32

Sub-Index 07h

Name ExceptionNewEdge_U32

Data Type UNSIGNED32 Category O

Value Range UNSIGNED32 Access ro

Default Value 0 PDO Mapping No

This sub-index holds the number of all generated transitions on the bit EN.

8.1.3 Diagnostics Object Types

8.1.3.1 Object 0437h: DIA_NMTTelegrCount_TYPE

Index 0437h Object Type DEFSTRUCT

Name DIA_NMTTelegrCount_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 08h

01h IsochrCyc_U32 0007h UNSIGNED32

02h IsochrRx_U32 0007h UNSIGNED32

03h IsochrTx_U32 0007h UNSIGNED32

04h AsyncRx_U32 0007h UNSIGNED32

05h AsyncTx_U32 0007h UNSIGNED32

06h SdoRx_U32 0007h UNSIGNED32

07h SdoTx_U32 0007h UNSIGNED32

08h Status_U32 0007h UNSIGNED32

EPSG DS 301 V1.5.1 -308-

8.1.3.2 Object 0438h: DIA_ERRStatistics_TYPE

Index 0438h Object Type DEFSTRUCT

Name DIA_ERRStatistics_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 07h

01h HistoryEntryWrite_U32 0007h UNSIGNED32

02h EmergencyQueueWrite_U32 0007h UNSIGNED32

03h EmergencyQueueOverflow_U32 0007h UNSIGNED32

04h StatusEntryChanged_U32 0007h UNSIGNED32

05h StaticErrorBitFieldChanged_U32 0007h UNSIGNED32

06h ExceptionResetEdgePos_U32 0007h UNSIGNED32

07h ExceptionNewEdge_U32 0007h UNSIGNED32

EPSG DS 301 V1.5.1 -309-

9 Routing
A POWERLINK Router is a coupling element in a network that allows IP communication between a
POWERLINK segment and any other datalink layer protocol carrying IP e.g. legacy Ethernet,
POWERLINK etc.

9.1 Routing Type 1
A POWERLINK Router Type 1 is a coupling element in a network that allows IP communication
between a POWERLINK network and any other datalink layer protocol carrying IP e.g. Legacy
Ethernet, POWERLINK etc. It enables the communication between two networks using IP and ICMP.
Other network layer protocols besides IP cannot be coupled via the Routing Type 1. MN and CNs may
have router functionality implemented. A POWERLINK Router runs an application that forwards IP and
ICMP datagrams from the POWERLINK network to an external network and vice versa. Fig. 106
illustrates the black box model of the POWERLINK Router.

Fig. 106. POWERLINK router, black box model

Traffic from the external network to the POWERLINK network is called inbound traffic. The traffic from
the POWERLINK network to the external network e.g. Legacy Ethernet is called outbound traffic.

Routing Type 1 is optional. Support shall be indicated by D_RT1_RT1Support_BOOL.

9.1.1 Core Tasks of a POWERLINK Router

This section describes some relevant application scenarios in more detail. Possible application
scenarios for the use of a POWERLINK Router are listed below. Only scenarios for communication
paths that involve a POWERLINK Router are listed.

• Diagnostics, Remote Maintenance, Monitoring

• Alarm Messages

• Software Download

• Configuration / Engineering

• Secure Access

• SDO communication

Each data transmission that originates from the POWERLINK network and terminates out-side of it
(including inside the router), falls within the responsibility of the POWERLINK Router. The same
applies for traffic that originates from the external network and terminates inside the POWERLINK
network.

There are several use cases that require the above mentioned traffic pattern. While they can all be
subsumed under the view that they require the functionality of the POWERLINK Router, they will be
outlined below because each use case has its own peculiarities. In any case, the coupling by means
of a POWERLINK Router is only possible on layer 3, because the POWERLINK Router only handles
data link frames that contain IP and ICMP packets. Fig. 107 illustrates these use cases.

1. Access from the Factory Floor network (e. g., for diagnostics)

2. Access from the Company Network (e. g., for inventory purposes)
In this scenario, additional security effort may be necessary, which may require further
processing in the data path POWERLINK Router <-> company network.

3. Remote Access (e. g., for remote maintenance)
Strict security aspects should be taken into account. These are outside the scope of this
document.

4. POWERLINK inter-segment communication (e. g., for exchange of manufacturing service data)

 POWERLINK Router
 IP →

POWERLINK

Network

External Network

e.g. Legacy Ethernet

Inbound trafficOutbound traffic

EPSG DS 301 V1.5.1 -310-

Fig. 107. Possible communication relations via a POWERLINK router

A POWERLINK Router shall provide at least one interface of type POWERLINK. In Fig. 107 that is the
POWERLINK Router (yellow) between Factory Floor and Inter Machine Network and the
POWERLINK Routers (orange) between Inter Machine and Machine Network. The other routers do
not contain a POWERLINK interface and are therefore outside the scope of this specification.

9.1.2 Reference Model

The reference model of the POWERLINK Router is shown below.

Fig. 108. POWERLINK router reference model

9.1.3 Data Link Layer

A POWERLINK Router shall at least provide two interfaces. One interface to the POWERLINK and a
second interface to the external network. IP operates on top of the data link layer – e.g. POWERLINK,
Legacy Ethernet.

POWERLINK

Router
POWERLINK

Router

POWERLINK

Router

POWERLINK POWERLINK

POWERLINK

Router

Legacy Ethernet

Router

Legacy Ethernet
Router

Internet

Company

Network

Factory

Floor

Network

Inter

Machine

Network

Machine

Network

Office

Network

4. POWERLINK Inter segment

access

Host

CN

1. Access from

 factory floor network

3. Remote access e.g. from untrusted network

2. Access from company or office network

Ethernet

CSMA/CD

IP

PHYPHYPHY

Ethernet
POWERLINK

PHYPhysical

Data Link

Network IPIP

TCP UDP TCP UDP

ApplicationApplication

async. dataiso. data

Transport

Application

Ethernet
POWERLINK

Ethernet

CSMA/CD

Ethernet POWERLINK Segment Standard Ethernet Segment

POWERLINK Router

TCP/IP HostPOWERLINK nodeLayer

Layer that is specific

to POWERLINK

EPSG DS 301 V1.5.1 -311-

9.1.3.1 DLL POWERLINK Interface

The Interface of the POWERLINK Router to the POWERLINK network shall behave exactly like a
POWERLINK CN (see 4.2.2.2).

9.1.3.2 DLL interface to the external network

Depending on the application requirements, the interface to the external network can be chosen. Any
datalink layer protocol that can embed IP may be used. Legacy Ethernet, POWERLINK, X.25, etc.
may be used for the interface connecting to the external network.

9.1.4 Network Layer

The POWERLINK Router connects a POWERLINK network to an external network only via the
Internet Protocol (IP). Therefore, the router’s tasks on this layer are basically the same as that of any
other standard IP router, as described in RFC 1812. These include the routing or forwarding and
Network Address Translation (NAT) described in 9.1.4.2. If other protocols are used, they shall be
encapsulated in IP to communicate via the POWERLINK Router.

9.1.4.1 Communication between POWERLINK and the
external network

The POWERLINK Router shall forward the following types of packets:

• The POWERLINK Router shall forward only the IP and ICMP packets from the external network
that are addressed and permitted (see 9.1.5) to the POWERLINK network. How the IP
datagrams are sent on the POWERLINK network, depends on the POWERLINK network state
– see 9.1.4.2.

• The POWERLINK Router shall forward only the IP and ICMP packets from the POWERLINK
network that are addressed to the external network.

The ICMP datagrams supported by the POWERLINK Router are given in 9.1.4.2.1.

9.1.4.2 IP Coupling

The main difference between an IP router using only Legacy Ethernet and a POWERLINK Router is
that the POWERLINK Router forwards IP and ICMP packets depending on the current POWERLINK
network state. Note, that the POWERLINK Router accesses the POWERLINK network in the same
way a CN does, because a POWERLINK Router runs only the IP coupling application.

• In the NMT_CS_EPL_MODE state, the POWERLINK Router shall forward the respective IP and
ICMP packets to and from the asynchronous phase. The POWERLINK Router shall respect the
network access rules of the POWERLINK network, i.e. it’s only allowed to send, when invited by
the MN.

• In the NMT_CS_BASIC_ETHERNET state, the POWERLINK Router shall access the
POWERLINK network like an IEEE802.3 compliant node using CSMA/CD. There is no cycle
time interval in basic ethernet mode.

Since a POWERLINK network uses fixed IP addresses, supporting only IP routing would limit the
flexibility of the system. This restriction is removed using IP routing and Network Address Translation
(NAT).

9.1.4.2.1 IP Routing
Forwarding an IP datagram generally requires the router to choose the relevant local interface and the
address of the next-hop router resp. (for the final hop) of the destination host. This choice depends
upon a route database within the router. The route database is called routing table
RT1_IpRoutingTable_XXh_REC.

Ipv4 routing is specified in RFC 1812. Nothing should prevent a POWERLINK Router from
implementing standard IP routing procedures, but it is recommended that the following points be
considered:

A router’s functionality, as given in RFC 1812 (Requirements for IP Version 4 Routers) is rather
extensive and complex, even if only mandatory functions are implemented. A considerable fraction of
these functions are neither required nor of meaningful use for a typical POWERLINK Router

EPSG DS 301 V1.5.1 -312-

application scenario. It seems therefore sensible to define the POWERLINK Router’s functionality with
reference to RFC 1812 and explicitly list the functions that vary from RFC1812.

• The POWERLINK Router shall use static routing. The POWERLINK Router may not support
any dynamic routing algorithms like RIP or OSPF. Especially for the interface to the
POWERLINK network, the POWERLINK Router should be aware of the limited bandwidth.
Therefore, the POWERLINK Router shall not use dynamic routing algorithms on the
POWERLINK network.

• The POWERLINK Router shall not support IP multicasting.

• The POWERLINK Router shall support IP fragmentation. IP datagrams larger than the MTU of
the respective network shall be fragmented.

• The POWERLINK Router may not support MTU discovery. The MTU of the POWERLINK
network is given in NMT_CycleTiming_REC.AsyncMTU_U16. The POWERLINK Router shall
not send frames longer than the respective Layer 2 MTU limit. However, it may receive and
process frames addressed to it exceeding this limit.

• The POWERLINK Router shall use the standard ARP (RFC 826) protocol to find out the IP to
MAC address relation – see 5.1.3

• Traffic precedence features (Layer 2 priority (IEEE 802.1Q-1999) as well as Layer 3 IP TOS)
may be supported.

• The typical location for a POWERLINK Router is comparable to what RFC 1812 calls a “fringe
router”, i. e., it connects a local network to a network of another hierarchy.

• The POWERLINK Router shall support the following ICMP messages: Echo Request/Reply,
Destination Unreachable, Redirect, Time Exceeded, Parameter Problem, Address Mask
Request

• The POWERLINK Router need not support the following options: Time Stamp, Source Route,
Record Route.

9.1.4.2.1.1 Configuration
Routers shall be manageable by POWERLINK SDO and optionally by the Simple Network
Management Protocol version 3 (SNMPv3).

9.1.4.2.1.1.1 SNMP

The POWERLINK Router may support SNMPv3 RFC 3410-3418 on non-POWERLINK interfaces. If
so the following standard MIBs for management shall be supported.

• The System, Interface, IP, ICMP, and UDP groups of MIB-II “Management Information Base of
TCP/IP-Based Internets: MIB-II”, RFC 1213 shall be implemented.

• If the router implements TCP (e.g., for Telnet) then the TCP group of MIB-II “Management
Information Base of TCP/IP-Based Internets: MIB-II”, STD 16, RFC1213 shall be implemented

• The IP Forwarding Table MIB “IP Forwarding Table MIB”, RFC 1354 shall be implemented.

9.1.4.2.1.1.2 SDO

The functionality, which can be configured and retrieved via SDO, is a subset of that provided by
SNMP. For the POWERLINK Router configuration and diagnostics the relevant objects from MIB-II
RFC 1213 and RFC 1354 are mapped to SDO – see 9.1.7. Objects, which are not accessible via
SDO, can be accessed via SNMP.

9.1.4.2.2 Network Address Translation (NAT)
NAT allows POWERLINK nodes within a POWERLINK network to transparently communicate with
hosts in the external network. Basic NAT and NAPT are two varieties of NAT. Since POWERLINK
nodes have fixed IP addresses, each POWERLINK Router shall implement Basic NAT which is
specified in:

• RFC 2663 – IP Network Address Translator (NAT) Terminology and Considerations

• RFC 3022 – Traditional IP Network Address Translator (Traditional NAT) – extends RFC 1631

With Basic NAT, a block of external IP addresses are set aside for translating IP addresses of
POWERLINK nodes in the POWERLINK network. POWERLINK nodes that must be addressed from
the external network, shall be configured in the NAT table RT1_NatTable_XXh_REC. The NAT table
contains the POWERLINK IP EplIpAddr_IPAD to external IP ExtIpAddr_IPAD address translation. For

EPSG DS 301 V1.5.1 -313-

datagrams outbound from the POWERLINK network, the source IP address EplIpAddr_IPAD shall be
translated to the associated ExtIpAddr_IPAD called Source-NAT. For inbound packets, the destination
IP address ExtIpAddr_IPAD shall be translated to the associated EplIpAddr_IPAD, called Destination-
NAT. Independent from inbound or outbound IP telegrams, the related fields such as IP, TCP, UDP
and ICMP header checksums shall be corrected. This kind of NAT is also called bidirectional NAT or
1to1 NAT (see RFC 2663). Fig. 109 illustrates an example for bidirectional NAT.

Fig. 109. Symmetrical n-to-n NAT

The visibility of POWERLINK nodes to the external network can be controlled by bidirectional NAT.
Therefore, nodes that should not be accessed from the external network, can be concealed.
POWERLINK nodes that are not configured in the NAT table may not communicate with nodes in the
external network i.e. the packets are dropped.

In more detail POWERLINK differentiates between Source-NAT where the source address is changed
and Destination-NAT where the destination address is changed. Fig. 110 illustrates the general NAT
architecture.

Fig. 110. NAT architecture

For outbound IP datagrams, that is from the POWERLINK network to the external network we shall
use Source-NAT (S-NAT). S-NAT changes the source address of the IP / ICMP packet. This is done in
the output chain, just before it is finally sent out. This is an important detail, since it means that
anything else on the Router itself (routing, packet filtering) will see the packet unchanged.

For inbound IP datagrams, that is from the external network to the POWERLINK network we shall use
Destination-NAT (D-NAT). D-NAT changes the destination address of the IP / ICMP packet. D-NAT is
done in the input chain, just as the packet comes in. This means that anything else on the Router itself
(routing, packet filtering) will see the packet going to its `real’ destination.

The following figure illustrates the interaction between a POWERLINK network and an external
network. It is presented for informative purpose only.

POWERLINK

Router

Controller 1
192.168.1.76

Controller 2
192.168.1.4

Manager

192.168.1.56

POWERLINK segment

NAT Table
IP Addr. (Eth0) Public IP Addr (Eth1)

134.14.12.45

-

134.14.12.43

192.168.1.56
192.168.1.4
192.168.1.76

192.168.1.254

External network Host

134.14.12.35

134.14.12.254

Eth0

Eth1

Dst 134.14.12.45
Src 134.14.12.35

Dst 192.168.1.56
Src 134.14.12.35

Dst 134.14.12.35
Src 192.168.1.76

Dst 134.14.12.35
Src 134.14.12.43Destination-NAT

Source-NAT

NAT per

Interface

Destination-NAT Source-NAT

Local process IP Routing

inbound outbound

Destination-NAT

EPSG DS 301 V1.5.1 -314-

Fig. 111. Integration of NAT in the POWERLINK router

If bidirectional NAT is configured for a POWERLINK-host a host on the external network who wants to
communicate with that POWERLINK-host it looks as if the POWERLINK-host is on the same network
like itself.

External addresses of the NAT table are in the subnet of the external network:

On the interface to the external network the POWERLINK Router shall behave like a host,
accepting all external IP addresses ExtIpAddr_IPAD listed in the NAT table
RT1_NatTable_XXh_REC. Note, that the POWERLINK Router must respond to an ARP
request, requesting one of the external IP addresses StaticExtIpAddr_IPAD listed in the NAT
table. Therefore this interface does not obtain the IP packet like a router does i.e. the packet is
addressed to the router if it is not in the subnet.

• External addresses of the NAT table are not in the subnet of the direct connected external
network:

The interface to the external Network is addressed like a router.

• In every case:

The interface of the POWERLINK Router to the POWERLINK network shall act like a router.

Additional information about NAT is given in http://www.netfilter.org, RFC 2993 – Architectural
Implications of NAT and RFC 3027 – Protocol Complications with the IP Network Address Translator.

9.1.4.2.2.1 Configuration
Network address translation shall be manageable by POWERLINK SDO and optionally by SNMPv3.

9.1.4.2.2.1.1 SNMP

The POWERLINK Router MIB specifies the managed objects to configure NAT. Therefore the NAT
Group of the POWERLINK Router MIB shall be implemented.

9.1.4.2.2.1.2 SDO

The RT1_NatTable_XXh_REC object specifies the NAT table.

9.1.5 Security

Connecting a POWERLINK network via the POWERLINK Router to an external network (e.g. a LAN)
enables the communication with other resources and services. This presents an enormous benefit to
the entire system. On the other hand a POWERLINK Router represents a security risk, giving hackers,
crackers and intruders the opportunity to access nodes in the POWERLINK network. The
POWERLINK Router is the best place to add security mechanisms to protect a POWERLINK network,
since the POWERLINK Router connects an un-trusted network with the trusted POWERLINK network.

TXRX

IP routing engine

TX RX

MAC MAC

inbound
outbound

POWERLINK Router

RX Port 1RX Port 2

TX Port 2 TX Port 1

Port 1Port 2

Datalink

Network

D-NAT S-NAT

POWERLINK network external network

NAT

Table

Routing

Table

D-NATS-NAT

EPSG DS 301 V1.5.1 -315-

Security mechanisms consist of rules and restriction but also must ensure availability and ease of use.
Therefore, security must always be used at the right level. When applying security, a risk assessment
must typically be performed. The risk assessment shows the level of security that must be supported.
A risk assessment examines the following questions.

• Which network is connected to the POWERLINK network (trusted or un-trusted) ?

• Must we cope with accidental “attacks/errors” (handling errors) ?

• Must we cope with “evil-minded” malicious attacks (hackers, crackers, intruders, sabotage) ?

• ...

Depending on the result of the risk assessment, the appropriate mechanisms, listed below, must be
used.

• Secrecy

• Integrity

• Authentication and Authorisation

• Availability of the information

This specification for the POWERLINK Router assumes that:

• The POWERLINK Router is connected to a trusted network (e. g. the factory floor network).
Note that additional security considerations must be taken if the factory floor network is
connected to the office network or –even harder – to the internet.

• The POWERLINK Router does not protect the POWERLINK network against evil minded
attacks such as ICMP attacks, spoofing, etc..

The security assumption stated above, requires that a POWERLINK Router shall provide a basic
security level. The basic security level is achieved using a Packet Filter (stateless Firewall). For higher
security demands stateful Firewalls, VPN servers and Intrusion Detection systems must be
considered. However, this is outside the scope of this specification.

Support of Routing Type 1 security features is optional. Support shall be indicated by
D_RT1_RT1SecuritySupport_BOOL.

9.1.5.1 Packet Filter – Firewall

A Packet Filter is a firewall element that analyses and controls inbound and outbound traffic of the
datalink-, network and transport layers. A firewall in the sense of a Packet Filter physically decouples
an un-trusted network from a trusted network. This enables a global point of security control. The
Packet Filter functionality shall be implemented on the POWERLINK Router since the POWERLINK
Router separates both networks.

In an effort to protect the POWERLINK network from various risks, both accidental and malicious, a
Packet Filter should be deployed at a network’s ingress points – the POWERLINK Router. A Packet
Filter maintains the access between the interfaces through Access Control Lists (ACLs).

This specification defines the filter entries and the tables that shall be implemented. Fig. 112 illustrates
the involved tables that represent also the position where the IP datagrams shall be evaluated.

Fig. 112. Filter tables of the packet filter

The INPUT table RT1_AclInTable_Xh_REC shall contain the filter entries for packets that are
addressed to the POWERLINK Router itself. The FORWARD table RT1_AclFwdTable_XXh_REC
shall contain the filter entries for packets routed through the POWERLINK Router. The OUTPUT table
RT1_AclOutTable_Xh_REC shall contain the filter entries for packets locally generated. Each table

NAT

OUTPUT

IP Routing

inbound outbound

FORWARD

INPUT

Local process

The bold arrows present the route between POWERLINK and external network.

EPSG DS 301 V1.5.1 -316-

shall have its default policy (RT1_SecurityGroup_REC.InTablePolicy_U8,
RT1_SecurityGroup_REC.FwdTablePolicy_U8, RT1_SecurityGroup_REC.OutTablePolicy_U8).

9.1.5.1.1 ACL – Filter Entries
An Access Control List is a sequential list of permit and deny conditions known as a rule. The list
defines the connections permitted to pass through the POWERLINK Router as well as connections
that are denied. ACL’s act as a basic method of limiting access to the POWERLINK network.

A POWERLINK Router can support the following optional filter entries:

Datalink Layer Ethernet MAC frames (DIX2):

• Source MAC address (SrcMac_MAC) of the Ethernet MAC header.

A POWERLINK Router shall support the following filter entries:

Network Layer

• Source IP address (SrcIp_IPAD) field of the IP header / Source IP network mask
(SrcMask_IPAD)

• Destination IP address (DstIp_IPAD) field of the IP header / Destination IP network mask
(DstMask_IPAD)

• Protocol (Protocol_U8) field of the IP header.

Transport Layer if the Protocol is either UDP or TCP

• Source L4 Port (SrcPort_U16) of the TCP or UDP header.

• Destination L4 Port (DstPort_U16) of the TCP or UDP header.

9.1.5.1.2 Filter strategy
A firewall rule specifies criteria for a packet, and a target. A target specifies what do with this packet if
the rule matches. A rule matches if all specified entries from the assessed packet match the
corresponding entry of the current rule. If the packet does not match, the next rule in the respective
table is examined; if it does match, then the target (Target_U8) of the rule is executed, which is either
ACCEPT or DROP. ACCEPT means to let the packet through. DROP means to drop the packet on
the floor.

If no rule matches, it shall be up to the policy of the respective table
(RT1_SecurityGroup_REC.InTablePolicy_U8, RT1_SecurityGroup_REC.FwdTablePolicy_U8,
RT1_SecurityGroup_REC.OutTablePolicy_U8) to process the packet.

9.1.5.1.3 Configuration
The security settings and the ACLs shall be manageable by POWERLINK SDO and optionally by
SNMPv3.

9.1.5.1.3.1 SNMP
The POWERLINK Router MIB specifies the managed objects to configure the Packet Filter. Therefore
the Security Group of the POWERLINK Router MIB shall be implemented.

9.1.5.1.3.2 SDO
The following objects shall be implemented to configure the Packet Filter:

• RT1_SecurityGroup_REC

• RT1_AclFwdTable_XXh_REC

• RT1_AclInTable_Xh_REC

• RT1_AclOutTable_Xh_REC

9.1.6 Additional Services of a POWERLINK Router

Besides the data transport service between the POWERLINK and the normal Ethernet network, the
POWERLINK Router may offer extended services. These are:

• Precision Time Protocol (IEEE 1588) boundary clock functionality,

• BOOTP/DHCP Relay,

• Address Allocation DHCP (Option 82),

EPSG DS 301 V1.5.1 -317-

• Enhanced security mechanisms such as IEEE 802.1X-2001 Port-Based Network Access
Control Virtual Private Network (VPN) Server, Intrusion Detection.

• DNS Server / Cache

9.1.7 Object description

9.1.7.1 Object 1E80h: RT1_EplRouter_REC

RT1_EplRouter_REC specifies attributes for POWERLINK Router configuration. This object shall only
be implemented for routing type 1.

Index 1E80h Object Type RECORD

Name RT1_EplRouter_REC

Data Type RT1_EplRouter_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 2 Access ro

Default Value 2 PDO Mapping No

• Sub-Index 01h: EnableNat_BOOL

Sub-Index 01h

Name EnableNat_BOOL

Data Type BOOLEAN Category M

Value Range BOOLEAN Access rws

Default Value TRUE PDO Mapping No

Enables or disables the Network Address Translation on the POWERLINK Router.

• Sub-Index 02h: EnablePacketFiltering_BOOL

Sub-Index 02h

Name EnablePacketFiltering_BOOL

Data Type BOOLEAN Category M

Value Range BOOLEAN Access rws

Default Value TRUE PDO Mapping No

Depending on the value of EnablePacketFiltering_BOOL, the Packet Filer on the POWERLINK
Router is enabled or disabled.

9.1.7.2 Object 1E90h .. 1ECFh:
RT1_IpRoutingTable_XXh_REC

The RT1_IpRoutingTable_XXh_REC object is a subset of RFC1354, which defines the routers
forwarding table. The routing table shall have 64 entries that may be configured via SDO.

To allow access by name “_XXh” shall be replaced by a name index. Name index shall be “_00h” if
object index is 1E90h. It shall be incremented up to “_3Fh” corresponding to object index 1ECFh. This
object shall only be implemented for routing type 1.

EPSG DS 301 V1.5.1 -318-

Index 1E90h .. 1ECFh Object Type RECORD

Name RT1_IpRoutingTable_XXh_REC

Data Type RT1_IpRoutingTable_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 7 Access ro

Default Value 7 PDO Mapping No

• Sub-Index 01h: IpForwardDest_IPAD

Sub-Index 01h

Name IpForwardDest_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

The destination IP address of this route. An entry with a value of 0.0.0.0 is considered a default
route. This object may not take a Multicast (Class D) address value. Any assignment (implicit or
otherwise) of an instance of this object to a value x must be rejected if the bitwise logical-AND
of x with the value of the corresponding instance of the IpForwardMask_IPAD object is not
equal to x.

• Sub-Index 02h: IpForwardMask_IPAD

Sub-Index 02h

Name IpForwardMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value 0.0.0.0 PDO Mapping No

Indicate the mask to be logical-ANDed with the destination address before being compared to
the value in the IpForwardDest_IPAD field. For those systems that do not support arbitrary
subnet masks, an agent constructs the value of the IpForwardMask_IPAD by reference to the IP
Address Class. Any assignment (implicit or otherwise) of an instance of this object to a value x
must be rejected if the bitwise logical-AND of x with the value of the corresponding instance of
the IpForwardDest_IPAD object is not equal to IpForwardDest_IPAD.

• Sub-Index 03h: IpForwardNextHop_IPAD

Sub-Index 03h

Name IpForwardNextHop_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

On remote routes, the address of the next system en route; Otherwise, 0.0.0.0.

EPSG DS 301 V1.5.1 -319-

• Sub-Index 04h: IpForwardType_U8

Sub-Index 04h

Name IpForwardType_U8

Data Type UNSIGNED8 Category M

Value Range Other (1), -- not specified
invalid (2), -- logically deleted
local (3), -- local interface
remote (4), -- remote destination

Access rws

Default Value invalid (2) PDO Mapping No

The type of route. Note that local(3) refers to a route for which the next hop is the final
destination; remote(4) refers to a route for which the next hop is not the final destination. Setting
this object to the value invalid(2) has the effect of invalidating the corresponding entry in the
IpForwardTable_REC object. That is, it effectively disassociates the destination identified with
said entry from the route identified with said entry. It is an implementation-specific matter as to
whether the agent removes an invalidated entry from the table. Accordingly, management
nodes must be prepared to receive tabular information from agents that corresponds to entries
not currently in use. Proper interpretation of such entries requires examination of the relevant
IpForwardType_U8 object.

• Sub-Index 05h: IpForwardAge_U32

Sub-Index 05h

Name IpForwardAge_U32

Data Type UNSIGNED32 Category M

Value Range UNSIGNED32 Access ro

Default Value - PDO Mapping No

The number of seconds since this route was last updated or otherwise determined to be correct.
Note that no semantics of `too old’ can be implied except through knowledge of the routing
protocol by which the route was learned.

• Sub-Index 06h: IpForwardItfIndex_U16

Sub-Index 06h

Name IpForwardItfIndex_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value - PDO Mapping No

The IpForwardItfIndex_U16 identifies the local interface (NMT_LocItfGroupN_REC.-
ItfIndex_U16) through which the next hop of this route should be reached.

• Sub-Index 07h: IpForwardMetric1_S32

Sub-Index 07h

Name IpForwardMetric1_S32

Data Type INTEGER32 Category M

Value Range INTEGER32 Access rws

Default Value -1 PDO Mapping No

An alternate routing metric for this route. If this metric is not used, its value should be set to -1.
A metric indicates the cost of using a route, which is typically the number of hops to the IP
destination. Anything on the local subnet is one hop, and each router crossed after that is an
additional hop. If there are multiple routes to the same destination with different metrics, the
route with the lowest metric is selected.

9.1.7.3 Object 1D00h .. 1DFFh: RT1_NatTable_XXh_REC

This object specifies the NAT table located on the POWERLINK Router for bidirectional (1to1) NAT.
The NAT table shall have 256 entries that may be configured via SDO.

EPSG DS 301 V1.5.1 -320-

To allow access by name “_XXh” shall be replaced by a name index. Name index shall be “_00h” if
object index is 1D00h. It shall be incremented up to “_FFh” corresponding to object index 1DFFh. This
object shall only be implemented for routing type 1.

Index 1D00h .. 1DFFh Object Type RECORD

Name RT1_NatTable_XXh_REC

Data Type RT1_NatTable_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 4 Access ro

Default Value 4 PDO Mapping No

• Sub-Index 01h: EplIpAddr_IPAD

Sub-Index 01h

Name EplIpAddr_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

StaticEplIpAddr_IPAD contains the IP address to the POWERLINK network.

• Sub-Index 02h: ExtIpAddr_IPAD

Sub-Index 02h

Name ExtIpAddr_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

StaticExtIpAddr_IPAD contains the IP address to the external network.

• Sub-Index 03h: Mask_IPAD

Sub-Index 03h

Name Mask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

This is the Network-mask for EplIpAddr_IPAD and ExtIpAddr_IPAD. Bidirectional NAT only
works for single hosts or IP-address ranges which are equal in size for source and destination.
Thus only one mask is needed.

• Sub-Index 04h: Type_U8

Sub-Index 04h

Name Type_U8

Data Type UNSIGNED8 Category M

Value Range other (1), -- not specified
invalid (2), -- logically deleted
bidirectional-nat (3) – bidirectional NAT

Access rws

Default Value invalid (2) PDO Mapping No

Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in
the Type_U8 object. That is, it effectively disassociates the respective entry from Table_REC. It
is an implementation-specific matter as to whether the agent removes an invalidated entry from
the table. Accordingly, management nodes must be prepared to receive tabular information

EPSG DS 301 V1.5.1 -321-

from agents that corresponds to entries not currently in use. Proper interpretation of such
entries requires examination of the relevant Type_U8.

9.1.7.4 Object 1E81h: RT1_SecurityGroup_REC

The RT1_SecurityGroup_REC contains information about the security settings of the POWERLINK
Router. This object shall only be implemented for routing type 1.

Index 1E81h Object Type RECORD

Name RT1_SecurityGroup_REC

Data Type RT1_SecurityGroup_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 3 Access const

Default Value 3 PDO Mapping No

• Sub-Index 01h: FwdTablePolicy_U8

Sub-Index 01h

Name FwdTablePolicy_U8

Data Type UNSIGNED8 Category M

Value Range accept (1)
drop (2)

reject (3)

Access rws

Default Value accept PDO Mapping No

FwdTablePolicy_U8 specifies the default policy of the FORWARD table
(RT1_AclFwdTable_XXh_REC).

• Sub-Index 02h: InTablePolicy_U8

Sub-Index 02h

Name InTablePolicy_U8

Data Type UNSIGNED8 Category M

Value Range accept (1)
drop (2)

reject (3)

Access rws

Default Value accept PDO Mapping No

InTablePolicy_U8 specifies the default policy of the INPUT table (RT1_AclInTable_Xh_REC).

• Sub-Index 03h: OutTablePolicy_U8

Sub-Index 03h

Name OutTablePolicy_U8

Data Type UNSIGNED8 Category M

Value Range accept (1)
drop (2)

reject (3)

Access rws

Default Value accept PDO Mapping No

OutTablePolicy_U8 specifies the default policy of the OUTPUT table
(RT1_AclOutTable_Xh_REC).

9.1.7.5 Object 1B00h .. 1BFFh: RT1_AclFwdTable_XXh_REC

This object specifies the Access Control List (ACL) for the FORWARD table located on the
POWERLINK Router – see 9.1.5.1. The FORWARD table shall have 256 entries that may be
configured via SDO.

EPSG DS 301 V1.5.1 -322-

To allow access by name “_XXh” shall be replaced by a name index. Name index shall be “_00h” if
object index is 1B00h. It shall be incremented up to “_3Fh” corresponding to object index 1BFFh. This
object shall only be implemented for routing type 1.

Index 1B00h .. 1BFFh Object Type RECORD

Name RT1_AclFwdTable_XXh_REC

Data Type RT1_AclTable_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 9 Access const

Default Value 9 PDO Mapping No

• Sub-Index 01h: SrcIp_IPAD

Sub-Index 01h

Name SrcIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcIp_IPAD specifies a plain source IP address for the respective entry. A value of 0.0.0.0 and
a SrcMask_IPAD of 0.0.0.0 shall indicate any IP address.

• Sub-Index 02h: SrcMask_IPAD

Sub-Index 02h

Name SrcMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcMask_IPAD is the network mask to the according source IP address SrcIp_IPAD for the
respective entry. A value of 0.0.0.0 for SrcIp_IPAD and a SrcMask_IPAD of 0.0.0.0 shall
indicate any IP address.

• Sub-Index 03h: DstIp_IPAD

Sub-Index 03h

Name DstIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstIp_IPAD specifies a plain destination IP address for the respective entry. A value of 0.0.0.0
and a DstMask_IPAD of 0.0.0.0 shall indicate any IP address.

• Sub-Index 04h: DstMask_IPAD

Sub-Index 04h

Name DstMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstMask_IPAD is the network mask to the according destination IP address DstIp_IPAD for the
respective entry. A value of 0.0.0.0 for DstIp_IPAD and a DstMask_IPAD of 0.0.0.0 shall
indicate any IP address.

EPSG DS 301 V1.5.1 -323-

• Sub-Index 05h: Protocol_U8

Sub-Index 05h

Name Protocol_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value 0 PDO Mapping No

The protocol of the rule or the packet to check. In the Internet Protocol version 4 (Ipv4)
[RFC791] there is a field, called “Protocol”, to identify the next level protocol. This is an 8 bit
field. The specified protocol is a numeric number listed in
http://www.iana.org/assignments/protocol-numbers. The number zero is equivalent to all
protocols.

• Sub-Index 06h: SrcPort_U16

Sub-Index 06h

Name SrcPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

SrcPort_U16 specifies the source port if the protocol (Protocol_U8) TCP or UDP is specified. A
value of zero indicates any protocol.

• Sub-Index 07h: DstPort_U16

Sub-Index 07h

Name DstPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

DstPort_U16 contains the destination port if the protocol (Protocol_U8) TCP or UDP is
specified. A value of zero indicates any protocol.

• Sub-Index 08h: SrcMac_MAC

Sub-Index 08h

Name SrcMac_MAC

Data Type MAC_ADDRESS Category M

Value Range MAC_ADDRESS Access rws

Default Value 00:00:00:00:00:00 PDO Mapping No

Match source MAC address. A value of 00:00:00:00:00:00 specifies any source MAC.

• Sub-Index 09h: Target_U8

Sub-Index 09h

Name Target_U8

Data Type UNSIGNED8 Category M

Value Range Invalid (0)
accept (1)
drop (2)
reject (3)

Access rws

Default Value Invalid (0) PDO Mapping No

Specifies the target of the rule. If the value is zero, the entry shall be invalid. If the rule matches
the target, the value is either accept, drop or reject.

EPSG DS 301 V1.5.1 -324-

9.1.7.6 Object 1ED0h .. 1EDFh: RT1_AclInTable_Xh_REC

This object specifies the Access Control List (ACL) for the INPUT table located on the POWERLINK
Router – see 9.1.5.1. The INPUT table shall have 16 entries that may be configured via SDO.

To allow access by name “_Xh” shall be replaced by a name index. Name index shall be “_0h” if
object index is 1ED0h. It shall be incremented up to “_Fh” corresponding to object index 1EDFh. This
object shall only be implemented for routing type 1.

Index 1ED0h .. 1EDFh Object Type RECORD

Name RT1_AclInTable_Xh_REC

Data Type RT1_AclTable_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 9 Access const

Default Value 9 PDO Mapping No

• Sub-Index 01h: SrcIp_IPAD

Sub-Index 01h

Name SrcIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcIp_IPAD contains a plain source IP address for the respective entry. A value of 0.0.0.0 and a
SrcMask_IPAD of 0.0.0.0 shall indicate any IP address.

• Sub-Index 02h: SrcMask_IPAD

Sub-Index 02h

Name SrcMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcMask_IPAD is the network mask to the according source IP address SrcIp_IPAD for the
respective entry. A value of 0.0.0.0 for SrcIp_IPAD and a SrcMask_IPAD of 0.0.0.0 shall
indicate any IP address.

• Sub-Index 03h: DstIp_IPAD

Sub-Index 03h

Name DstIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstIp_IPAD specifies a plain destination IP address for the respective entry. A value of 0.0.0.0
and a DstMask_IPAD of 0.0.0.0 shall indicate any IP address.

EPSG DS 301 V1.5.1 -325-

• Sub-Index 04h: DstMask_IPAD

Sub-Index 04h

Name DstMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstMask_IPAD is the network mask to the according destination IP address DstIp_IPAD for the
respective entry. A value of 0.0.0.0 for DstIp_IPAD and a DstMask_IPAD of 0.0.0.0 shall
indicate any IP address.

• Sub-Index 05h: Protocol_U8

Sub-Index 05h

Name Protocol_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value 0 PDO Mapping No

The protocol of the rule or the packet to check. In the Internet Protocol version 4 (Ipv4)
[RFC791] there is a field, called “Protocol”, to identify the next level protocol. This is an 8 bit
field. The specified protocol is a numeric number listed in
http://www.iana.org/assignments/protocol-numbers. The number zero is equivalent to all
protocols.

• Sub-Index 06h: SrcPort_U16

Sub-Index 06h

Name SrcPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

SrcPort_U16 specifies the source port if the protocol (Protocol_U8) TCP or UDP is specified. A
value of zero indicates any protocol.

• Sub-Index 07h: DstPort_U16

Sub-Index 07h

Name DstPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

DstPort_U16 contains the destination port if the protocol (Protocol_U8) TCP or UDP is
specified. A value of zero indicates any protocol.

• Sub-Index 08h: SrcMac_MAC

Sub-Index 08h

Name SrcMac_MAC

Data Type MAC_ADDRESS Category M

Value Range MAC_ADDRESS Access rws

Default Value 00:00:00:00:00:00 PDO Mapping No

Match source MAC address. A value of 00:00:00:00:00:00 specifies any source MAC.

EPSG DS 301 V1.5.1 -326-

• Sub-Index 09h: Target_U8

Sub-Index 09h

Name Target_U8

Data Type UNSIGNED8 Category M

Value Range Invalid (0)
accept (1)
drop (2)
reject (3)

Access rws

Default Value Invalid (0) PDO Mapping No

Specifies the target of the rule. If the value is zero, the entry shall be invalid. If the rule matches
the target, the value is either accept, drop or reject.

9.1.7.7 Object 1EE0h .. 1EEFh: RT1_AclOutTable_Xh_REC

This object specifies the Access Control List (ACL) for the OUTPUT table located on the POWERLINK
Router – see 9.1.5.1. The routing table shall have 16 entries that may be configured via SDO.

To allow access by name “_Xh” shall be replaced by a name index. Name index shall be “_0h” if
object index is 1EE0h. It shall be incremented up to “_Fh” corresponding to object index 1EEFh. This
object shall only be implemented for routing type 1.

Index 1EE0h .. 1EEFh Object Type RECORD

Name RT1_AclOutTable_Xh_REC

Data Type RT1_AclTable_TYPE Category Conditional

• Sub-Index 00h: NumberOfEntries

Sub-Index 00h

Name NumberOfEntries

Value Range 9 Access const

Default Value 9 PDO Mapping No

EPSG DS 301 V1.5.1 -327-

• Sub-Index 01h: SrcIp_IPAD

Sub-Index 01h

Name SrcIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcIp_IPAD specifies a plain source IP address for the respective entry. A value of 0.0.0.0 and
a SrcMask_IPAD of 0.0.0.0 shall indicate any IP address.

• Sub-Index 02h: SrcMask_IPAD

Sub-Index 02h

Name SrcMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

SrcMask_IPAD is the network mask to the according source IP address SrcIp_IPAD for the
respective entry. A value of 0.0.0.0 for SrcIp_IPAD and a SrcMask_IPAD of 0.0.0.0 shall
indicate any IP address.

• Sub-Index 03h: DstIp_IPAD

Sub-Index 03h

Name DstIp_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstIp_IPAD specifies a plain destination IP address for the respective entry. A value of 0.0.0.0
and a DstMask_IPAD of 0.0.0.0 shall indicate any IP address.

• Sub-Index 04h: DstMask_IPAD

Sub-Index 04h

Name DstMask_IPAD

Data Type IP_ADDRESS Category M

Value Range IP_ADDRESS Access rws

Default Value - PDO Mapping No

DstMask_IPAD is the network mask to the according destination IP address DstIp_IPAD for the
respective entry. A value of 0.0.0.0 for DstIp_IPAD and a DstMask_IPAD of 0.0.0.0 shall
indicate any IP address.

• Sub-Index 05h: Protocol_U8

Sub-Index 05h

Name Protocol_U8

Data Type UNSIGNED8 Category M

Value Range UNSIGNED8 Access rws

Default Value 0 PDO Mapping No

The protocol of the rule or the packet to check. In the Internet Protocol version 4 (Ipv4)
[RFC791] there is a field, called “Protocol”, to identify the next level protocol. This is an 8 bit
field. The specified protocol is a numeric number listed in
http://www.iana.org/assignments/protocol-numbers. The number zero is equivalent to all
protocols.

EPSG DS 301 V1.5.1 -328-

• Sub-Index 06h: SrcPort_U16

Sub-Index 06h

Name SrcPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

SrcPort_U16 specifies the source port if the protocol (Protocol_U8) TCP or UDP is specified. A
value of zero indicates any protocol.

• Sub-Index 07h: DstPort_U16

Sub-Index 07h

Name DstPort_U16

Data Type UNSIGNED16 Category M

Value Range UNSIGNED16 Access rws

Default Value 0 PDO Mapping No

DstPort_U16 contains the destination port if the protocol (Protocol_U8) TCP or UDP is
specified. A value of zero indicates any protocol.

• Sub-Index 08h: SrcMac_MAC

Sub-Index 08h

Name SrcMac_MAC

Data Type MAC_ADDRESS Category M

Value Range MAC_ADDRESS Access rws

Default Value 00:00:00:00:00:00 PDO Mapping No

Match source MAC address. A value of 00:00:00:00:00:00 specifies any source MAC.

• Sub-Index 09h: Target_U8

Sub-Index 09h

Name Target_U8

Data Type UNSIGNED8 Category M

Value Range Invalid (0)
accept (1)
drop (2)
reject (3)

Access rws

Default Value Invalid (0) PDO Mapping No

Specifies the target of the rule. If the value is zero, the entry shall be invalid. If the rule matches
the target, the value is either accept, drop or reject.

EPSG DS 301 V1.5.1 -329-

9.1.7.8 Router Type I Object Types

9.1.7.8.1 Object 0430h: RT1_EplRouter_TYPE

Index 0430h Object Type DEFSTRUCT

Name RT1_EplRouter_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 02h

01h EnableNat_BOOL 0001h BOOLEAN

02h EnablePacketFiltering_BOOL 0001h BOOLEAN

9.1.7.8.2 Object 0431h: RT1_IpRoutingTable_TYPE

Index 0431h Object Type DEFSTRUCT

Name RT1_IpRoutingTable_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 07h

01h IpForwardDest_IPAD 0402h IP_ADDRESS

02h IpForwardMask_IPAD 0402h IP_ADDRESS

03h IpForwardNextHop_IPAD 0402h IP_ADDRESS

04h IpForwardType_U8 0005h UNSIGNED8

05h IpForwardAge_U32 0007h UNSIGNED32

06h IpForwardItfIndex_U16 0006h UNSIGNED16

07h IpForwardMetric1_S32 0004h INTEGER32

9.1.7.8.3 Object 0432h: RT1_NatTable_TYPE

Index 0432h Object Type DEFSTRUCT

Name RT1_NatTable_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 04h

01h EplIpAddr_IPAD 0402h IP_ADDRESS

02h ExtIpAddr_IPAD 0402h IP_ADDRESS

03h Mask_IPAD 0402h IP_ADDRESS

04h Type_U8 0005h UNSIGNED8

9.1.7.8.4 Object 0433h: RT1_SecurityGroup_TYPE

Index 0433h Object Type DEFSTRUCT

Name RT1_SecurityGroup_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 03h

01h FwdTablePolicy_U8 0005h UNSIGNED8

02h InTablePolicy_U8 0005h UNSIGNED8

03h OutTablePolicy_U8 0005h UNSIGNED8

9.1.7.8.5 Object 0434h: RT1_AclTable_TYPE

Index 0434h Object Type DEFSTRUCT

Name RT1_AclTable_TYPE

Sub-Index Component Name Value Data Type

00h NumberOfEntries 09h

01h SrcIp_IPAD 0402h IP_ADDRESS

EPSG DS 301 V1.5.1 -330-

02h SrcMask_IPAD 0402h IP_ADDRESS

03h DstIp_IPAD 0402h IP_ADDRESS

04h DstMask_IPAD 0402h IP_ADDRESS

05h Protocol_U8 0005h UNSIGNED8

06h SrcPort_U16 0006h UNSIGNED16

07h DstPort_U16 0006h UNSIGNED16

08h SrcMac_MAC 0401h MAC_ADDRESS

09h Target_U8 0005h UNSIGNED8

9.1.8 POWERLINK Router MIB

The POWERLINK Router Management Information Base (MIB) specifies the managed objects which
are accessible via SNMP.

9.2 Routing Type 2
A POWERLINK Router Type 2 is a coupling element that allows communication between nodes in a
POWERLINK network and nodes in an CANopen network.

Fig. 113. POWERLINK router type 2

Routing Type 2 will provide CANopen compliant SDO communication between POWERLINK and
CANopen nodes.

CANopen to CANopen cross traffic over a POWERLINK based Machine Network (see Fig. 107) will be
provided.

Access from the Factory Floor Network and further IP based networks (see Fig. 107) to CANopen
nodes via POWERLINK Router Type 1 and POWERLINK Router Type 2 will be possible.

POWERLINK Routing Type 2 will be specified by a separate standard.

Routing Type 2 is optional. Support shall be indicated by D_RT2_RT2Support_BOOL.

POWERLINK

POWERLINK

Router

Type 2
CANopen

EPSG DS 301 V1.5.1 -331-

10 Indicators
Each POWERLINK node shall support:

• either two LEDs

o a red ERROR LED

o a green STATUS LED

• or a combination of both using one bicolor (green/red) LED called S/E LED.
The red subfunction of the S/E LED is equivalent to the ERROR LED, the green one to the
STATUS LED.

The following POWERLINK specific LEDs may be additionally used:

• per node

o Transmit data (TX LED): yellow

• per port:

o Receive data (RX LED): yellow

o Ethernet Link (LINK LED): green

o Collision (COL LED): red (recommended)

o For the LINK LED and the COL LED, a bicolor (green/red) LED (L/C LED) may be used.

Alternative following POWERLINK specific LED may be additionally used:

• per port:

o Ethernet Link/Data Activity (LINK/DATA ACTIVITY LED) bicolor (green/yellow) LED or

o Ethernet Link/Data Activity (LINK/DATA ACTIVITY LED) green LED

10.1 Indicator states and flash rates
The following indicator states are distinguished:

LED on constantly on

LED off constantly off

LED flickering equal on and off times with a frequency of approximately 10 Hz: on for
approximately 50 ms and off for approximately 50 ms.

LED blinking equal on and off times with a frequency of approximately 2,5 Hz: on for
approximately 200 ms followed by off for approximately 200 ms.

LED single flash one short flash (approximately 200ms) followed by a long off phase
(approximately 1000 ms).

LED double flash a sequence of two short flashes (approximately 200ms), separated by an
off phase (approximately 200ms). The sequence is finished by a long off
phase (approximately 1000 ms).

LED triple flash a sequence of three short flashes (approximately 200ms), separated by
an off phase (approximately 200ms). The sequence is finished by a long
off phase (approximately 1000 ms).

 LED indicator states

EPSG DS 301 V1.5.1 -332-

10.2 Indicator Signaling
• ERROR LED

ERROR LED function is controlled by NMT state machine transitions.

LED OFF

LED ON

PowerON

NMT_CT11,

NMT_GT6,

NMT_MT6,

Detection of illegal node ID (optional)

NMT_CT7,

NMT_GT2,

NMT_CT3,

NMT_MT5

Fig. 114. ERROR LED state machine

In case of detection of an illegal Node ID switching on the error LED is optional.

Example for an illegal Node ID: Node ID setting 240 on a CN only device.

• STATUS LED

STATUS LED function is controlled by NMT state machine states.

STATUS LED State

LED off NMT_GS_OFF, NMT_GS_INITIALISATION,
NMT_CS_NOT_ACTIVE / NMT_MS_NOT_ACTIVE

LED flickering NMT_CS_BASIC_ETHERNET

LED single flash NMT_CS_PRE_OPERATIONAL_1 / NMT_MS_PRE_OPERATIONAL_1

LED double flash NMT_CS_PRE_OPERATIONAL_2 / NMT_MS_PRE_OPERATIONAL_2

LED triple flash NMT_CS_READY_TO_OPERATE / NMT_MS_READY_TO_OPERATE

LED on NMT_CS_OPERATIONAL / NMT_MS_OPERATIONAL

LED blinking NMT_CS_STOPPED

 Status LED states

• S/E LED

combination of ERROR LED and STATUS LED,
STATUS LED is dominant over the ERROR LED function, e.g. if a STATUS LED flash is
required, the ERROR LED will be off during the flash

• TX LED

shall be LED on, when data are currently transmitted

• RX LED

shall be LED on, when data are currently received

• LINK LED

shall be LED on, when etherlink link is established

• COLLISION LED

shall be LED on, when an ethernet frame collision is recognized

• LINK/DATA ACTIVITY LED

• Bicolor (yellow/green) LED

shall be LED on green when ethernet link is established, shall be on yellow when data
received or transmitted it is allowed to indicate only the TX- or RX- direction or both, the
DATA ACTIVITY LED is dominant over the LINK LED

EPSG DS 301 V1.5.1 -333-

• green LED

shall be LED on green when ethernet link is established, shall be flash when data
received or transmitted it is allowed to indicate only the TX- or RX- direction or both, the
DATA ACTIVITY LED is dominat over the LINK LED

10.3 Recommended labelling
• „BS“ or „Status“ for the STATUS LED

• „BE“ or „Error“ for the ERROR LED

• „S/E“for the S/E LED

• „Tx“ for the TX LED

• „Rx“ for the RX LED

• „L“ for the LINK LED

• „C“ for the COLLISION LED

• „L/C“ for the combined LINK LED and COL LED

• „L/A”or alternatively „LS/DA” for the LINK/DATA ACTIVITY LED

Case of labelling shall not be significant, e.g. „RUN“, „run“ and „Run“ shall be equivalent.

EPSG DS 301 V1.5.1 -334-

App. 1 Summary Object Library (normative)

App. 1.1 Object Dictionary Entries, sorted by index
Index Name Store Category Object Type

0001h BOOLEAN DEFTYPE

0002h INTEGER8 DEFTYPE

0003h INTEGER16 DEFTYPE

0004h INTEGER32 DEFTYPE

0005h UNSIGNED8 DEFTYPE

0006h UNSIGNED16 DEFTYPE

0007h UNSIGNED32 DEFTYPE

0008h REAL32 DEFTYPE

0009h VISIBLE_STRING DEFTYPE

000Ah OCTET_STRING DEFTYPE

000Bh UNICODE_STRING DEFTYPE

000Ch TIME_OF_DAY DEFTYPE

000Dh TIME_DIFFERENCE DEFTYPE

000Fh DOMAIN DEFTYPE

0010h INTEGER24 DEFTYPE

0011h REAL64 DEFTYPE

0012h INTEGER40 DEFTYPE

0013h INTEGER48 DEFTYPE

0014h INTEGER56 DEFTYPE

0015h INTEGER64 DEFTYPE

0016h UNSIGNED24 DEFTYPE

0018h UNSIGNED40 DEFTYPE

0019h UNSIGNED48 DEFTYPE

001Ah UNSIGNED56 DEFTYPE

001Bh UNSIGNED64 DEFTYPE

0023h IDENTITY DEFSTRUCT

0040h
..
005Fh

Manufacturer Specific Complex Data Types DEFSTRUCT

0060h
..
007Fh

Device Profile (0) Specific Standard Data Types DEFTYPE

0080h
..
009Fh

Device Profile (0) Specific Complex Data Types DEFSTRUCT

00A0h
..
00BFh

Device Profile 1 Specific Standard Data Types DEFTYPE

00C0h
..
00DFh

Device Profile 1 Specific Complex Data Types DEFSTRUCT

00E0h
..
00FFh

Device Profile 2 Specific Standard Data Types DEFTYPE

0100h
..
011Fh

Device Profile 2 Specific Complex Data Types DEFSTRUCT

EPSG DS 301 V1.5.1 -335-

Index Name Store Category Object Type

0120h
..
013Fh

Device Profile 3 Specific Standard Data Types DEFTYPE

0140h
..
015Fh

Device Profile 3 Specific Complex Data Types DEFSTRUCT

0160h
..
017Fh

Device Profile 4 Specific Standard Data Types DEFTYPE

0180h
..
019Fh

Device Profile 4 Specific Complex Data Types DEFSTRUCT

01A0h
..
01BFh

Device Profile 5 Specific Standard Data Types DEFTYPE

01C0h
..
01DFh

Device Profile 5 Specific Complex Data Types DEFSTRUCT

01E0h
..
01FFh

Device Profile 6 Specific Standard Data Types DEFTYPE

0200h
..
021Fh

Device Profile 6 Specific Complex Data Types DEFSTRUCT

0220h
..
023Fh

Device Profile 7 Specific Standard Data Types DEFTYPE

0240h
..
025Fh

Device Profile 7 Specific Complex Data Types DEFSTRUCT

0401h MAC_ADDRESS DEFTYPE

0402h IP_ADDRESS DEFTYPE

0403h NETTIME DEFTYPE

0420h PDO_CommParamRecord_TYPE DEFSTRUCT

0422h SDO_ParameterRecord_TYPE DEFSTRUCT

0424h DLL_ErrorCntRec_TYPE DEFSTRUCT

0425h NWL_IpGroup_TYPE DEFSTRUCT

0426h NWL_IpAddrTable_TYPE DEFSTRUCT

0427h PDL_LocVerApplSw_TYPE DEFSTRUCT

0428h INP_ProcessImage_TYPE DEFSTRUCT

0429h NMT_ParameterStorage_TYPE DEFSTRUCT

042Bh NMT_InterfaceGroup_TYPE DEFSTRUCT

042Ch NMT_CycleTiming_TYPE DEFSTRUCT

042Eh NMT_BootTime_TYPE DEFSTRUCT

042Fh NMT_MNCycleTiming_TYPE DEFSTRUCT

0430h RT1_EplRouter_TYPE DEFSTRUCT

0431h RT1_IpRoutingTable_TYPE DEFSTRUCT

0432h RT1_NatTable_TYPE DEFSTRUCT

0433h RT1_SecurityGroup_TYPE DEFSTRUCT

0434h RT1_AclTable_TYPE DEFSTRUCT

0435h CFM_VerifyConfiguration_TYPE DEFSTRUCT

0437h DIA_NMTTelegrCount_TYPE DEFSTRUCT

EPSG DS 301 V1.5.1 -336-

Index Name Store Category Object Type

0438h DIA_ERRStatistics_TYPE DEFSTRUCT

0439h NMT_EPLNodeID_TYPE DEFSTRUCT

043Ah NMT_RequestCmd_TYPE DEFSTRUCT

043Bh DLL_MNRingRedundancy_TYPE used by EPSG DS302-A [1] DEFSTRUCT

1000h NMT_DeviceType_U32 - M VAR

1001h ERR_ErrorRegister_U8 - M VAR

1003h ERR_History_ADOM - O ARRAY

1006h NMT_CycleLen_U32 x M VAR

1008h NMT_ManufactDevName_VS - O VAR

1009h NMT_ManufactHwVers_VS - O VAR

100Ah NMT_ManufactSwVers_VS - O VAR

1010h NMT_StoreParam_REC - O RECORD

1011h NMT_RestoreDefParam_REC - O RECORD

1016h NMT_ConsumerHeartbeatTime_AU32 1-254 O ARRAY

1018h NMT_IdentityObject_REC - M RECORD

1020h CFM_VerifyConfiguration_REC 1-3 M RECORD

1021h CFM_StoreDevDescrFile_DOM x O VAR

1022h CFM_StoreDevDescrFormat_U16 x Cond VAR

1027h NMT_ChildIdentList_AU16 used by EPSG DS302-F [6] Cond ARRAY

1030h

..
1039h

NMT_InterfaceGroup_Xh_REC 8-9 M(1030h)/
O

RECORD

1050h DLL_RelativeLatencyDiff_AU32 used by EPSG DS302-C [3] Cond ARRAY

1101h DIA_NMTTelegrCount_REC - O RECORD

1102h DIA_ERRStatistics_REC - O RECORD

1200h
..
127Fh

SDO_ServerContainerParam_XXh_REC 1-4 O RECORD

1280h
..
12FFh

SDO_ClientContainerParam_XXh_REC 1-4 O RECORD

1300h SDO_SequLayerTimeout_U32 x M VAR

1301h SDO_CmdLayerTimeout_U32 x O VAR

1302h SDO_SequLayerNoAck_U32 x O VAR

1400h
..
14FFh

PDO_RxCommParam_XXh_REC 1-2 Cond RECORD

1600h

..
16FFh

PDO_RxMappParam_XXh_AU64 0-254 Cond ARRAY

1800h

..
18FFh

PDO_TxCommParam_XXh_REC 1-2 Cond RECORD

1A00h
..
1AFFh

PDO_TxMappParam_XXh_AU64 0-254 Cond ARRAY

1B00h

..
1BFFh

RT1_AclFwdTable_XXh_REC 1-9 Cond RECORD

1C00h DLL_MNCRCError_REC 3 MN: M
CN: -

RECORD

1C01h DLL_MNCollision_REC 3 MN: O RECORD

EPSG DS 301 V1.5.1 -337-

Index Name Store Category Object Type

CN: -

1C02h DLL_MNCycTimeExceed_REC 3 MN: O
CN: -

RECORD

1C03h DLL_MNLossOfLinkCum_U32 - MN: Cond
CN: -

VAR

1C04h DLL_MNCNLatePResCumCnt_AU32 - MN: Cond
CN: -

ARRAY

1C05h DLL_MNCNLatePResThrCnt_AU32 - MN: Cond
CN: -

ARRAY

1C06h DLL_MNCNLatePResThreshold_AU32 1-254 MN: Cond
CN: -

ARRAY

1C07h DLL_MNCNLossPResCumCnt_AU32 - MN: O
CN: -

ARRAY

1C08h DLL_MNCNLossPResThrCnt_AU32 - MN: M
CN: -

ARRAY

1C09h DLL_MNCNLossPResThreshold_AU32 1-254 MN: M
CN: -

ARRAY

1C0Ah DLL_CNCollision_REC 3 MN: -
CN: O

RECORD

1C0Bh DLL_CNLossSoC_REC 3 MN: -
CN: M

RECORD

1C0Ch DLL_CNLossSoA_REC 3 MN: -
CN: Cond

RECORD

1C0Dh DLL_CNLossPReq_REC 3 MN: -
CN: Cond

RECORD

1C0Eh DLL_CNSoCJitter_REC 3 MN: -
CN: Cond

RECORD

1C0Fh DLL_CNCRCError_REC 3 MN: -
CN: M

RECORD

1C10h DLL_CNLossOfLinkCum_U32 - MN: -
CN: Cond

VAR

1C12h DLL_MNCycleSuspendNumber_U32 x MN: M
CN: -

VAR

1C13h DLL_CNSoCJitterRange_U32 x MN: -
CN: Cond

VAR

1C14h DLL_CNLossOfSocTolerance_U32 x MN: -
CN: M

VAR

1C15h DLL_MNLossStatusResCumCnt_AU32 - MN: O

CN: -

ARRAY

1C16h DLL_MNLossStatusResThrCnt_AU32 - MN: M
CN: -

ARRAY

1C17h DLL_MNLossStatusResThreshold_AU32 1-254 MN: M
CN: -

ARRAY

1C40h DLL_MNRingRedundancy_REC used by EPSG DS302-A [1] MN: Cond
CN: -

RECORD

1C80h PDO_ErrMapVers_OSTR - O VAR

1C81h PDO_ErrShort_RX_OSTR - O VAR

1D00h

..
1DFFh

RT1_NatTable_XXh_REC 1-4 Cond RECORD

1E40h
..
1E49h

NWL_IpAddrTable_Xh_REC (2,3,)
5

Cond
(1E40h)/O

RECORD

1E4Ah NWL_IpGroup_REC (1,) 2 Cond RECORD

EPSG DS 301 V1.5.1 -338-

Index Name Store Category Object Type

1E80h RT1_EplRouter_REC 1,2 Cond RECORD

1E81h RT1_SecurityGroup_REC 1-3 Cond RECORD

1E90h

..
1ECFh

RT1_IpRoutingTable_XXh_REC 1-4,
6,7

Cond RECORD

1ED0h

..
1EDFh

RT1_AclInTable_Xh_REC 1-9 Cond RECORD

1EE0h

..
1EEFh

RT1_AclOutTable_Xh_REC 1-9 Cond RECORD

1F20h CFM_StoreDcfList_ADOM 1-254 MN: Cond
CN: -

ARRAY

1F21h CFM_DcfStorageFormatList_AU8 1-254 MN: O
CN: -

ARRAY

1F22h CFM_ConciseDcfList_ADOM 1-254 MN: O
CN: -

ARRAY

1F23h CFM_StoreDevDescrFileList_ADOM 1-254 MN: Cond
CN: -

ARRAY

1F24h CFM_DevDescrFileFormatList_AU8 1-254 MN: O
CN: -

ARRAY

1F25h CFM_ConfCNRequest_AU32 - MN: O
CN: -

ARRAY

1F26h CFM_ExpConfDateList_AU32 1-254 MN: O
CN: -

ARRAY

1F27h CFM_ExpConfTimeList_AU32 1-254 MN: O
CN: -

ARRAY

1F28h CFM_ExpConfIdList_AU32 1-254 MN: O
CN: -

ARRAY

1F50h PDL_DownloadProgData_ADOM - O ARRAY

1F51h PDL_ProgCtrl_AU8 - Cond ARRAY

1F52h PDL_LocVerApplSw_REC - Cond RECORD

1F53h PDL_MnExpAppSwDateList_AU32 0-254 Cond ARRAY

1F54h PDL_MnExpAppSwTimeList_AU32 0-254 Cond ARRAY

1F55h PDL_DownloadChildProgList_AU16 used by EPSG DS302-F [6] Cond ARRAY

1F70h INP_ProcessImage_REC - O RECORD

1F80h NMT_StartUp_U32 x MN: M
CN: -

VAR

1F81h NMT_NodeAssignment_AU32 x MN: M
CN: Cond

ARRAY

1F82h NMT_FeatureFlags_U32 - M VAR

1F83h NMT_EPLVersion_U8 - M VAR

1F84h NMT_MNDeviceTypeIdList_AU32 0-254 MN: M
CN: -

ARRAY

1F85h NMT_MNVendorIdList_AU32 0-254 MN: O
CN: -

ARRAY

1F86h NMT_MNProductCodeList_AU32 0-254 MN: O
CN: -

ARRAY

1F87h NMT_MNRevisionNoList_AU32 0-254 MN: O
CN: -

ARRAY

1F88h NMT_MNSerialNoList_AU32 0-254 MN: O
CN: -

ARRAY

1F89h NMT_BootTime_REC 1-9 MN: M RECORD

EPSG DS 301 V1.5.1 -339-

Index Name Store Category Object Type

CN: -

1F8Ah NMT_MNCycleTiming_REC 1,2,4 MN: M
CN: -

VAR

1F8Bh NMT_MNPReqPayloadLimitList_AU16 0-254 MN: M
CN: -

ARRAY

1F8Ch NMT_CurrNMTState_U8 - M VAR

1F8Dh NMT_PresPayloadLimitList_AU16 0-254 MN: M
CN: O

ARRAY

1F8Eh NMT_MNNodeCurrState_AU8 - MN: M
CN: -

ARRAY

1F8Fh
NMT_MNNodeExpState_AU8 - MN: O

CN: -
ARRAY

1F92h NMT_MNCNPResTimeout_AU32
0-254 MN: M

CN: -
ARRAY

1F93h NMT_EPLNodeID_REC 3 M RECORD

1F94h NMT_PdoNodeAssign_AU8 used by EPSG DS302-D [4] Cond ARRAY

1F98h NMT_CycleTiming_REC 4,5,
7-9

M RECORD

1F99h NMT_CNBasicEthernetTimeout_U32 x MN: -
CN: M

VAR

1F9Ah NMT_HostName_VSTR x Cond VAR

1F9Bh NMT_MultiplCycleAssign_AU8 0-254 Cond ARRAY

1F9Ch NMT_IsochrSlotAssign_AU8 0-254 O ARRAY

1F9Eh NMT_ResetCmd_U8 - M VAR

1F9Fh NMT_RequestCmd_REC - MN: M
CN: -

RECORD

1FA0h NMT_PredecessorNodeNumberList_AU32 used by EPSG DS302-E [5] Cond ARRAY

1FA1h NMT_PredecessorHubPortList_AU32 used by EPSG DS302-E [5] Cond ARRAY

EPSG DS 301 V1.5.1 -340-

App. 1.2 Object Dictionary Entries, sorted by name
Name Index Object Type

BOOLEAN 0001h DEFTYPE

CFM_ConciseDcfList_ADOM 1F22h ARRAY

CFM_ConfCNRequest_AU32 1F25h ARRAY

CFM_DcfStorageFormatList_AU8 1F21h ARRAY

CFM_DevDescrFileFormatList_AU8 1F24h ARRAY

CFM_ExpConfDateList_AU32 1F26h ARRAY

CFM_ExpConfIdList_AU32 1F28h ARRAY

CFM_ExpConfTimeList_AU32 1F27h ARRAY

CFM_StoreDcfList_ADOM 1F20h ARRAY

CFM_StoreDevDescrFile_DOM 1021h VAR

CFM_StoreDevDescrFileList_ADOM 1F23h ARRAY

CFM_StoreDevDescrFormat_U16 1022h VAR

CFM_VerifyConfiguration_REC 1020h RECORD

CFM_VerifyConfiguration_TYPE 0435h DEFSTRUCT

Device Profile (0) Specific Complex Data Types 0080h
..
009Fh

DEFSTRUCT

Device Profile (0) Specific Standard Data Types 0060h
..
007Fh

DEFTYPE

Device Profile 1 Specific Complex Data Types 00C0h
..
00DFh

DEFSTRUCT

Device Profile 1 Specific Standard Data Types 00A0h
..
00BFh

DEFTYPE

Device Profile 2 Specific Complex Data Types 0100h
..
011Fh

DEFSTRUCT

Device Profile 2 Specific Standard Data Types 00E0h
..
00FFh

DEFTYPE

Device Profile 3 Specific Complex Data Types 0140h
..
015Fh

DEFSTRUCT

Device Profile 3 Specific Standard Data Types 0120h
..
013Fh

DEFTYPE

Device Profile 4 Specific Complex Data Types 0180h
..
019Fh

DEFSTRUCT

Device Profile 4 Specific Standard Data Types 0160h
..
017Fh

DEFTYPE

Device Profile 5 Specific Complex Data Types 01C0h
..
01DFh

DEFSTRUCT

Device Profile 5 Specific Standard Data Types 01A0h
..
01BFh

DEFTYPE

EPSG DS 301 V1.5.1 -341-

Name Index Object Type

Device Profile 6 Specific Complex Data Types 0200h
..
021Fh

DEFSTRUCT

Device Profile 6 Specific Standard Data Types 01E0h
..
01FFh

DEFTYPE

Device Profile 7 Specific Complex Data Types 0240h
..
025Fh

DEFSTRUCT

Device Profile 7 Specific Standard Data Types 0220h
..
023Fh

DEFTYPE

DIA_ERRStatistics_REC 1102h RECORD

DIA_ERRStatistics_TYPE 0438h DEFSTRUCT

DIA_NMTTelegrCount_REC 1101h RECORD

DIA_NMTTelegrCount_TYPE 0437h DEFSTRUCT

DLL_CNCollision_REC 1C0Ah RECORD

DLL_CNCRCError_REC 1C0Fh RECORD

DLL_CNLossOfLinkCum_U32 1C10h VAR

DLL_CNLossPReq_REC 1C0Dh RECORD

DLL_CNLossSoA_REC 1C0Ch RECORD

DLL_CNLossSoC_REC 1C0Bh RECORD

DLL_CNSoCJitter_REC 1C0Eh RECORD

DLL_CNSoCJitterRange_U32 1C13h VAR

DLL_ErrorCntRec_TYPE 0424h DEFSTRUCT

DLL_CNLossOfSocTolerance_U32 1C14h VAR

DLL_MNCNLatePResCumCnt_AU32 1C04h ARRAY

DLL_MNCNLatePResThrCnt_AU32 1C05h ARRAY

DLL_MNCNLatePResThreshold_AU32 1C06h ARRAY

DLL_MNCNLossPResCumCnt_AU32 1C07h ARRAY

DLL_MNCNLossPResThrCnt_AU32 1C08h ARRAY

DLL_MNCNLossPResThreshold_AU32 1C09h ARRAY

DLL_MNCollision_REC 1C01h RECORD

DLL_MNCRCError_REC 1C00h RECORD

DLL_MNCycleSuspendNumber_U32 1C12h VAR

DLL_MNCycTimeExceed_REC 1C02h RECORD

DLL_MNLossOfLinkCum_U32 1C03h VAR

DLL_MNLossStatusResCumCnt_AU32 1C15h ARRAY

DLL_MNLossStatusResThrCnt_AU32 1C16h ARRAY

DLL_MNLossStatusResThreshold_AU32 1C17h ARRAY

DLL_MNRingRedundancy_REC used by EPSG DS302-A [1] 1C40h RECORD

DLL_MNRingRedundancy_TYPE used by EPSG DS302-A [1] 043Bh DEFSTRUCT

DLL_RelativeLatencyDiff_AU32 used by EPSG DS302-C [3] 1050h ARRAY

DOMAIN 000Fh DEFTYPE

ERR_ErrorRegister_U8 1001h VAR

ERR_History_ADOM 1003h ARRAY

IDENTITY 0023h DEFSTRUCT

INP_ProcessImage_REC 1F70h RECORD

INP_ProcessImage_TYPE 0428h DEFSTRUCT

INTEGER16 0003h DEFTYPE

EPSG DS 301 V1.5.1 -342-

Name Index Object Type

INTEGER24 0010h DEFTYPE

INTEGER32 0004h DEFTYPE

INTEGER40 0012h DEFTYPE

INTEGER48 0013h DEFTYPE

INTEGER56 0014h DEFTYPE

INTEGER64 0015h DEFTYPE

INTEGER8 0002h DEFTYPE

IP_ADDRESS 0402h DEFTYPE

MAC_ADDRESS 0401h DEFTYPE

Manufacturer Specific Complex Data Types 0040h
..
005Fh

DEFSTRUCT

NETTIME 0403h DEFTYPE

NMT_BootTime_REC 1F89h RECORD

NMT_BootTime_TYPE 042Eh DEFSTRUCT

NMT_CNBasicEthernetTimeout_U32 1F99h VAR

NMT_ConsumerHeartbeatTime_AU32 1016h ARRAY

NMT_CurrNMTState_U8 1F8Ch VAR

NMT_CycleLen_U32 1006h VAR

NMT_CycleTiming_REC 1F98h RECORD

NMT_CycleTiming_TYPE 042Ch DEFSTRUCT

NMT_DeviceType_U32 1000h VAR

NMT_EPLNodeID_REC 1F93h RECORD

NMT_EPLNodeID_TYPE 0439h DEFSTRUCT

NMT_EPLVersion_U8 1F83h VAR

NMT_FeatureFlags_U32 1F82h VAR

NMT_HostName_VSTR 1F9Ah VAR

NMT_IdentityObject_REC 1018h RECORD

NMT_InterfaceGroup_TYPE 042Bh DEFSTRUCT

NMT_InterfaceGroup_Xh_REC 1030h

..
1039h

RECORD

NMT_IsochrSlotAssign_AU8 1F9Ch ARRAY

NMT_ManufactDevName_VS 1008h VAR

NMT_ManufactHwVers_VS 1009h VAR

NMT_ManufactSwVers_VS 100Ah VAR

NMT_MNCNPResTimeout_AU32 1F92h ARRAY

NMT_MNCycleTiming_REC 1F8Ah VAR

NMT_MNCycleTiming_TYPE 042Fh DEFSTRUCT

NMT_MNDeviceTypeIdList_AU32 1F84h ARRAY

NMT_MNNodeCurrState_AU8 1F8Eh ARRAY

NMT_MNNodeExpState_AU8 1F8Fh ARRAY

NMT_MNPReqPayloadLimitList_AU16 1F8Bh ARRAY

NMT_MNProductCodeList_AU32 1F86h ARRAY

NMT_MNRevisionNoList_AU32 1F87h ARRAY

NMT_MNSerialNoList_AU32 1F88h ARRAY

NMT_MNVendorIdList_AU32 1F85h ARRAY

NMT_MultiplCycleAssign_AU8 1F9Bh ARRAY

EPSG DS 301 V1.5.1 -343-

Name Index Object Type

NMT_NodeAssignment_AU32 1F81h ARRAY

NMT_ParameterStorage_TYPE 0429h DEFSTRUCT

NMT_PdoNodeAssign_AU8 used by EPSG DS302-D [4] 1F94h ARRAY

NMT_PredecessorHubPortList used by EPSG DS302-E [5] 1FA0h ARRAY

NMT_PredecessorNodeNumberList used by EPSG DS302-E [5] 1FA1h ARRAY

NMT_PresPayloadLimitList_AU16 1F8Dh ARRAY

NMT_RequestCmd_REC 1F9Fh RECORD

NMT_RequestCmd_TYPE 043Ah DEFSTRUCT

NMT_ResetCmd_U8 1F9Eh VAR

NMT_RestoreDefParam_REC 1011h RECORD

NMT_StartUp_U32 1F80h VAR

NMT_StoreParam_REC 1010h RECORD

NWL_IpAddrTable_TYPE 0426h DEFSTRUCT

NWL_IpAddrTable_Xh_REC 1E40h
..
1E49h

RECORD

NWL_IpGroup_REC 1E4Ah RECORD

NWL_IpGroup_TYPE 0425h DEFSTRUCT

OCTET_STRING 000Ah DEFTYPE

PDL_DownloadProgData_ADOM 1F50h ARRAY

PDL_LocVerApplSw_REC 1F52h RECORD

PDL_LocVerApplSw_TYPE 0427h DEFSTRUCT

PDL_MnExpAppSwDateList_AU32 1F53h ARRAY

PDL_MnExpAppSwTimeList_AU32 1F54h ARRAY

PDL_ProgCtrl_AU8 1F51h ARRAY

PDO_CommParamRecord_TYPE 0420h DEFSTRUCT

PDO_ErrMapVers_OSTR 1C80h VAR

PDO_ErrShort_RX_OSTR 1C81h VAR

PDO_RxCommParam_XXh_REC 1400h
..
14FFh

RECORD

PDO_RxMappParam_XXh_AU64 1600h

..
16FFh

ARRAY

PDO_TxCommParam_XXh_REC 1800h

..
18FFh

RECORD

PDO_TxMappParam_XXh_AU64 1A00h
..
1AFFh

ARRAY

REAL32 0008h DEFTYPE

REAL64 0011h DEFTYPE

RT1_AclFwdTable_XXh_REC 1B00h

..
1BFFh

RECORD

RT1_AclInTable_Xh_REC 1ED0h

..
1EDFh

RECORD

RT1_AclOutTable_Xh_REC 1EE0h

..
1EEFh

RECORD

EPSG DS 301 V1.5.1 -344-

Name Index Object Type

RT1_AclTable_TYPE 0434h DEFSTRUCT

RT1_EplRouter_REC 1E80h RECORD

RT1_EplRouter_TYPE 0430h DEFSTRUCT

RT1_IpRoutingTable_TYPE 0431h DEFSTRUCT

RT1_IpRoutingTable_XXh_REC 1E90h

..
1ECFh

RECORD

RT1_NatTable_TYPE 0432h DEFSTRUCT

RT1_NatTable_XXh_REC 1D00h

..
1DFFh

RECORD

RT1_SecurityGroup_REC 1E81h RECORD

RT1_SecurityGroup_TYPE 0433h DEFSTRUCT

SDO_ClientContainerParam_XXh_REC 1280h
..
12FFh

RECORD

SDO_CmdLayerTimeout_U32 1301h VAR

SDO_ParameterRecord_TYPE 0422h DEFSTRUCT

SDO_SequLayerNoAck_U32 1302h VAR

SDO_SequLayerTimeout_U32 1300h VAR

SDO_ServerContainerParam_XXh_REC 1200h
..
127Fh

RECORD

TIME_DIFFERENCE 000Dh DEFTYPE

TIME_OF_DAY 000Ch DEFTYPE

UNICODE_STRING 000Bh DEFTYPE

UNSIGNED16 0006h DEFTYPE

UNSIGNED24 0016h DEFTYPE

UNSIGNED32 0007h DEFTYPE

UNSIGNED40 0018h DEFTYPE

UNSIGNED48 0019h DEFTYPE

UNSIGNED56 001Ah DEFTYPE

UNSIGNED64 001Bh DEFTYPE

UNSIGNED8 0005h DEFTYPE

VISIBLE_STRING 0009h DEFTYPE

EPSG DS 301 V1.5.1 -345-

App. 2 Device Description Entries (normative)
Name Description Type Category Default

 MN CN MN CN

D_CFM_ConfigManager_BOOL Ability of a node to perform Configuration Manager functions BOOLEAN O O N N

D_DLL_CNLossOfSoCToleranceMax_U32 maximum value for object DLL_CNLossOfSocTolerance_U32 UNSIGNED32 - O - 100000

D_DLL_CNFeatureMultiplex_BOOL node’s ability to perform control of multiplexed isochronous communication BOOLEAN - O - N

D_DLL_ErrBadPhysMode_BOOL Support of Data Link Layer Error recognition: Incorrect physical operation mode BOOLEAN O O N N

D_DLL_ErrMacBuffer_BOOL Support of Data Link Layer Error recognition: TX / RX buffer underrun / overrun BOOLEAN O O N N

D_DLL_ErrMNMultipleMN_BOOL Support of MN Data Link Layer Error recognition: Multiple MNs BOOLEAN O - N -

D_DLL_FeatureCN_BOOL node’s ability to perform CN functions BOOLEAN O O Y Y

D_DLL_FeatureMN_BOOL node’s ability to perform MN functions BOOLEAN M M - -

D_DLL_MNFeatureMultiplex_BOOL MN’s ability to perform control of multiplexed isochronous communication BOOLEAN O - Y -

D_DLL_MNFeaturePResTx_BOOL MN’s ability to transmit Pres BOOLEAN O - Y -

D_NMT_BootTimeNotActive_U32 max. boot time from cold start to NMT_MS_NOT_ACTIVEresp.
NMT_CS_NOT_ACTIVE [µs]

UNSIGNED32 M M - -

D_NMT_CNPreOp2ToReady2Op_U32 maximum transition time of a CN from reception of
NMTEnableReadyToOperate until the CN is in state
NMT_CS_READY_TO_OPERATE [µs]

UNSIGNED32 - O - -

D_NMT_CNSoC2PReq_U32 CN SoC handling maximum time [ns],
a subsequent PReq won’t be handled before SoC handling was finished

UNSIGNED32 - M - -

D_NMT_CycleTimeGranularity_U32 POWERLINK cycle time granularity [µs]
Value shall be 1 µs if POWERLINK cycle time settings may be taken from a
continuum. Otherwise granularity should be a multiple of the base granularity
values 100 µs or 125 µs.

UNSIGNED32 O O 1 1

D_NMT_CycleTimeMax_U32 maximum POWERLINK cycle time [µs] UNSIGNED32 M M - -

D_NMT_CycleTimeMin_U32 minimum POWERLINK cycle time [µs] UNSIGNED32 M M - -

D_NMT_EmergencyQueueSize_U32 maximum number of history entries in the Error Signaling emergency queue
(see 6.5)

UNSIGNED32 O O 0 0

D_NMT_ErrorEntries_U32 maximum number of error entries (Status and History Entries) in the
StatusResponse frame (see 7.3.3.3.1)
value range: 2 .. 14

UNSIGNED32 M M - -

D_NMT_ExtNmtCmds_BOOL Support of Extended NMT State Command BOOLEAN O O N N

D_NMT_FlushArpEntry_BOOL Support of NMT Managing Command Service NMTFlushArpEntry BOOLEAN O O N N

D_NMT_Isochronous_BOOL Device may be accessed isochronously BOOLEAN O O Y Y

EPSG DS 301 V1.5.1 -346-

D_NMT_MaxCNNodeID_U8 maximum Node ID available for regular CNs
the entry provides an upper limit to the Node ID available for cross traffic PDO
reception from a regular CN

UNSIGNED8 O O 239 239

D_NMT_MaxCNNumber_U8 maximum number of supported regular CNs in the Node ID range 1 .. 239 UNSIGNED8 O O 239 239

D_NMT_MaxHeartbeats_U8 number of guard channels UNSIGNED8 O O 254 254

D_NMT_MinRedCycleTime_U32 Minimum reduced cycle time [µs], i.e. minimum time between SoA frames UNSIGNED32 O O - -

D_NMT_MNASnd2SoC_U32 minimum delay between end of reception of ASnd and start of transmission of
SoC [ns]

UNSIGNED32 M - - -

D_NMT_MNBasicEthernet_BOOL support of NMT_MS_BASIC_ETHERNET BOOLEAN O - N -

D_NMT_MNMultiplCycMax_U8 maximum number of POWERLINK cycles per multiplexed cycle UNSIGNED8 O - 0 -

D_NMT_MNPRes2PReq_U32 delay between end of PRes reception and start of PReq transmission [ns] UNSIGNED32 M - - -

D_NMT_MNPRes2PRes_U32 delay between end of reception of PRes from CNn and start of transmission of
PRes by MN [ns]

UNSIGNED32 M - - -

D_NMT_MNPResRx2SoA_U32 delay between end of reception of PRes from CNn and start of transmission of
SoA by MN [ns]

UNSIGNED32 M - - -

D_NMT_MNPResTx2SoA_U32 delay between end of PRes transmission by MN and start of transmission of
SoA by MN [ns]

UNSIGNED32 M - - -

D_NMT_MNSoA2ASndTx_U32 delay between end of transmission of SoA and start of transmission of ASnd by
MN [ns]

UNSIGNED32 M - - -

D_NMT_MNSoC2PReq_U32 MN minimum delay between end of SoC transmission and start of PReq
transmission [ns]

UNSIGNED32 M - - -

D_NMT_NetHostNameSet_BOOL Support of NMT Managing Command Service NMTNetHostNameSet BOOLEAN O O N N

D_NMT_NetTime_BOOL Support of NetTime transmission via SoC BOOLEAN O - N -

D_NMT_NetTimeIsRealTime_BOOL Support of real time via NetTime in SoC BOOLEAN O - N -

D_NMT_NodeIDByHW_BOOL Ability of a node to support Node ID setup by HW BOOLEAN O O Y Y

D_NMT_NodeIDBySW_BOOL Ability of a node to support Node ID setup by SW BOOLEAN O O N N

D_NMT_ProductCode_U32 Identity Object Product Code UNSIGNED32 O O 0 0

D_NMT_PublishActiveNodes_BOOL Support of NMT Info service NMTPublishActiveNodes BOOLEAN O - N -

D_NMT_PublishConfigNodes_BOOL Support of NMT Info service NMTPublishConfiguredNodes BOOLEAN O O N N

D_NMT_PublishEmergencyNew_BOOL Support of NMT Info service NMTPublishEmergencyNew BOOLEAN O - N -

D_NMT_PublishNodeState_BOOL Support of NMT Info service NMTPublishNodeStates BOOLEAN O - N -

D_NMT_PublishOperational_BOOL Support of NMT Info service NMTPublishOperational BOOLEAN O - N -

D_NMT_PublishPreOp1_BOOL Support of NMT Info service NMTPublishPreOperational1 BOOLEAN O - N -

D_NMT_PublishPreOp2_BOOL Support of NMT Info service NMTPublishPreOperational2 BOOLEAN O - N -

D_NMT_PublishReadyToOp_BOOL Support of NMT Info service NMTPublishReadyToOperate BOOLEAN O - N -

EPSG DS 301 V1.5.1 -347-

Name Description Type Category Default

 MN CN MN CN

D_NMT_PublishStopped_BOOL Support of NMT Info service NMTPublishStopped BOOLEAN O - N -

D_NMT_PublishTime_BOOL Support of NMT Info service NMTPublishTime BOOLEAN O O N N

D_NMT_RelativeTime_BOOL Support of RelativeTime transmission via SoC BOOLEAN O - N -

D_NMT_RevisionNo_U32 Identity Object Revision Number UNSIGNED32 O O 0 0

D_NMT_ServiceUdpIp_BOOL Support of NMT services via UDP/IP BOOLEAN O - N -

D_NMT_SimpleBoot_BOOL Ability of an MN node to perform only Simple Boot Process, if not set Indivual
Boot Process shall be proviced

BOOLEAN M - - -

D_NWL_Forward_BOOL Ability of node to forward datagrams BOOLEAN O O N N

D_NWL_ICMPSupport_BOOL Support of ICMP BOOLEAN O O N N

D_NWL_IPSupport_BOOL Ability of the node cummunicate via IP BOOLEAN O O Y Y

D_PDO_DynamicMapping_BOOL Support of dynamic PDO mapping BOOLEAN O O Y Y

D_PDO_Granularity_U8 minimum size of objects to be mapped [bit] UNSIGNED8 O O 8 8

D_PDO_MaxDescrMem_U32 maximum cumulative memory consumption of TPDO and RPDO mapping
describing objects [byte]

UNSIGNED32 O O MAX_U32 MAX_U32

D_PDO_RPDOChannelObjects_U8 Number of supported mapped objects per RPDO channel UNSIGNED8 O O 254 254

D_PDO_RPDOChannels_U16 number of supported RPDO channels UNSIGNED16 O O 256 256

D_PDO_RPDOCycleDataLim_U32 maximum sum of data size of RPDO data to be received per cycle [Byte] UNSIGNED32 O O MAX_U32 MAX_U32

D_PDO_RPDOOverallObjects_U16 maximum number of mapped RPDO objects, sum of all channels UNSIGNED16 O O MAX_U16 MAX_U16

D_PDO_SelfReceipt_BOOL node’s ability to receive PDO data transmitted by itself BOOLEAN O O N N

D_PDO_TPDOChannelObjects_U8 maximum Number of mapped objects per TPDO channel UNSIGNED8 O O 254 254

D_PDO_TPDOChannels_U16 number of supported TPDO channels UNSIGNED16 O - 256 -

D_PDO_TPDOCycleDataLim_U32 maximum sum of data size of TPDO data to be transmitted per cycle [Byte] UNSIGNED32 O O MAX_U32 MAX_U32

D_PDO_TPDOOverallObjects_U16 maximum number of mapped RPDO objects, sum of all channels UNSIGNED16 O O MAX_U16 MAX_U16

D_PHY_ExtEPLPorts_U8 number of externally accessible Ethernet POWERLINK ports UNSIGNED8 O O 2 2

D_PHY_HubDelay_U32 network propagation delay of the hub integrated in the device in [ns] UNSIGNED32 O O 1000 1000

D_PHY_HubIntegrated_BOOL indicates a hub integrated by the device BOOLEAN O O Y Y

D_PHY_HubJitter_U32 jitter of the propagation delay caused by the integrated hub in [ns] UNSIGNED32 O O 50 50

D_RT1_RT1SecuritySupport_BOOL Support of Routing Type 1 security functions BOOLEAN O O N N

D_RT1_RT1Support_BOOL Support of Routing Type 1 functions BOOLEAN O O N N

D_RT2_RT2Support_BOOL Support of Routing Type 2 functions BOOLEAN O O N N

D_SDO_Client_BOOL device implements a SDO client BOOLEAN O O Y Y

D_SDO_CmdFileRead_BOOL Support of SDO command FileRead BOOLEAN O O N N

EPSG DS 301 V1.5.1 -348-

Name Description Type Category Default

 MN CN MN CN

D_SDO_CmdFileWrite_BOOL Support of SDO command FileWrite BOOLEAN O O N N

D_SDO_CmdLinkName_BOOL Support of SDO command LinkName BOOLEAN O O N N

D_SDO_CmdReadAllByIndex_BOOL Support of SDO command ReadAllByIndex BOOLEAN O O N N

D_SDO_CmdReadByName_BOOL Support of SDO command ReadByName BOOLEAN O O N N

D_SDO_CmdReadMultParam_BOOL Support of SDO command ReadMultipleParam BOOLEAN O O N N

D_SDO_CmdWriteAllByIndex_BOOL Support of SDO command WriteAllByIndex BOOLEAN O O N N

D_SDO_CmdWriteByName_BOOL Support of SDO command WriteByName BOOLEAN O O N N

D_SDO_CmdWriteMultParam_BOOL Support of SDO command WriteMultParam BOOLEAN O O N N

D_SDO_MaxConnections_U32 max. number of SDO connections UNSIGNED32 O O 1 1

D_SDO_MaxParallelConnections_U32 max. number of SDO connections between a SDO client/server pair UNSIGNED32 O O 1 1

D_SDO_SeqLayerTxHistorySize_U16 max. number of frames in SDO sequence layer sender history
value <= 31

UNSIGNED16 O O 5 5

D_SDO_Server_BOOL device implements a SDO server BOOLEAN O O Y Y

D_SDO_SupportASnd_BOOL Support of SDO via ASnd frames BOOLEAN M O Y N

D_SDO_SupportPDO_BOOL Support of SDO via PDO frames BOOLEAN O O N N

D_SDO_SupportUdpIp_BOOL Support of SDO via UDP/IP frames BOOLEAN M O Y N

Abbreviations in the table:

• M device description entry is mandatory

• O device description entry is optional

• - item is irrelevant for the selected type of node (MN or CN), item may be provided if the device supports the other type, too

Comments to Default

Default values shall be used if an optional entry is not provided by the device description. If no default is indicated, zero value resp. empty string shall be applied.

Device description entry names are created according to the following rules:

Name shall be in accordance to IEC 61131-3. It consists of:

o Device description entry identification prefix “D_”

o domain prefix, indicating the association of the object to a functional domain, 3 uppercase characters followed by underline

o name (verbally). Composed of words, each word are leaded by an uppercase character followed by lowercase characters or digits, no underlines or
spaces

o data type postfix, indicating the data type of the object (underline followed by up to 5 uppercase characters or digits)

EPSG DS 301 V1.5.1 -349-

App. 3 Constant Value Assignments (normative)

App. 3.1 POWERLINK Message Type Ids
Message Type Abbr. ID Value

Start of Cycle SoC 01h

PollRequest PReq 03h

PollResponse PRes 04h

Start of Asynchronous SoA 05h

Asynchronous Send ASnd 06h

Active Managing Node Indication, used by EPSG DS302-A [1] AMNI 07h

Asynchronous Invite, used by EPSG DS302-B [2] Ainv 0Dh

ID values not listed by the table are reserved.

App. 3.2 AsyncSend Request Priorities
Priority Level Priority Name ID value

highest PRIO_NMT_REQUEST 111b

higher available for application purpose 110b, 101b, 100b

medium PRIO_GENERIC_REQUEST 011b

lower available for application purpose 010b, 001b, 000b

App. 3.3 ASnd ServiceIDs
Service Name Service ID ID Value

reserved 00h

IdentResponse IDENT_RESPONSE 01h

StatusResponse STATUS_RESPONSE 02h

NMTRequest NMT_REQUEST 03h

NMTCommand NMT_COMMAND 04h

SDO SDO 05h

reserved, used by EPSG DS302-C [3] 06h

reserved 07h .. 9Fh

Manufacturer specific MANUF_SVC_IDS A0h .. FEh

reserved FFh

EPSG DS 301 V1.5.1 -350-

App. 3.4 SoA RequestedServiceIDs
Service Name Service ID ID Value

NoService NO_SERVICE 00h

IdentRequest IDENT_REQUEST 01h

StatusRequest STATUS_REQUEST 02h

NMTRequestInvite NMT_REQUEST_INVITE 03h

reserved 04h .. 05h

reserved, used by EPSG DS302-C [3] 06h

reserved 07h .. 9Fh

Manufacturer specific MANUF_SVC_IDS A0h .. FEh

UnspecifiedInvite UNSPECIFIED_INVITE FFh

App. 3.5 Object Dictionary Object Types
NULL 0000h

DEFTYPE 0005h

DEFSTRUCT 0006h

VAR 0007h

ARRAY 0008h

RECORD 0009h

Values not listed by the table are reserved.

App. 3.6 NMT States
 Name Value

M
N

 a
n

d
 C

N
 S

ta
te

s

NMT_GS_OFF 0000 0000b

NMT_GS_POWERED xxxx 1xxx b Super state

NMT_GS_INITIALISATION xxxx 1001b Super state

NMT_GS_INITIALISING 0001 1001b

NMT_GS_RESET_APPLICATION 0010 1001b

NMT_GS_RESET_COMMUNICATION 0011 1001b

NMT_GS_RESET_CONFIGURATION 0111 1001b

NMT_GS_COMMUNICATING xxxx 11xx b Super state

C
N

 S
ta

te
s

NMT_CS_NOT_ACTIVE 0001 1100b

NMT_CS_EPL_MODE xxxx 1101b Super state

NMT_CS_PRE_OPERATIONAL_1 0001 1101b

NMT_CS_PRE_OPERATIONAL_2 0101 1101b

NMT_CS_READY_TO_OPERATE 0110 1101b

NMT_CS_OPERATIONAL 1111 1101b

NMT_CS_STOPPED 0100 1101b

NMT_CS_BASIC_ETHERNET 0001 1110b

M
N

 S
ta

te
s

NMT_MS_NOT_ACTIVE 0001 1100b

NMT_MS_EPL_MODE xxxx 1101b Super state

NMT_MS_PRE_OPERATIONAL_1 0001 1101b

NMT_MS_PRE_OPERATIONAL_2 0101 1101b

NMT_MS_READY_TO_OPERATE 0110 1101b

NMT_MS_OPERATIONAL 1111 1101b

NMT_MS_BASIC_ETHERNET 0001 1110b

NMT_CS_OPERATIONAL and NMT_MS_OPERATIONAL can be easily identified by the most
signifiant bit being set.

EPSG DS 301 V1.5.1 -351-

App. 3.7 NMT Commands
Name ID Value

requestable ASnd ServiceIDs 01h .. 1Fh

 IdentResponse 01h

 StatusResponse 02h

Plain NMT State Commands 20h .. 3Fh

 NMTStartNode 21h

 NMTStopNode 22h

 NMTEnterPreOperational2 23h

 NMTEnableReadyToOperate 24h

 NMTResetNode 28h

 NMTResetCommunication 29h

 NMTResetConfiguration 2Ah

 NMTSwReset 2Bh

 NMTGoToStandby used by EPSG DS302-A [1] 2Ch

Extended NMT State Commands 40h .. 5Fh

 NMTStartNodeEx 41h

 NMTStopNodeEx 42h

 NMTEnterPreOperational2Ex 43h

 NMTEnableReadyToOperateEx 44h

 NMTResetNodeEx 48h

 NMTResetCommunicationEx 49h

 NMTResetConfigurationEx 4Ah

 NMTSwResetEx 4Bh

NMT Managing Commands 60h .. 7Fh

 NMTNetHostNameSet 62h

 NMTFlushArpEntry 63h

NMT Info services 80h .. BFh

 NMTPublishConfiguredNodes 80h

 NMTPublishActiveNodes 90h

 NMTPublishPreOperational1 91h

 NMTPublishPreOperational2 92h

 NMTPublishReadyToOperate 93h

 NMTPublishOperational 94h

 NMTPublishStopped 95h

 NMTPublishNodeStates 96h

 NMTPublishEmergencyNew A0h

 NMTPublishTime B0h

NMTInvalidService FFh

ID values not listed as distinctive commands are reserved

EPSG DS 301 V1.5.1 -352-

App. 3.8 General Purpose Constants
Name Value Unit Description

C_ADR_BROADCAST FFh -- POWERLINK broadcast address

C_ADR_DIAG_DEF_NODE_ID FDh -- POWERLINK default address of dignostic
device

C_ADR_DUMMY_NODE_ID FCh -- POWERLINK dummy node address

C_ADR_SELF_ADR_NODE_ID FBh -- POWERLINK pseudo node address to be
used by a node to address itself

C_ADR_INVALID 00h -- invalid POWERLINK address

C_ADR_MN_DEF_NODE_ID F0h -- POWERLINK default address of MN

C_ADR_RT1_DEF_NODE_ID FEh -- POWERLINK default address of router type 1

C_DLL_ASND_PRIO_NMTRQST 7 -- ASnd request priority to be used by NMT
Requests

C_DLL_ASND_PRIO_STD 0 -- standard ASnd request priority

C_DLL_ETHERTYPE_EPL 88ABh --

C_DLL_ISOCHR_MAX_PAYL 1490 Byte maximum size of PReq and PRes payload
data,
requires C_DLL_MAX_ASYNC_MTU

C_DLL_MAX_ASYNC_MTU 1500 Byte maximum asynchronous payload in bytes
including all headers (exclusive the Ethernet
header)

C_DLL_MAX_PAYL_OFFSET 1499 Byte maximum offset of Ethernet frame payload,
requires C_DLL_MAX_ASYNC_MTU

C_DLL_MAX_RS 7 --

C_DLL_MIN_ASYNC_MTU 300 Byte minimum asynchronous payload in bytes
including all headers (exclusive the Ethernet
header)

C_DLL_MIN_PAYL_OFFSET 45 Byte minimum offset of Ethernet frame payload

C_DLL_MULTICAST_AMNI 01-11-1E-00-00-05 -- POWERLINK Active Managing Node Indication,
canonical form. Used by EPSG DS302-A [1]

C_DLL_MULTICAST_ASND 01-11-1E-00-00-04 -- POWERLINK ASnd multicast MAC address,
canonical form

C_DLL_MULTICAST_PRES 01-11-1E-00-00-02 -- POWERLINK PRes multicast MAC address,
canonical form

C_DLL_MULTICAST_SOA 01-11-1E-00-00-03 -- POWERLINK SoA multicast MAC address,
canonical form

C_DLL_MULTICAST_SOC 01-11-1E-00-00-01 -- POWERLINK Soc multicast MAC address,
canonical form

C_DLL_PREOP1_START_CYCLES 10 -- number of unassigning SoA frames at start of
NMT_MS_PRE_OPERATIONAL_1

C_DLL_T_BITTIME 10 ns Transmission time per bit on 100 Mbit/s
network

C_DLL_T_EPL_PDO_HEADER 10 Byte size of PReq and PRes POWERLINK PDO
message header (see 4.6.1.1.3 and 4.6.1.1.4)

C_DLL_T_ETH2_WRAPPER 18 Byte size of Ethernet type II wrapper consisting of
header and checksum (see 4.6.1.1.1)

C_DLL_T_IFG 960 ns Ethernet Interframe Gap

C_DLL_T_MIN_FRAME 5120 ns Size of minimum Ethernet frame (without
preamble and start-of-frame-delimiter)

C_DLL_T_PREAMBLE 640 ns Size of Ethernet frame preamble plus start-of-
frame-delimiter

C_ERR_MONITOR_DELAY 10 Error monitoring start delay

EPSG DS 301 V1.5.1 -353-

Name Value Unit Description

C_IP_ADR_INVALID 00 00 00 00h -- invalid IP address (0.0.0.0) used to indicate
no change

C_IP_INVALID_MTU 0 Byte invalid MTU size used to indicate no change

C_NMT_STATE_TOLERANCE 5 Cycl
es

maximum reaction time to NMT state
commands

C_NMT_STATREQ_CYCLE 5 sec StatusRequest cycle time to be applied to
AsyncOnly CNs

C_SDO_EPL_PORT 3819 -- port to be used POWERLINK specific UDP/IP
frames

C_SDO_CMDLAYERTIMEOUT 30000 ms Command layer timeout

C_SDO_SEQULAYERNOACK 2 -- Number of acknowledge requests

C_SDO_SEQULAYERTIMEOUT 15000 ms Sequence layer timeout

General Purpose Constant names are created according to the following rules:

Name shall be in accordance to IEC 61131-3. It consists of:

o General Purpose Constant identification prefix “C_”

o domain prefix, indicating the association of the object to a functional domain,
3 uppercase characters followed by underline

o name (verbally).
composed of words, words are separated by underline, upperchase characters only, no
spaces

App. 3.9 Error Code Constants
Name Value Description

 816xh HW errors

E_DLL_BAD_PHYS_MODE 8161h

E_DLL_COLLISION 8162h

E_DLL_COLLISION_TH 8163h

E_DLL_CRC_TH 8164h

E_DLL_LOSS_OF_LINK 8165h

E_DLL_MAC_BUFFER 8166h

 82xxh Protocol errors

E_DLL_ADDRESS_CONFLICT 8201h

E_DLL_MULTIPLE_MN 8202h

 821xh Frame size errors

E_PDO_SHORT_RX 8210h

E_PDO_MAP_VERS 8211h

E_NMT_ASND_MTU_DIF 8212h

E_NMT_ASND_MTU_LIM 8213h

E_NMT_ASND_TX_LIM 8214h

 823xh Timing errors

E_NMT_CYCLE_LEN 8231h

E_DLL_CYCLE_EXCEED 8232h

E_DLL_CYCLE_EXCEED_TH 8233h

E_NMT_IDLE_LIM 8234h

E_DLL_JITTER_TH 8235h

E_DLL_LATE_PRES_TH 8236h

E_NMT_PREQ_CN 8237h

E_NMT_PREQ_LIM 8238h

E_NMT_PRES_CN 8239h

E_NMT_PRES_RX_LIM 823Ah

E_NMT_PRES_TX_LIM 823Bh

EPSG DS 301 V1.5.1 -354-

 824xh Frame errors

E_DLL_INVALID_FORMAT 8241h

E_DLL_LOSS_PREQ_TH 8242h

E_DLL_LOSS_PRES_TH 8243h

E_DLL_LOSS_SOA_TH 8244h

E_DLL_LOSS_SOC_TH 8245h

E_DLL_LOSS_STATUSRES_TH 8246h

 84xxh Boot-up Errors

E_NMT_BA1 8410h

E_NMT_BA1_NO_MN_SUPPORT 8411h

E_NMT_BPO1 8420h

E_NMT_BPO1_GET_IDENT 8421h

E_NMT_BPO1_DEVICE_TYPE 8422h

E_NMT_BPO1_VENDOR_ID 8423h

E_NMT_BPO1_PRODUCT_CODE 8424h

E_NMT_BPO1_REVISION_NO 8425h

E_NMT_BPO1_SERIAL_NO 8426h

E_NMT_BPO1_CF_VERIFY 8428h

E_NMT_BPO1_SW_INVALID 8429h

E_NMT_BPO1_SW_STATE 842Ah

E_NMT_BPO1_SW_UPDATE 842Bh

E_NMT_BPO1_SW_REJECT 842Ch

E_NMT_BPO2 8430h

E_NMT_BRO 8440h

E_NMT_WRONG_STATE 8480h

Error Code Constant names are created according to the following rules:

Name shall be in accordance to IEC 61131-3. It consists of:

o Error Code Constant identification prefix “E_”

o domain prefix, indicating the association of the object to a functional domain,
3 uppercase characters followed by underline

o name (verbally).
composed of words, words are separated by underline, upperchase characters only, no
spaces

EPSG DS 301 V1.5.1 -355-

App. 3.10 SDO Abort Codes
Name Abort code Description

 0503 0000h reserved

 0504 0000h SDO protocol timed out.

 0504 0001h Client/server Command ID not valid or unknown.

 0504 0002h Invalid block size.

 0504 0003h Invalid sequence number.

 0504 0004h reserved

 0504 0005h Out of memory.

 0601 0000h Unsupported access to an object.

 0601 0001h Attempt to read a write-only object.

 0601 0002h Attempt to write a read-only object.

 0602 0000h Object does not exist in the object dictionary.

 0604 0041h Object cannot be mapped to the PDO.

E_PDO_MAP_OVERRUN 0604 0042h The number and length of the objects to be mapped would
exceed PDO length.

 0604 0043h General parameter incompatibility.

E_NMT_INVALID_HEARTBEAT 0604 0044h Invalid heartbeat declaration

 0604 0047h General internal incompatibility in the device.

 0606 0000h Access failed due to an hardware error.

 0607 0010h Data type does not match, length of service parameter does
not match

 0607 0012h Data type does not match, length of service parameter too high

 0607 0013h Data type does not match, length of service parameter too low

 0609 0011h Sub-index does not exist.

 0609 0030h Value range of parameter exceeded (only for write access).

 0609 0031h Value of parameter written too high.

 0609 0032h Value of parameter written too low.

 0609 0036h Maximum value is less than minimum value.

 0800 0000h General error

 0800 0020h Data cannot be transferred or stored to the application.

 0800 0021h Data cannot be transferred or stored to the application because
of local control.

 0800 0022h Data cannot be transferred or stored to the application because
of the present device state.

 0800 0023h Object dictionary dynamic generation fails or no object
dictionary is present (e.g. object dictionary is generated from
file and generation fails because of a file error).

E_CFM_DATA_SET_EMPTY 0800 0024h EDS, DCF or Concise DCF Data set empty

The abort codes not listed here are reserved.

EPSG DS 301 V1.5.1 -356-

App. 4 Data Sheet Requirements (normative)
The hardware used to implement POWERLINK devices may be spread over a broad range of amount
of resources as well as calculation power. These differences result in highly different reaction times
and buffer sizes affecting the POWERLINK communication timing.

In order to give a compact overview to the project engineer, each manufacturer of a POWERLINK
device shall provide a short data sheet displaying critical device properties.

• For CN devices, the data sheet shall provide the following parameters:

• POWERLINK cycle time

• minimum value, if device supports adjustment over a continuous range

• list of values, if device supports discrete values only

• size of isochronous transmit buffer (maximal size of isochronous frames)

• size of isochronous receive buffer (maximal size of isochronous frames)

• overall buffer size available for isochronous data

• PReq to PRes latency (CN isochronous reaction time)

• SoA to ASnd latency (CN asynchronous reaction time)

• maximum asynchronous MTU

• ability to support multiplexed isochronous access

• asynchronous SDO transfer method (UDP/IP and/or POWERLINK ASnd)

• For MN devices, the data sheet shall provide the following parameters:

• POWERLINK cycle time

• minimum value, if device supports adjustment over a continuous range

• list of values, if device supports discrete values only

• size of isochronous transmit buffer (maximal size of isochronous frames)

• size of isochronous receive buffer (maximal size of isochronous frames)

• overall buffer size available for isochronous data

• minimum transmit-to-transmit gap (controls sequence of MN frame transmission)

• minimum receive-to-transmit gap (controls sequence of MN frame transmission)

• maximum asynchronous MTU

• ability to support multiplexed isochronous access

For devices that support CN and MN, both parameter lists shall be independently provided.

End of File

	Pre. 1 Disclaimer
	Pre 1.1 Patent notice

	Pre. 2 History
	Pre. 3 Change Record
	Pre. 4 Content
	Pre. 5 Tables
	Pre. 6 Figures
	Pre. 7 Definitions and Abbreviations
	Pre 7.1 Definitions
	Pre 7.2 Abbreviations

	Pre. 8 References
	1 Introduction
	1.1 Slot Communication Network Management
	1.2 POWERLINK key features
	1.3 Integration
	1.4 Modular Machines

	2 Modelling
	2.1 Reference Model
	2.1.1 Application Layer
	2.1.1.1 Service Primitives
	2.1.1.2 Application Layer Service Types

	2.2 Device Model
	2.2.1 General
	2.2.2 The Object Dictionary
	2.2.2.1 Index and Sub-Index Usage

	2.3 Communication Model
	2.3.1 Master/Slave relationship
	2.3.2 Client/Server relationship
	2.3.3 Producer/Consumer relationship - Push/Pull model
	2.3.4 Superimposing of Communication Relationships

	3 Physical Layer
	3.1 Topology
	3.1.1 Hubs
	3.1.2 Switches

	3.2 Network Guidelines
	3.2.1 Jitter

	3.3 Ports and Connectors
	3.3.1 RJ-45
	3.3.2 M12
	3.3.3 Crossover Pin Assignment
	3.3.3.1 RJ45 to RJ45
	3.3.3.2 M12 to M12
	3.3.3.3 M12 to RJ45

	3.4 Cables (recommendation)

	4 Data Link Layer
	4.1 Modes of Operation
	4.2 POWERLINK Mode
	4.2.1 Introduction
	4.2.2 POWERLINK Nodes
	4.2.2.1 POWERLINK Managing Node
	4.2.2.2 POWERLINK Controlled Node
	4.2.2.2.1 Isochronous CN
	4.2.2.2.2 Async-only CN

	4.2.3 Services
	4.2.4 POWERLINK Cycle
	4.2.4.1 Isochronous POWERLINK Cycle
	4.2.4.1.1 Isochronous phase
	4.2.4.1.1.1 Multiplexed Timeslots

	4.2.4.1.2 Asynchronous phase
	4.2.4.1.2.1 Asynchronous Scheduling
	4.2.4.1.2.2 Distribution of the Asynchronous phase
	4.2.4.1.2.3 Asynchronous Transmit Priorities

	4.2.4.1.3 Idle Phase

	4.2.4.2 Reduced POWERLINK Cycle
	4.2.4.3 POWERLINK Cycle Timing
	4.2.4.3.1 POWERLINK Cycle Timing Error Handling

	4.2.4.4 Multiplexed Slot Timing
	4.2.4.5 CN Cycle State Machine
	4.2.4.5.1 Overview
	4.2.4.5.2 States
	4.2.4.5.3 Events
	4.2.4.5.4 Dependance of the NMT_CS on the DLL_CS
	4.2.4.5.4.1 State NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE, NMT_CS_BASIC_ETHERNET, NMT_CS_PRE_OPERATIONAL_1
	4.2.4.5.4.1.1 Transitions in other NMT states

	4.2.4.5.4.2 State NMT_CS_PRE_OPERATIONAL_2, NMT_CS_READY_TO_OPERATE, NMT_CS_OPERATIONAL, NMT_CS_STOPPED
	4.2.4.5.4.2.1 Transitions

	4.2.4.6 MN Cycle State Machine
	4.2.4.6.1 Overview
	4.2.4.6.2 States
	4.2.4.6.3 Events
	4.2.4.6.4 Usage of the NMT_MS state by the DLL_MS
	4.2.4.6.4.1 State NMT_GS_INITIALISATION, NMT_MS_NOT_ACTIVE
	4.2.4.6.4.2 NMT_MS_BASIC_ETHERNET
	4.2.4.6.4.3 State NMT_MS_PRE_OPERATIONAL_1
	4.2.4.6.4.3.1 Transitions

	4.2.4.6.4.4 State NMT_MS_OPERATIONAL, NMT_MS_READY_TO_OPERATE and NMT_MS_PRE_OPERATIONAL_2
	4.2.4.6.4.4.1 Transitions

	4.2.5 Recognizing Active Nodes

	4.3 Basic Ethernet Mode
	4.4 MAC Addressing
	4.4.1 MAC Unicast
	4.4.2 MAC Multicast
	4.4.3 MAC Broadcast

	4.5 POWERLINK Addressing
	4.6 Frame Structures
	4.6.1 Integration with Ethernet
	4.6.1.1 POWERLINK Frame
	4.6.1.1.1 POWERLINK Basic Frame
	4.6.1.1.2 Start of Cycle (SoC)
	4.6.1.1.3 PollRequest (PReq)
	4.6.1.1.4 PollResponse (PRes)
	4.6.1.1.5 Start of Asynchronous (SoA)
	4.6.1.1.5.1 RequestedServiceID s

	4.6.1.1.6 Asynchronous Send (ASnd)
	4.6.1.1.6.1 ServiceID values

	4.6.1.2 Non-POWERLINK Frames
	4.6.1.3 Transfer Protection

	4.7 Error Handling Data Link Layer (DLL)
	4.7.1 Possible Error Sources and Error Symptoms
	4.7.2 Error Handling Table for CN
	4.7.3 Error Handling Table for MN
	4.7.4 Error Handling Registration
	4.7.4.1 Threshold counters
	4.7.4.2 Cumulative Counter

	4.7.5 Physical Layer Error Sources
	4.7.5.1 Loss of Link
	4.7.5.2 Incorrect physical Ethernet operating mode
	4.7.5.3 Rx MAC buffer overflow / Tx MAC buffer underrun
	4.7.5.4 Transmission / CRC Errors

	4.7.6 Communication Error Symptoms detected by the MN
	4.7.6.1 Timing Violation
	4.7.6.1.1 Slot Time Exceeded
	4.7.6.1.1.1 Case 1-2 Frame received in time
	4.7.6.1.1.2 Case 3 Loss of PRes: Frame not received
	4.7.6.1.1.3 Case 4-6 Late PRes: Frame received in foreign slot (also collisions)

	4.7.6.2 Loss of PRes
	4.7.6.3 Late PRes
	4.7.6.4 Cycle Time Exceeded
	4.7.6.5 Collisions
	4.7.6.6 Invalid Formats
	4.7.6.7 POWERLINK Address Conflicts
	4.7.6.8 Multiple MNs on a single POWERLINK Network
	4.7.6.9 Loss of StatusResponse

	4.7.7 Communication Error Symptoms detected by the CN
	4.7.7.1 Collisions
	4.7.7.2 Invalid Formats
	4.7.7.3 Loss of Frames
	4.7.7.3.1 Loss of SoC
	4.7.7.3.2 Loss of SoA
	4.7.7.3.3 Loss of PReq
	4.7.7.3.4 SoC Jitter out of Range

	4.7.8 DLL Error Handling Objects
	4.7.8.1 Object 1C00h: DLL_MNCRCError_REC
	4.7.8.2 Object 1C01h: DLL_MNCollision_REC
	4.7.8.3 Object 1C02h: DLL_MNCycTimeExceed_REC
	4.7.8.4 Object 1C03h: DLL_MNLossOfLinkCum_U32
	4.7.8.5 Object 1C04h: DLL_MNCNLatePResCumCnt_AU32
	4.7.8.6 Object 1C05h: DLL_MNCNLatePResThrCnt_AU32
	4.7.8.7 Object 1C06h: DLL_MNCNLatePResThreshold_AU32
	4.7.8.8 Object 1C07h: DLL_MNCNLossPResCumCnt_AU32
	4.7.8.9 Object 1C08h: DLL_MNCNLossPResThrCnt_AU32
	4.7.8.10 Object 1C09h: DLL_MNCNLossPResThreshold_AU32
	4.7.8.11 Object 1C0Ah: DLL_CNCollision_REC
	4.7.8.12 Object 1C0Bh: DLL_CNLossSoC_REC
	4.7.8.13 Object 1C0Ch: DLL_CNLossSoA_REC
	4.7.8.14 Object 1C0Dh: DLL_CNLossPReq_REC
	4.7.8.15 Object 1C0Eh: DLL_CNSoCJitter_REC
	4.7.8.16 Object 1C0Fh: DLL_CNCRCError_REC
	4.7.8.17 Object 1C10h: DLL_CNLossOfLinkCum_U32
	4.7.8.18 Object 1C12h: DLL_MNCycleSuspendNumber_U32
	4.7.8.19 Object 1C13h: DLL_CNSoCJitterRange_U32
	4.7.8.20 Object 1C14h : DLL_CNLossOfSocTolerance_U32
	4.7.8.21 Object 1C15h: DLL_MNLossStatusResCumCnt_AU32
	4.7.8.22 Object 1C16h: DLL_MNLossStatusResThrCnt_AU32
	4.7.8.23 Object 1C17h: DLL_MNLossStatusResThreshold_AU32
	4.7.8.24 Object 0424h: DLL_ErrorCntRec_TYPE

	5 Network / Transport Layer
	5.1 Internet Protocol (IP)
	5.1.1 IP Host Requirements
	5.1.1.1 Nodes without IP Communication
	5.1.1.2 Minimum Requirements for SDO Communication
	5.1.1.2.1 IP Stack Requirements
	5.1.1.2.2 UDP Requirements

	5.1.1.3 Minimum Requirements for Standard IP Communication
	5.1.1.3.1 IP Stack Requirements

	5.1.2 IP Addressing
	5.1.3 Address Resolution
	5.1.4 Hostname
	5.1.5 Object description
	5.1.5.1 Object 1E4Ah: NWL_IpGroup_REC
	5.1.5.2 Object 1E40h .. 1E49h: NWL_IpAddrTable_Xh_REC
	5.1.5.3 Object 0425h: NWL_IpGroup_TYPE
	5.1.5.4 Object 0426h: NWL_IpAddrTable_TYPE

	5.2 POWERLINK compliant UDP/IP format
	5.3 POWERLINK Sequence Layer

	6 Application Layer
	6.1 Data Types and Encoding Rules
	6.1.1 General Description of Data Types and Encoding Rules
	6.1.2 Data Type Definitions
	6.1.3 Bit Sequences
	6.1.3.1 Definition of Bit Sequences
	6.1.3.2 Transfer Syntax for Bit Sequences

	6.1.4 Basic Data Types
	6.1.4.1 NIL
	6.1.4.2 Boolean
	6.1.4.3 Void
	6.1.4.4 Bit
	6.1.4.5 Unsigned Integer
	6.1.4.6 Signed Integer
	6.1.4.7 Floating-Point Numbers
	6.1.4.8 MAC Address
	6.1.4.9 IP address

	6.1.5 Compound Data Types
	6.1.6 Extended Data Types
	6.1.6.1 Octet String
	6.1.6.2 Visible String
	6.1.6.3 Unicode String
	6.1.6.4 Time of Day
	6.1.6.5 Time Difference
	6.1.6.6 Domain
	6.1.6.7 Net Time

	6.2 Object Dictionary
	6.2.1 Object Dictionary Entry Definition
	6.2.1.1 Sub-Index Definition

	6.2.2 Data Type Entry Specification
	6.2.2.1 Static Data Types
	6.2.2.2 Complex Data Types
	6.2.2.3 Extension for Multiple Device Modules

	6.3 Service Data (SDO)
	6.3.1 SDO Layer Model
	6.3.1.1 SDO Hosting in Frames

	6.3.2 SDO in Asynchronous Phase
	6.3.2.1 SDO via UDP/IP
	6.3.2.1.1 UDP Layer

	6.3.2.2 SDO via POWERLINK ASnd
	6.3.2.3 Asynchronous SDO Sequence Layer
	6.3.2.3.1 Connection
	6.3.2.3.1.1 Initialisation of Connection
	6.3.2.3.1.2 Closing a connection
	6.3.2.3.1.3 Data Transfer
	6.3.2.3.1.4 Data Transfer with Delay
	6.3.2.3.1.5 Sender History Full

	6.3.2.3.2 Errors
	6.3.2.3.2.1 Error: Loss of Frame with Data
	6.3.2.3.2.2 Error: Loss of Acknowledge Frame
	6.3.2.3.2.3 Error: Duplication of Frame
	6.3.2.3.2.4 Error: Overtaking of Frames
	6.3.2.3.2.5 Broken Connection
	6.3.2.3.2.6 Error: Flooding with commands

	6.3.2.4 Asynchronous SDO Command Layer
	6.3.2.4.1 POWERLINK Command Layer Protocol
	6.3.2.4.1.1 Download Protocol
	6.3.2.4.1.2 Upload Protocol
	6.3.2.4.1.3 Abort Transfer

	6.3.2.4.2 Commands
	6.3.2.4.2.1 SDO Protocol
	6.3.2.4.2.1.1 Command: Write by Index
	6.3.2.4.2.1.2 Command: Read by Index
	6.3.2.4.2.1.3 Command: Write All by Index
	6.3.2.4.2.1.4 Command: Read All by Index
	6.3.2.4.2.1.5 Command: Write by Name
	6.3.2.4.2.1.6 Command: Read by Name

	6.3.2.4.2.2 File Transfer
	6.3.2.4.2.2.1 Command: File Write
	6.3.2.4.2.2.2 Command: File Read

	6.3.2.4.2.3 Variable groups
	6.3.2.4.2.3.1 Command: Write Multiple Parameter by Index
	6.3.2.4.2.3.2 Write Multiple Parameter by Index Request
	6.3.2.4.2.3.3 Write Multiple Parameter by Index Response
	6.3.2.4.2.3.4 Command: Read Multiple Parameter by Index
	6.3.2.4.2.3.5 Read Multiple Parameter by Index Request
	6.3.2.4.2.3.6 Read Multiple Parameter by Index Response

	6.3.2.4.2.4 Parameter Services
	6.3.2.4.2.4.1 Command: Maximum Segment Size

	6.3.3 SDO Embedded in PDO
	6.3.3.1 Embedded Sequence Layer for SDO in PDO
	6.3.3.1.1 Connection
	6.3.3.1.1.1 Initialisation of Connection
	6.3.3.1.1.2 Closing a connection
	6.3.3.1.1.3 Data Transfer

	6.3.3.1.2 Errors
	6.3.3.1.2.1 Error: Request Lost
	6.3.3.1.2.2 Error: Response Lost

	6.3.3.1.3 Handling of Segmented Transfers
	6.3.3.1.3.1 Segmented Download from Client to Server
	6.3.3.1.3.2 Segmented Upload from Server to Client

	6.3.3.2 Embedded Command Layer for SDO in Cyclic Data
	6.3.3.2.1 Command Write by Index via PDO
	6.3.3.2.2 Command Read by Index via PDO

	6.3.3.3 Object Description
	6.3.3.3.1 Object 1200h .. 127Fh: SDO_ServerContainerParam_XXh_REC
	6.3.3.3.2 Object 1280h .. 12FFh: SDO_ClientContainerParam_XXh_REC
	6.3.3.3.3 Object 0422h: SDO_ParameterRecord_TYPE

	6.3.4 SDO Timeouts
	6.3.4.1 Object 1300h: SDO_SequLayerTimeout_U32
	6.3.4.2 Object 1301h: SDO_CmdLayerTimeout_U32
	6.3.4.3 Object 1302h: SDO_SequLayerNoAck_U32

	6.4 Process Data Object (PDO)
	6.4.1 PDO Mapping Limitations
	6.4.1.1 TPDO Mapping Limitations
	6.4.1.2 RPDO Mapping Limitations
	6.4.1.3 Further Limitations

	6.4.2 PDO Mapping Version
	6.4.3 SDO via PDO Container
	6.4.4 Transmit PDOs
	6.4.5 Receive PDOs
	6.4.6 PDO via PReq
	6.4.7 PDO via PRes
	6.4.8 PDO Error Handling
	6.4.8.1 Dynamic Errors
	6.4.8.1.1 Incompatible Mapping
	6.4.8.1.2 Unexpected End of PDO

	6.4.8.2 Configuration Errors

	6.4.9 Object Description
	6.4.9.1 Object 1400h .. 14FFh: PDO_RxCommParam_XXh_REC
	6.4.9.2 Object 1600h .. 16FFh PDO_RxMappParam_XXh_AU64
	6.4.9.3 Object 1800h .. 18FFh PDO_TxCommParam_XXh_REC
	6.4.9.4 Object 1A00h .. 1AFFh PDO_TxMappParam_XXh_AU64
	6.4.9.5 Object 1C80h: PDO_ErrMapVers_OSTR
	6.4.9.6 Object 1C81h: PDO_ErrShort_RX_OSTR
	6.4.9.7 Object 0420h: PDO_CommParamRecord_TYPE

	6.5 Error Signaling
	6.5.1 Error Entry
	6.5.2 Interface to Error Signaling
	6.5.3 Processing of CN Error Information on the MN
	6.5.4 Error Signaling Bits
	6.5.5 Initialisation
	6.5.5.1 Startup value and behaviour of the EC flag

	6.5.6 Error Signaling with Preq and Pres frames
	6.5.7 Error Signaling with Async-only CNs
	6.5.8 Format of StatusResponse Data
	6.5.8.1 Static Error Bit Field
	6.5.8.2 Status and History Entries

	6.5.9 Examples
	6.5.9.1 Case 1 – Only Bit Field, No Status/History Entries
	6.5.9.2 Case 2 – Status Entries
	6.5.9.3 Case 3 – History Entries
	6.5.9.4 Case 4 – Status and History Entries

	6.5.10 Object descriptions
	6.5.10.1 Object 1001h : ERR_ErrorRegister_U8
	6.5.10.2 Object 1003h: ERR_History_ADOM

	6.6 Program Download
	6.6.1 Object Dictionary Entries on the CN
	6.6.1.1 Object 1F50h: PDL_DownloadProgData_ADOM
	6.6.1.2 Object 1F51h: PDL_ProgCtrl_AU8
	6.6.1.3 Object 1F52h: PDL_LocVerApplSw_REC
	6.6.1.4 Object 0427h: PDL_LocVerApplSw_TYPE

	6.6.2 Object Dictionary Entries on the MN
	6.6.2.1 Object 1F53h: PDL_MnExpAppSwDateList_AU32
	6.6.2.2 Object 1F54h: PDL_MnExpAppSwTimeList_AU32

	6.7 Configuration Management
	6.7.1 Device Description
	6.7.1.1 Local Storage on the Device
	6.7.1.2 Central Storage on the MN

	6.7.2 Device Configuration Storage
	6.7.2.1 Device Configuration File Storage
	6.7.2.2 Concise Configuration Storage
	6.7.2.3 Check Configuration Process
	6.7.2.4 Request Configuration

	6.7.3 Object Dictionary Entries
	6.7.3.1 Object 1020h: CFM_VerifyConfiguration_REC
	6.7.3.2 Object 1021h: CFM_StoreDevDescrFile_DOM
	6.7.3.3 Object 1022h: CFM_StoreDevDescrFormat_U16
	6.7.3.4 Object 1F20h: CFM_StoreDcfList_ADOM
	6.7.3.5 Object 1F21h: CFM_DcfStorageFormatList_AU8
	6.7.3.6 Object 1F22h: CFM_ConciseDcfList_ADOM
	6.7.3.7 Object 1F23h: CFM_StoreDevDescrFileList_ADOM
	6.7.3.8 Object 1F24h: CFM_DevDescrFileFormatList_AU8
	6.7.3.9 Object 1F25h: CFM_ConfCNRequest_AU32
	6.7.3.10 Object 1F26h: CFM_ExpConfDateList_AU32
	6.7.3.11 Object 1F27h: CFM_ExpConfTimeList_AU32
	6.7.3.12 Object 1F28h: CFM_ExpConfIdList_AU32
	6.7.3.13 Object 0435h: CFM_VerifyConfiguration_TYPE

	6.8 Input from a Programmable Device
	6.8.1 Basics
	6.8.2 Dynamic index assignment
	6.8.3 Object dictionary entries
	6.8.3.1 Object 1F70h: INP_ProcessImage_REC
	6.8.3.2 Object 0428h: INP_ProcessImage_TYPE

	7 Network Management (NMT)
	7.1 NMT State Machine
	7.1.1 Overview
	7.1.2 Common Initialisation NMT State Machine
	7.1.2.1 States
	7.1.2.1.1 NMT_GS_POWERED
	7.1.2.1.1.1 NMT_GS_INITIALISATION
	7.1.2.1.1.1.1 Sub-states

	7.1.2.1.1.2 NMT_GS_COMMUNICATING

	7.1.2.2 Transitions

	7.1.3 MN NMT State Machine
	7.1.3.1 Overview
	7.1.3.2 States
	7.1.3.2.1 NMT_MS_NOT_ACTIVE
	7.1.3.2.2 NMT_MS_EPL_MODE
	7.1.3.2.2.1 NMT_MS_PRE_OPERATIONAL_1
	7.1.3.2.2.2 NMT_MS_PRE_OPERATIONAL_2
	7.1.3.2.2.3 NMT_MS_READY_TO_OPERATE
	7.1.3.2.2.4 NMT_MS_OPERATIONAL

	7.1.3.2.3 NMT_MS_BASIC_ETHERNET

	7.1.3.3 Transitions

	7.1.4 CN NMT State Machine
	7.1.4.1 States
	7.1.4.1.1 NMT_CS_NOT_ACTIVE
	7.1.4.1.2 NMT_CS_EPL_MODE
	7.1.4.1.2.1 NMT_CS_PRE_OPERATIONAL_1
	7.1.4.1.2.2 NMT_CS_PRE_OPERATIONAL_2
	7.1.4.1.2.3 NMT_CS_READY_TO_OPERATE
	7.1.4.1.2.4 NMT_CS_OPERATIONAL
	7.1.4.1.2.5 NMT_CS_STOPPED

	7.1.4.1.3 NMT_CS_BASIC_ETHERNET

	7.1.4.2 Transitions
	7.1.4.3 States and Communication Object Relation
	7.1.4.4 Relationship to other state machines

	7.2 NMT Object Dictionary Entries
	7.2.1 NMT General Objects
	7.2.1.1 Identification
	7.2.1.1.1 Object 1000h: NMT_DeviceType_U32
	7.2.1.1.2 Object 1008h: NMT_ManufactDevName_VS
	7.2.1.1.3 Object 1009h: NMT_ManufactHwVers_VS
	7.2.1.1.4 Object 100Ah: NMT_ManufactSwVers_VS
	7.2.1.1.5 Object 1018h: NMT_IdentityObject_REC
	7.2.1.1.6 Object 1F82h: NMT_FeatureFlags_U32
	7.2.1.1.7 Object 1F83h: NMT_EPLVersion_U8

	7.2.1.2 Parameter Storage
	7.2.1.2.1 Object 1010h: NMT_StoreParam_REC
	7.2.1.2.2 Object 1011h: NMT_RestoreDefParam_REC

	7.2.1.3 Communication Interface Description
	7.2.1.3.1 Object 1F93h: NMT_EPLNodeID_REC
	7.2.1.3.2 Object 1030h .. 1039h : NMT_InterfaceGroup_Xh_REC
	7.2.1.3.3 Object 1F9Ah: NMT_HostName_VSTR

	7.2.1.4 Node List
	7.2.1.4.1 Object 1F81h: NMT_NodeAssignment_AU32

	7.2.1.5 Timing
	7.2.1.5.1 Object 1006h: NMT_CycleLen_U32
	7.2.1.5.2 Object 1F98h: NMT_CycleTiming_REC
	7.2.1.5.3 Object 1F9Bh: NMT_MultiplCycleAssign_AU8
	7.2.1.5.4 Object 1016h: NMT_ConsumerHeartbeatTime_AU32
	7.2.1.5.5 Object 1F8Dh: NMT_PresPayloadLimitList_AU16

	7.2.1.6 NMT Service Interface
	7.2.1.6.1 Object 1F9Eh: NMT_ResetCmd_U8

	7.2.1.7 NMT Diagnostics
	7.2.1.7.1 Object 1F8Ch: NMT_CurrNMTState_U8

	7.2.2 NMT MN Objects
	7.2.2.1 MN Start Up Behavior
	7.2.2.1.1 Object 1F80h: NMT_StartUp_U32
	7.2.2.1.2 Object 1F89h: NMT_BootTime_REC

	7.2.2.2 NMT Master Network Node Lists
	7.2.2.2.1 Object 1F84h: NMT_MNDeviceTypeIdList_AU32
	7.2.2.2.2 Object 1F85h: NMT_MNVendorIdList_AU32
	7.2.2.2.3 Object 1F86h: NMT_MNProductCodeList_AU32
	7.2.2.2.4 Object 1F87h: NMT_MNRevisionNoList_AU32
	7.2.2.2.5 Object 1F88h: NMT_MNSerialNoList_AU32

	7.2.2.3 Timing
	7.2.2.3.1 Object 1F8Ah: NMT_MNCycleTiming_REC
	7.2.2.3.2 Object 1F8Bh: NMT_MNPReqPayloadLimitList_AU16
	7.2.2.3.3 Object 1F92h: NMT_MNCNPResTimeout_AU32
	7.2.2.3.4 Object 1F9Ch: NMT_IsochrSlotAssign_AU8

	7.2.2.4 CN NMT State Surveillance
	7.2.2.4.1 Object 1F8Eh: NMT_MNNodeCurrState_AU8
	7.2.2.4.2 Object 1F8Fh: NMT_MNNodeExpState_AU8

	7.2.2.5 NMT Service Interface
	7.2.2.5.1 Object 1F9Fh: NMT_RequestCmd_REC

	7.2.3 NMT CN Objects
	7.2.3.1 CN StartUp Behaviour
	7.2.3.1.1 Object 1F99h: NMT_CNBasicEthernetTimeout_U32

	7.2.4 NMT Object Types
	7.2.4.1 Object 0023h: IDENTITY
	7.2.4.2 Object 0429h: NMT_ParameterStorage_TYPE
	7.2.4.3 Object 042Bh: NMT_InterfaceGroup_TYPE
	7.2.4.4 Object 042Ch: NMT_CycleTiming_TYPE
	7.2.4.5 Object 042Eh: NMT_BootTime_TYPE
	7.2.4.6 Object 042Fh: NMT_MNCycleTiming_TYPE
	7.2.4.7 Object 0439h: NMT_EPLNodeID_TYPE
	7.2.4.8 Object 043Ah: NMT_RequestCmd_TYPE

	7.3 Network Management Services
	7.3.1 NMT State Command Services
	7.3.1.1 Implicit NMT State Command Services
	7.3.1.1.1 Implicit NMT State Command Transmission

	7.3.1.2 Explicit NMT State Command Services
	7.3.1.2.1 Plain NMT State Command
	7.3.1.2.1.1 NMT Reset Commands to the MN

	7.3.1.2.2 Extended NMT State Command
	7.3.1.2.3 POWERLINK Node List Format

	7.3.2 NMT Managing Command Services
	7.3.2.1 Service Descriptions
	7.3.2.1.1 NMTNetHostNameSet
	7.3.2.1.2 NMTFlushArpEntry

	7.3.3 NMT Response Services
	7.3.3.1 NMT State Response
	7.3.3.2 IdentResponse Service
	7.3.3.2.1 IdentResponse Frame

	7.3.3.3 StatusResponse Service
	7.3.3.3.1 StatusResponse Frame

	7.3.4 NMT Info Services
	7.3.4.1 Service Descriptions
	7.3.4.1.1 NMTPublishConfiguredNodes
	7.3.4.1.2 NMTPublishActiveNodes
	7.3.4.1.3 NMTPublishPreOperational1
	7.3.4.1.4 NMTPublishPreOperational2
	7.3.4.1.5 NMTPublishReadyToOperate
	7.3.4.1.6 NMTPublishOperational
	7.3.4.1.7 NMTPublishStopped
	7.3.4.1.8 NMTPublishNodeStates
	7.3.4.1.9 NMTPublishEmergencyNew
	7.3.4.1.10 NMTPublishTime

	7.3.5 NMT Guard Services
	7.3.5.1 Guarding CNs
	7.3.5.1.1 Guarding Async-Only CNs

	7.3.5.2 Guarding the MN

	7.3.6 Request NMT Services by a CN
	7.3.6.1 NMTRequest Frame
	7.3.6.1.1 Invalid NMTRequests

	7.3.7 NMT Services via Object Dictionary
	7.3.7.1 NMT Reset Commands
	7.3.7.2 NMT Requests to the MN

	7.3.8 NMT Services via UDP/IP

	7.4 Boot-up Managing Node
	7.4.1 NMT_MS dependant Network Boot-up
	7.4.1.1 Overview
	7.4.1.2 NMT_MS_NOT_ACTIVE
	7.4.1.3 NMT_MS_PRE_OPERATIONAL_1
	7.4.1.4 NMT_MS_PRE_OPERATIONAL_2
	7.4.1.5 NMT_MS_READY_TO_OPERATE
	7.4.1.6 NMT_MS_OPERATIONAL

	7.4.2 MN Boot-up Procedure on CN Level
	7.4.2.1 Overview
	7.4.2.2 Boot-up of optional and mandatory CNs
	7.4.2.2.1 BOOT_STEP1
	7.4.2.2.1.1 CHECK_IDENTIFICATION
	7.4.2.2.1.2 CHECK_SOFTWARE
	7.4.2.2.1.3 CHECK_CONFIGURATION
	7.4.2.2.1.3.1 GET_IDENT

	7.4.2.2.2 BOOT_STEP2
	7.4.2.2.3 CHECK_COMMUNICATION
	7.4.2.2.4 START_CN
	7.4.2.2.5 START_ALL
	7.4.2.2.6 CHECK_STATE
	7.4.2.2.7 CHANGE_NMT_STATE
	7.4.2.2.8 OPERATIONAL
	7.4.2.2.9 ERROR_TREATMENT

	7.4.3 Boot-up Errors
	7.4.3.1 Bus activity
	7.4.3.2 BOOT_STEP1 failed
	7.4.3.3 BOOT_STEP2 failed
	7.4.3.4 Boot-up in NMT_MS_READY_TO_OPERATE failed
	7.4.3.5 Get Ident failed
	7.4.3.6 Device Type Invalid
	7.4.3.7 Vendor ID invalid
	7.4.3.8 Configuration failed
	7.4.3.9 Product Code invalid
	7.4.3.10 Revision number invalid
	7.4.3.11 Serial number invalid
	7.4.3.12 NMT state invalid
	7.4.3.13 Invalid Software
	7.4.3.14 Invalid NMT state for SW update
	7.4.3.15 SW update not allowed
	7.4.3.16 SW update failed

	7.4.4 Minimal Boot-up MN
	7.4.5 Example Boot-up Sequence
	7.4.6 Application Notes

	8 Diagnostics
	8.1 Diagnostic Object Dictionary Entries
	8.1.1 Object 1101h: DIA_NMTTelegrCount_REC
	8.1.2 Object 1102h: DIA_ERRStatistics_REC
	8.1.3 Diagnostics Object Types
	8.1.3.1 Object 0437h: DIA_NMTTelegrCount_TYPE
	8.1.3.2 Object 0438h: DIA_ERRStatistics_TYPE

	9 Routing
	9.1 Routing Type 1
	9.1.1 Core Tasks of a POWERLINK Router
	9.1.2 Reference Model
	9.1.3 Data Link Layer
	9.1.3.1 DLL POWERLINK Interface
	9.1.3.2 DLL interface to the external network

	9.1.4 Network Layer
	9.1.4.1 Communication between POWERLINK and the external network
	9.1.4.2 IP Coupling
	9.1.4.2.1 IP Routing
	9.1.4.2.1.1 Configuration
	9.1.4.2.1.1.1 SNMP
	9.1.4.2.1.1.2 SDO

	9.1.4.2.2 Network Address Translation (NAT)
	9.1.4.2.2.1 Configuration
	9.1.4.2.2.1.1 SNMP
	9.1.4.2.2.1.2 SDO

	9.1.5 Security
	9.1.5.1 Packet Filter – Firewall
	9.1.5.1.1 ACL – Filter Entries
	9.1.5.1.2 Filter strategy
	9.1.5.1.3 Configuration
	9.1.5.1.3.1 SNMP
	9.1.5.1.3.2 SDO

	9.1.6 Additional Services of a POWERLINK Router
	9.1.7 Object description
	9.1.7.1 Object 1E80h: RT1_EplRouter_REC
	9.1.7.2 Object 1E90h .. 1ECFh: RT1_IpRoutingTable_XXh_REC
	9.1.7.3 Object 1D00h .. 1DFFh: RT1_NatTable_XXh_REC
	9.1.7.4 Object 1E81h: RT1_SecurityGroup_REC
	9.1.7.5 Object 1B00h .. 1BFFh: RT1_AclFwdTable_XXh_REC
	9.1.7.6 Object 1ED0h .. 1EDFh: RT1_AclInTable_Xh_REC
	9.1.7.7 Object 1EE0h .. 1EEFh: RT1_AclOutTable_Xh_REC
	9.1.7.8 Router Type I Object Types
	9.1.7.8.1 Object 0430h: RT1_EplRouter_TYPE
	9.1.7.8.2 Object 0431h: RT1_IpRoutingTable_TYPE
	9.1.7.8.3 Object 0432h: RT1_NatTable_TYPE
	9.1.7.8.4 Object 0433h: RT1_SecurityGroup_TYPE
	9.1.7.8.5 Object 0434h: RT1_AclTable_TYPE

	9.1.8 POWERLINK Router MIB

	9.2 Routing Type 2

	10 Indicators
	10.1 Indicator states and flash rates
	10.2 Indicator Signaling
	10.3 Recommended labelling

	App. 1 Summary Object Library (normative)
	App. 1.1 Object Dictionary Entries, sorted by index
	App. 1.2 Object Dictionary Entries, sorted by name

	App. 2 Device Description Entries (normative)
	App. 3 Constant Value Assignments (normative)
	App. 3.1 POWERLINK Message Type Ids
	App. 3.2 AsyncSend Request Priorities
	App. 3.3 ASnd ServiceIDs
	App. 3.4 SoA RequestedServiceIDs
	App. 3.5 Object Dictionary Object Types
	App. 3.6 NMT States
	App. 3.7 NMT Commands
	App. 3.8 General Purpose Constants
	App. 3.9 Error Code Constants
	App. 3.10 SDO Abort Codes

	App. 4 Data Sheet Requirements (normative)

