ACOPOSmotor Compact User's manual

Version: 1.00 (August 2023)
Order no.: MAACPMOTC-ENG

Translation of the original documentation

Publishing information
B\&R Industrial Automation GmbH
B\&R Strasse 1
5142 Eggelsberg
Austria
Telephone: +43 7748 6586-0
Fax: +43 7748 6586-26
office@br-automation.com

Disclaimer

All information in this document is current as of its creation. The contents of this document are subject to change without notice. B\&R Industrial Automation GmbH assumes unlimited liability in particular for technical or editorial errors in this document only (i) in the event of gross negligence or (ii) for culpably inflicted personal injury. Beyond that, liability is excluded to the extent permitted by law. Liability in cases in which the law stipulates mandatory unlimited liability (such as product liability) remains unaffected. Liability for indirect damage, consequential damage, business interruption, loss of profit or loss of information and data is excluded, in particular for damage that is directly or indirectly attributable to the delivery, performance and use of this material.

B\&R Industrial Automation GmbH notes that the software and hardware designations and brand names of the respective companies used in this document are subject to general trademark, brand or patent protection.

Hardware and software from third-party suppliers referenced in this document is subject exclusively to the respective terms of use of these third-party providers. B\&R Industrial Automation GmbH assumes no liability in this regard. Any recommendations made by B\&R Industrial Automation GmbH are not contractual content, but merely nonbinding information for which no liability is assumed. When using hardware and software from third-party suppliers, the relevant user documentation of these third-party suppliers must additionally be consulted and, in particular, the safety guidelines and technical specifications contained therein must be observed. The compatibility of the products from $B \& R$ Industrial Automation GmbH described in this document with hardware and software from thirdparty suppliers is not contractual content unless this has been separately agreed in individual cases; in this respect, warranty for such compatibility is excluded in any case, and it is the sole responsibility of the customer to verify this compatibility in advance.
1 Introduction 7
1.1 Manual history 7
2 General safety guidelines 8
2.1 Organization of notices 8
2.2 General information. 8
2.3 Qualified personnel 9
2.4 Intended use 9
2.5 Protection against electrostatic discharge 9
2.5.1 Packaging. 9
2.5.2 Regulations for proper ESD handling 10
2.6 Transport and storage 10
2.7 Handling and installation 10
2.8 Operation 11
2.8.1 Protection against contact with electrical parts 11
2.8.2 Protection against hazardous movements 12
2.8.3 Protection against burns 12
2.9 Characteristic values of functional safety 12
2.10 Cybersecurity disclaimer for products 13
3 System characteristics 14
3.1 Compact and safe 14
3.2 Decentralized and flexible 15
3.3 Homogeneous and compatible 15
3.4 Cooling 15
3.5 ACOPOSmotor Compact configurations 15
4 Technical data 17
4.1 8D1 order key 17
4.1.1 Construction type (b) 19
4.1.2 Size (c) 19
4.1.3 Length (d) 19
4.1.4 Motor encoder system / Electronics option (e). 21
4.1.5 Nominal speed (f) 21
4.1.6 Motor options (g) 21
4.1.7 Gearbox (h) 24
4.1.8 Gearbox size (i). 25
4.1.9 Gear ratio (j) 26
4.1.10 Gearbox options (k) 27
4.1.11 Special motor options (II) 27
4.2 Load due to radial and axial force 28
4.3 Status indicators 29
4.3.1 POWERLINK - LED status indicators 29
4.3.2 RDY/ERR - LED status indicators. 29
4.3.3 Status changes when starting up the operating system loader 30
4.4 Order data for ACOPOSmotor Compact modules. 31
4.5 Technical data 32
4.5.1 General information 32
4.5.2 Inverter module 33
4.5.3 Power dissipation 34
4.5.4 Formula symbols 35
4.6 8D1Ax - Technical data 36
4.6.1 Technical data. 36
4.6.2 8D1A22.elghijkhh-1 - Speed-Torque characteristic curve. 36
4.6.3 8D1A23.eDghijkhh-1 - Speed-Torque characteristic curve 37
4.6.4 8D1A23.eHghijkhh-1 - Speed-Torque characteristic curve 37
4.6.5 8D1A33.eBghijkhh-1 - Speed-Torque characteristic curve 38

Table of contents

4.6.6 Permissible shaft load 38
4.7 8D1Bx - Technical data 39
4.7.1 Overview 39
4.7.2 8D1B22.el - 4,500 rpm (8GM40, gearbox size 060) - Technical data 40
4.7.3 8D1B22.el - 4,500 rpm (8GM45, gearbox size 067) - Technical data 42
4.7.4 8D1B22.el - 4,500 rpm (8GM50, gearbox size 070) - Technical data 44
4.7.5 8D1B22.el - 4,500 rpm (8GM55, gearbox size 060) - Technical data 46
4.7.6 8D1B22.el - 4,500 rpm (8GG40, gearbox size 064) - Technical data 48
4.7.7 8D1B23.eD - 2,000 rpm (8GM40, gearbox size 060) - Technical data 50
4.7.8 8D1B23.eD - 2,000 rpm (8GM45, gearbox size 067) - Technical data 52
4.7.9 8D1B23.eD - 2,000 rpm (8GM50, gearbox size 070) - Technical data 54
4.7.10 8D1B23.eD - 2,000 rpm (8GM55, gearbox size 060) - Technical data 56
4.7.11 8D1B23.eD - 2,000 rpm (8GG40, gearbox size 064) - Technical data 58
4.7.12 8D1B23.eH - 4,100 rpm (8GM40, gearbox size 060) - Technical data 60
4.7.13 8D1B23.eH - 4,100 rpm (8GM45, gearbox size 067) - Technical data 62
4.7.14 8D1B23.eH - 4,100 rpm (8GM50, gearbox size 070) - Technical data 64
4.7.15 8D1B23.eH - 4,100 rpm (8GM55, gearbox size 060) - Technical data 66
4.7.16 8D1B23.eH - 4,100 rpm (8GG40, gearbox size 064) - Technical data 68
4.7.17 8D1B33.eB - 1,200 rpm (8GM40, gearbox size 080) - Technical data 70
4.7.18 8D1B33.eB - 1,200 rpm (8GM45, gearbox size 067) - Technical data 71
4.7.19 8D1B33.eB - 1,200 rpm (8GM50, gearbox size 070) - Technical data 73
4.7.20 8D1B33.eB - 1,200 rpm (8GM55, gearbox size 060) - Technical data 75
4.7.21 8D1B33.eB - 1,200 rpm (8GG40, gearbox size 064) - Technical data 77
4.8 8D1Cx - Technical data. 80
4.8.1 8GP40, gearbox size 060 - Technical data 82
4.8.2 8GP40, gearbox size 080 - Technical data 83
4.8.3 8GP45, gearbox size 067 - Technical data. 86
4.8.4 8GP45, gearbox size 089 - Technical data 87
4.8.5 8GP50, gearbox size 070 - Technical data 90
4.8.6 8GP50, gearbox size 090 - Technical data 91
4.8.7 8GP55, gearbox size 060 - Technical data 94
4.8.8 8GP55, gearbox size 080 - Technical data 95
4.8.9 8GP60, gearbox size 070 - Technical data 98
4.8.10 8GP70, gearbox size 070 - Technical data 101
4.8.11 8GF40, gearbox size 064 - Technical data 104
4.8.12 8GF60, gearbox size 064 - Technical data 105
4.8.13 8GF70, gearbox size 064 - Technical data 108
4.8.14 8GA40, gearbox size 060 - Technical data 110
4.8.15 8GA40, gearbox size 080 - Technical data 113
4.8.16 8GA45, gearbox size 067 - Technical data 116
4.8.17 8GA45, gearbox size 089 - Technical data 119
4.8.18 8GA50, gearbox size 070 - Technical data 122
4.8.19 8GA50, gearbox size 090 - Technical data 125
4.8.20 8GA55, gearbox size 064 - Technical data 128
4.8.21 8GA60, gearbox size 070 - Technical data 131
4.9 Dimension diagrams and installation dimensions 133
4.9.1 Overview 133
4.9.2 8D1A2x 134
4.9.3 8D1B2x.xxxBD - 8GM40 gearbox (gearbox size 060) 135
4.9.4 8D1B2x.xxxCF - 8GM45 gearbox (gearbox size 067) 136
4.9.5 8D1B2x.xxxDG - 8GM50 gearbox (gearbox size 070). 137
4.9.6 8D1B2x.xxxED - 8GM55 gearbox (gearbox size 060) 138
4.9.7 8D1B2x.xxxHE - 8GG40 gearbox (gearbox size 064) 139
4.9.8 8D1A3x 140
4.9.9 8D1B3x.xxxBH - 8GM40 gearbox (gearbox size 080) 141
4.9.10 8D1B3x.xxxCI - 8GM45 gearbox (gearbox size 089) 142
4.9.11 8D1B3x.xxxDJ - 8GM50 gearbox (gearbox size 090) 143
4.9.12 8D1B3x.xxxEH - 8GM55 gearbox (gearbox size 080) 144
4.9.13 8D1B3x.xxxHJ - 8GG40 gearbox (gearbox size 090) 145
4.10 Pinouts 146
4.10.1 Hybrid cable - Pinout 146
4.10.2 Electronics option - Pinout 147
4.11 POWERLINK node number setting. 147
5 Dimensioning 148
5.1 Power supply 148
5.1.1 Power supply unit 148
5.2 Fuse protection of the power supply cable 148
5.3 Procedure for sizing the DC bus 149
5.3.1 Dimensioning example 1 150
5.3.2 Dimensioning example 2 151
5.4 Procedure for sizing the STO power supply cable 152
5.4.1 Dimensioning example 1 154
5.4.2 Dimensioning example 2 155
6 Installation and connection 156
6.1 Before installation 156
6.2 Safety 156
6.2.1 Noise emissions 156
6.2.2 General sources of danger 156
6.3 Shaft end and bearing. 159
6.4 Installing in the system 160
6.4.1 Fasteners and tightening torques 161
6.5 Connecting and disconnecting the motor 161
6.6 Cable clamp and bend radius 162
7 Safety technology 163
7.1 Standard safety technology ("hardwired safety technology") 163
7.1.1 General information 163
7.1.2 Principle - Implementing the safety function 165
7.1.2.1 Additional functions 165
7.1.3 General danger notices 166
7.1.4 Wiring the enable inputs to the required safety category / SIL / PL 168
7.1.4.1 STO, category 3 / SIL 3 / PL e (variant A) 168
7.1.4.2 STO, category 3 / SIL 3 / PL e (variant B) 169
7.1.5 Wiring the enable inputs per required safety category / SIL / PL and functionality (STO, SS1, SS2, SLSSOS).171
7.1.5.1 STO, SLS, SOS - Safety category 3 / SIL 3 / PL e 171
7.1.5.2 SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant A) 173
7.1.5.3 SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant B) 175
7.1.5.4 STO, SLS, SOS - Safety category 3 / SIL 2 / PL d 178
7.1.5.5 SS1, SLS, SS2 - Safety category 3 / SIL 2 / PL d (variant A) 180
7.1.5.6 SS1, SLS, SS2 - Safety category 3 / SIL 2 / PL d (variant B). 182
8 Accessories 184
8.1 Cables 184
8.1.1 Hybrid cable 184
8.1.1.1 Power supply cables 184
8.1.1.2 Power cables 186
8.1.2 M8 sensor cables 188
8.1.2.1 Technical data 189
8.1.2.2 X67CA0D40.xxxx 190
8.1.2.3 X67CA0D50.xxxx 190
9 Standards and certifications 191
9.1 International and national certifications 191
9.1.1 EU directives and standards (CE) 192
9.1.1.1 Requirements for immunity to interference 193
9.1.1.2 Emission requirements 195
9.1.1.3 Climate conditions 196
9.1.1.4 Electrical safety. 196
9.1.2 UL / CSA - ACOPOSmotor Compact (8D1) 197
9.1.3 UKCA 197
9.2 Standards and definitions for safety technology 198
10 Disposal 200
10.1 Safety 200
10.1.1 Protective equipment 200
10.1.2 Rotor with rare earth magnets 200

1 Introduction

1.1 Manual history

Version	Date	Comment $^{1)}$
1.00	October 2023	First edition

[^0]
2 General safety guidelines

2.1 Organization of notices

Safety notices

Contain only information that warns of dangerous functions or situations.

Signal word	Description
Danger!	Failure to observe these safety guidelines and notices will result in death, severe injury or substantial damage to property.
Warning!	Failure to observe these safety guidelines and notices can result in death, severe injury or substantial damage to property.
Caution!	Failure to observe these safety guidelines and notices can result in minor injury or damage to property.
Notice!	Failure to observe these safety guidelines and notices can result in damage to property.

General notices

Contain useful information for users and instructions for avoiding malfunctions.

Signal word	Description
Information:	Useful information, application tips and instructions for avoiding malfunctions.

2.2 General information

$B \& R$ drive systems and servo motors have been designed, developed and manufactured for conventional use in industrial environments.

They have not been designed, developed and manufactured for use that involves fatal risks or hazards that could result in death, injury, serious physical harm or other loss without the assurance of exceptionally stringent safety precautions.

In particular, these risks include the use of these devices to monitor nuclear reactions in nuclear power plants, in flight control or flight safety systems as well as in the control of mass transportation systems, medical life support systems or weapons systems.
Servo drives, inverter modules and frequency inverters from B\&R are not dual-use goods per Annex I of Council Regulation (EC) No. 428/2009 | 3A225, amended by Commission Delegated Regulation (EU) No. 2015/2420.
The electrical output frequency of these modules is monitored; if the limit frequency is exceeded, the current movement is aborted and an error is reported.
Servo drives, inverter modules and frequency inverters with the dual-use option are dual-use goods per Annex I of Council Regulation (EC) No. 428/2009 | 3A225, amended by Commission Delegated Regulation (EU) No. 2015/2420.
The electrical output frequency of these modules is not monitored.
Modules with the dual-use option are subject to various export restrictions.

Danger!

Drive systems and servo motors can have exposed parts with voltages applied (e.g. terminals) or hot surfaces. Additional hazards include moving machine parts. The removal of required covers, inappropriate use of the devices or their improper installation or operation can result in severe personal injury or damage to property.

All tasks such as the transport, installation, commissioning and servicing of devices are only permitted to be carried out by qualified personnel. Qualified personnel are persons who are familiar with the transport, installation, assembly, commissioning and operation of the product and have the appropriate qualifications for their job. National accident prevention regulations must be observed.
The safety guidelines, information about connection conditions (nameplate and documentation) and limit values specified in the technical data must be read carefully before installation and commissioning and must be strictly observed.

2.3 Qualified personnel

The use of safety-related products is restricted to the following persons:

- Qualified personnel who are familiar with relevant safety concepts for automation technology as well as applicable standards and regulations.
- Qualified personnel who plan, develop, install and commission safety equipment in machines and systems.

Qualified personnel in the context of this manual's safety guidelines are those who, due to their training, experience and instruction combined with their knowledge of relevant standards, regulations, accident prevention guidelines and operating conditions, are qualified to carry out essential tasks and to recognize and avoid potentially dangerous situations.
In this regard, sufficient language skills are also required in order to be able to properly understand this manual.

2.4 Intended use

Servo drives are components intended to be installed in electrical systems or machines. This intended use is prohibited until it has been determined that the machine complies with the regulations of EC directives 2006/42/ EC (Machinery Directive) and 2004/108/CE (EMC Directive).
B\&R drive systems are only permitted to be directly operated on grounded industrial power systems (TN, TN-C-S network). When used in residential areas, commercial areas or small businesses, additional protective and filtering measures must be implemented by the user.

Danger!

Drive systems are not permitted to be operated directly on TT, IT and corner-grounded TN-S systems!
For technical data as well as specifications for connection and ambient conditions, see the nameplate and user documentation. The connection and ambient conditions must be observed!

Danger!

Electronic devices are generally not failsafe. If the drive systems fails, the user is responsible for making sure that the motor is brought to a secure state.

2.5 Protection against electrostatic discharge

Electrical assemblies that can be damaged by electrostatic discharge (ESD) must be handled accordingly.

2.5.1 Packaging

Electrical assemblies with housing do not require special ESD packaging but must be handled properly (see section 2.5.2 "Regulations for proper ESD handling " on page 10).

Electrical assemblies without a housing are protected by ESD-suitable packaging.

2.5.2 Regulations for proper ESD handling

Electrical assemblies with housing

- Do not touch the connector contacts of connected cables.
- Do not touch the contact tips on circuit boards.

Electrical assemblies without housing

The following applies in addition to "Electrical assemblies with housing":

- All persons handling electrical assemblies and devices in which electrical assemblies are installed must be grounded.
- Assemblies are only permitted to be touched on the narrow sides or front plate.
- Always place assemblies on suitable surfaces (ESD packaging, conductive foam, etc.). Metallic surfaces are not suitable surfaces!
- Assemblies must not be subjected to electrostatic discharges (e.g. due to charged plastics).
- A minimum distance of 10 cm from monitors or television sets must be maintained.
- Measuring instruments and devices must be grounded.
- Test probes of floating potential measuring instruments must be discharged briefly on suitable grounded surfaces before measurement.

Individual components

- ESD protective measures for individual components are implemented throughout B\&R (conductive floors, shoes, wrist straps, etc.).
- The increased ESD protective measures for individual components are not required for handling B\&R products at customer locations.

2.6 Transport and storage

During transport and storage, devices must be protected against undue stress (mechanical stress, temperature, humidity, aggressive atmosphere).
Drive systems contain components sensitive to electrostatic charges that can be damaged by inappropriate handling. It is therefore necessary to provide the required protective measures against electrostatic discharge when installing or removing these drive systems.

2.7 Handling and installation

Warning!

B\&R drive systems and servo motors can be heavy.
When handling and installing heavy B\&R drive systems or servo motors, there is therefore the risk of personal injury or damage to property caused by shearing, impacts, cutting or crushing. If required, use suitable protective equipment (e.g. safety glasses, protective gloves, safety shoes)!

Installation must be performed according to this documentation using suitable equipment and tools.
Devices are only permitted to be installed in a voltage-free state and by qualified personnel. The control cabinet must first be de-energized and secured against being switched on again.
General safety guidelines and national accident prevention regulations (e.g. VBG 4) for working with high voltage systems must be observed.

Electrical installation must be carried out in accordance with relevant regulations (e.g. line cross section, fuse protection, protective ground connection, see also "Dimensionierung" on page).

2.8 Operation

2.8.1 Protection against contact with electrical parts

Danger!

To operate drive systems, it is necessary for certain parts to carry dangerous voltage levels over 60 VDC. Touching one of these components can result in a life-threatening electric shock. There is a risk of death, serious injury or damage to property.

Before switching on a drive system, it is important to ensure that the housing is properly connected to ground potential (PE rail). Ground connections must also be made if the drive system is only connected for testing purposes or only operated for a short time!

Before switching on, live parts must be securely covered. All covers and control cabinet doors must be kept closed during operation.

Danger!

If the safety functions integrated in the drive system are used in an application, then the safety functions must be fully validated before the drive system is switched on for the first time. There is a risk of death, serious injury or damage to property.

Control and power connections can still be live even if the motor is not rotating. Touching these connections when the power is switched on is prohibited.

Before performing any work on drive systems, they must first be disconnected from the mains and prevented from being switched on again.

Danger!

Dangerously high voltage!

Before starting work, disconnect the power supply and wait 5 minutes to ensure that the capacitors have discharged. Observe regulations!
This delay time of 5 minutes begins as soon as all of the synchronous motors connected to the drive system that has been disconnected from the power supply have come to a standstill. If the synchronous motors are not at standstill when the drive system is disconnected from the power supply, then the delay time must be extended accordingly.
ACOPOSremote and ACOPOSmotor modules are marked with the following warning label:

Figure 1: Warning label sign on ACOPOSremote and ACOPOSmotor modules
The connections on the drive system for signal voltages in the voltage range 5 to 30 V are safely isolated circuits. The signal voltage connections and interfaces are therefore only permitted to be connected to devices or electrical components that have sufficient isolation in accordance with IEC 60364-4-41 or EN 61800-5-1 and that correspond to SELV / PELV or a protective extra-low voltage of class DVC A per EN 61800-5-1.
Never disconnect the electrical connections of drive systems while voltage is applied. In some cases, electric arcs may occur that can cause personal injury and/or damage to contacts.

2.8.2 Protection against hazardous movements

Danger!

Improper control of motors can result in unintended hazardous movements! Such incorrect behavior can have various causes:

- Incorrect installation or faults when handling components
- Improper or incomplete wiring
- Defective devices (drive system, motor, position encoder, cables, brake)
- Incorrect control (e.g. caused by software error)

Several of these fault causes are detected and prevented by the drive system's internal monitoring. Nevertheless, it is still possible for the motor shaft to move any time after the device is switched on! For this reason, higher-level protective measures must be put in place to ensure that personnel and the machine are protected.
The moving parts on machines must be shielded in such a way as to prevent unintentional access by personnel. This type of protection can be achieved by using stable mechanical protective equipment such as protective covers, protective fences, protective gates or photoelectric sensors.
It is prohibited to remove, bypass or circumvent this safety equipment or to remain within the machine's range of movement.

A sufficient number of emergency switch-offs must be installed in the immediate vicinity of the machine and easily accessible at all times. This emergency switch-off equipment must be checked before the machine is commissioned.

On free running motors, the shaft key (if present) must be removed or measures taken to prevent its ejection. The holding brake built into motors cannot prevent hoisting equipment from dropping the suspended load.

2.8.3 Protection against burns

The surfaces of servo drives and servo motors can reach very high temperatures during operation. The servo drives are therefore marked with the following warning label:

Figure 2: "Hot surface" warning label

Information:

A corresponding "hot surface" warning label is provided with the servo motors. This must be placed so that it is visible at all times when the motor is installed.

2.9 Characteristic values of functional safety

For the characteristic values of individual safety functions, see chapter Sicherheitstechnik.
Characteristic values are calculated based on a proof test interval of max. 20 years. Since no proof test can be carried out for B\&R drive systems, the proof test interval also corresponds to the mission time.
Per the EN ISO 13849, EN 62061 and IEC 61508 standards, the safety functions described in chapter Sicherheitstechnik cannot be used beyond the specified mission time.

Danger!

The user must ensure that all B\&R drive systems that execute a safety function are replaced by new $B \& R$ drive systems or removed from operation before their mission time expires.

2.10 Cybersecurity disclaimer for products

B\&R products communicate via a network interface and were developed for secure connection with internal and, if necessary, other networks such as the Internet.

Information:

In the following, B\&R products are referred to as "product" and all types of networks (e.g. internal networks and the Internet) are referred to as "network".

It is the sole responsibility of the customer to establish and continuously ensure a secure connection between the product and the network. In addition, appropriate security measures must be implemented and maintained to protect the product and entire network from any security breaches, unauthorized access, interference, digital intrusion, data leakage and/or theft of data or information.

B\&R Industrial Automation GmbH and its subsidiaries are not liable for damages and/or losses in connection with security breaches, unauthorized access, interference, digital intrusion, data leakage and/or theft of data or information.

The aforementioned appropriate security measures include, for example:

- Segmentation of the network (e.g. separation of the IT network from the control network ${ }^{11}$)
- Use of firewalls
- Use of authentication mechanisms
- Encryption of data
- Use of anti-malware software

Before B\&R releases products or updates, they are subjected to appropriate functional testing. Independently of this, we recommend that our customers develop their own test processes in order to be able to check the effects of changes in advance. Such changes include, for example:

- Installation of product updates
- Significant system modifications such as configuration changes
- Deployment of updates or patches for third-party software (non-B\&R software)
- Hardware replacement

These tests should ensure that implemented security measures remain effective and that systems in the customer's environment behave as expected.

3 System characteristics

3.1 Compact and safe

ACOPOSmotor Compact modules combine the following components in a single compact unit:

- Servo drive
- Servo motor as an energy transducer
- Built-in position sensor

The ACOPOSmotor Compact module achieves maximum performance through the use of the latest technology in power components with minimal power dissipation as well as from the motor series optimized for this use case.

ACOPOSmotor Compact modules cover a power range of up to 0.35 kW and measure just $60 \mathrm{~mm} \times 90 \mathrm{~mm}$ ($\mathrm{w} \times$ h) in the smallest variant. Despite the compact dimensions, a fully-fledged servo drive is integrated that processes control loops with a cycle time of $50 \mu \mathrm{~s}$. The devices are optionally available with an integrated gearbox mounting.

Daisy chaining

The devices have two connections for hybrid cables, so only one cable to the control cabinet is required. The hybrid cable ensures the power supply and transfer of POWERLINK data. Additional ACOPOSmotor Compact modules are easily connected via daisy chaining.

ACOPOSmotor Compact modules function over a wide voltage range from 24 to 58 VDC.

Multi-turn and single-turn encoder variants are available.
ACOPOSmotor Compact modules are designed for use in harsh environments. With an oil seal, the device corresponds to IP65 protection. It requires neither fans nor heat sinks.

3.2 Decentralized and flexible

In terms of topology, the ACOPOSmotor Compact module is wired either as a simple line structure or as a tree structure. Node number assignment takes place automatically in the line structure. If the address must still be set, however, this can be done without opening the housing.
The connection to the drive system is made using a hybrid connector. This contains all of the power and signal lines needed to operate the ACOPOSmotor Compact module as well as the POWERLINK network.
With the oil seal option, the high IP65 degree of protection allows ACOPOSmotor Compact modules to be mounted directly on the machine. The control cabinet contains only the power supply modules, high-power inverter modules and the necessary electromechanical components. This makes it much easier to implement modular machine architectures and optional machine functions since they can be easily connected - with the requisite dimensioning of the power supply - to the machine's main line using hybrid cables.

3.3 Homogeneous and compatible

The ACOPOSmotor Compact module provides the familiar functions of the ACOPOS family and therefore fits seamlessly into the drive solution.

3.4 Cooling

ACOPOSmotor Compact modules are self-cooling and have a long, slim design. The modules must be installed on the cooling surface (flange).

3.5 ACOPOSmotor Compact configurations

ACOPOSmotor Compact drive systems have a wide range of technology-specific functions whose performance, flexibility and practicality have now been impressively proven in countless applications. The ACOPOSmotor Compact functions listed below are basic functions that the user can switch between as needed within $400 \mu \mathrm{~s}$. In addition, manipulations such as changes in product length, registration mark control, overlying torque control, brief process adaptations and quality checks can be carried out at any time.

- Point-to-point
- Electronic gearbox
- Electronic compensation gears
- Cross cutter
- Electronic cams
- Flying saws
- Line shafts
- CNC

ACOPOSmotor Compact drive systems can be used in various configurations depending on the requirements of the application. The functions listed above are available to the user in each of the topology examples shown.
Reaction speeds are not influenced by the control system being used if technology functions are processed directly on the ACOPOSmotor Compact drive system. Additional sensors and actuators must be integrated in the control system for more complex processes. In these cases, the level of performance depends mostly on the type of network and control system being used. The topology examples shown on the following pages provide an overview of the bandwidths that are possible with B\&R automation components.

Topologies

ACOPOSmotor Compact modules do not require an additional servo drive.

ACOPOSmotor Compact modules do not require an additional servo drive and are simply integrated into the POWERLINK network. Power is supplied via an DC power supply unit.

ACOPOSmotor Compact modules can be integrated into ACOPOSmulti architecture.

ACOPOSmotor Compact modules can be integrated into ACOPOSmulti architecture. Power is supplied via the DC bus.

ACOPOSmotor Compact modules can be connected directly to the ACOPOStrak power supply.

ACOPOSmotor Compact modules can be connected directly to the ACOPOStrak power supply. This greatly simplifies the wiring of processing stations on the track system. A separate power supply is not necessary for ACOPOSmotor Compact.

4 Technical data

4.1 8D1 order key

$$
\begin{array}{llllllllllllllll}
\text { 8D1 } & \text { b } & \text { c } & \text { d } & \text {. } & \text { e } & \mathbf{f} & \mathbf{g} & \mathbf{h} & \mathbf{i} & \mathbf{j} & \mathbf{k} & \text { II } & - & \mathbf{m}
\end{array}
$$

Construction type

A ... Without gearbox
B ... Direct gearbox mounting
C ... Gearbox flanged
see "Construction type (b)" on page 19
Size

$$
\text { Valid values: 2, } \mathbf{3} \text { see "Size (c)" on page } 19
$$

Length

Valid values: 2, $\mathbf{3}$ see "Length (d)" on page 19

Motor encoder system / Electronics option

Valid values: A, B, G, H see "Motor encoder system / Electronics option (e)" on page 21
Nominal speed

B $\ldots \mathbf{1 , 2 0 0 ~ r p m ~}$
see "Nominal speed (f)" on page 21

Motor options

Valid values: 0, 1, 2, 3, 4, 5, 6, 7
see "Motor options (g)" on page 21

see "Gear ratio (j)" on page 26

Gearbox options

$\mathbf{0}$... Without gearbox see "Gearbox options (k)" on page 27
Valid values: $\mathbf{0}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathrm{L}, \mathbf{M}, \mathbf{N}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathrm{T}, \mathrm{U}$

Special motor options

00 ... No special motor options
Valid values: 00, OA, OB, OC, OD
For 8GA angular planetary gearbox see "Special motor options (II)" on page 27

Version

1 ... Version 1 (the motor version is specified as code (m) in the order number)

Note:

Order keys only provide information about possible combinations in exceptional cases. Information about possible combinations is available in the CAD configurator (cad.br-automation.com).

4.1.1 Construction type (b)

```
8D1 b c d . e f g i h i j j k ll - 1

ACOPOSmotor Compact modules are available in 3 different construction types (8D1A, 8D1B and 8D1C).
The construction type is differentiated by a letter (b) in the order number.
\begin{tabular}{|c|c|c|c|c|}
\hline Construction type (b) & Cooling type & Connection type & Gearbox & Order code \\
\hline 8D1A & \multirow{3}{*}{Self-cooling} & \multirow{3}{*}{Connector} & Without gearbox & 8D1Acd.efg000000-1 \\
\hline 8D1B & & & Yes (direct mounting) & 8D1Bcd.efghijkll-1 \\
\hline 8D1C & & & Yes (flanged) & 8D1Ccd.efghijkll-1 \\
\hline
\end{tabular}

\section*{8D1A}

- Integrated servo drive
- Without gearbox

8D1B

- Integrated servo drive
- Direct mounted gearbox

\section*{8D1C}

- Integrated servo drive
- Flanged gearbox

\subsection*{4.1.2 Size (c)}
```

8D1 b c d . e f g h i j m ll - 1 see "Order key" on page 1

```

ACOPOSmotor Compact modules are available in various sizes.
The size is differentiated by a digit (c) in the order number. The larger this digit, the larger the flange dimensions and power data of the respective ACOPOSmotor Compact module.
\begin{tabular}{|l|c|}
\hline \multirow{2}{*}{} & \multicolumn{1}{c|}{ Sizes (c) } \\
\cline { 2 - 3 } & \\
\hline 8D1A & 8D1x2 \\
\hline 8D1B & Yes \\
\hline 8D1C & Yes \\
\hline & Yes \\
\hline & \\
\hline 8D1A & Sizes (c) \\
\hline 8D1B & 8D1x3 \\
\hline 8D1C & Yes \\
\hline
\end{tabular}

\subsection*{4.1.3 Length (d)}

see "Order key" on page 17
ACOPOSmotor Compact modules are available in various lengths. These differ in the power data with identical flange dimensions. The different lengths are differentiated by a digit (d) in the order number.
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Lengths (d) } \\
\cline { 2 - 4 } & 8D1xx2 & 8D1xx3 \\
\hline 8D1A2 & Yes & Yes \\
\hline 8D1B2 & Yes & Yes \\
\hline 8D1C2 & Yes & Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline & Lengths (d) \\
\cline { 2 - 3 } & \\
\hline 8D1A3 & 8D1xx3 \\
\hline 8D1B3 & Yes \\
\hline 8D1C3 & Yes \\
\hline
\end{tabular}

\subsection*{4.1.4 Motor encoder system / Electronics option (e)}
```

8D1 b c d . e f g i h i j j k ll - 1

```

ACOPOSmotor Compact modules are equipped with EnDat 2.2 encoders and optionally available with 2 external connections. The external connections are a combination of a 24 VDC output and trigger input.

The respective variant of the module is specified in the form of a one-digit code (e) as part of the order number.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Order code (e) } & Motor encoder system & Electronics option \\
\cline { 2 - 4 } & Encoder type & 2 external connections \\
\hline A & B8 & --- \\
\hline B & B9 & --- \\
\hline G & B8 & Yes \\
\hline H & B9 & Yes \\
\hline
\end{tabular}

\section*{EnDat 2.2 encoder}

\section*{General information}

Digital drive systems and position control loops require fast and highly secure transfer of data obtained from position measuring instruments. In addition, other data such as drive-specific characteristic values, correction tables, etc. should also be available. To ensure a high level of system security, measuring instruments must be integrated in routines for detecting errors and be able to perform diagnostics.
The EnDat interface from HEIDENHAIN is a digital, bidirectional interface for measuring instruments. It is able to output position values from incremental and absolute measuring instruments and can also read and update information on the measuring instrument or store new data there. Because it relies on serial data transfer, only 4 signal lines are needed. The data is transferred synchronous to the clock signal defined by the subsequent electronics. The transfer method (position values, parameters, diagnostics, etc.) is selected with mode commands that the subsequent electronics transmit to the measuring instrument.

\section*{Technical data}


\subsection*{4.1.5 Nominal speed (f)}

The nominal speed is specified as part of the order number in the form of a code (f).
\begin{tabular}{|l|c|c|c|c|}
\hline \multirow{7}{*|}{} & \multicolumn{4}{|c|}{ Order code (f) } \\
\cline { 2 - 5 } & B & D & H & I \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}[\mathrm{rpm}]\) & 1200 & 2000 & 4100 & 4500 \\
\hline
\end{tabular}

\section*{Availability}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Nominal speeds \(\mathrm{n}_{\mathrm{N}}\) [rpm]} \\
\hline & 1200 & 2000 & 4100 & 4500 \\
\hline 8D1x22 & --- & --- & --- & Yes \\
\hline 8D1x23 & --- & Yes & Yes & --- \\
\hline 8D1x33 & Yes & --- & --- & --- \\
\hline
\end{tabular}

\subsection*{4.1.6 Motor options (g)}
8D1

The motor option is specified as part of the order number in the form of a one-digit code ( \(\mathbf{g}\) ).

\section*{8D1A}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Order code (g)} & \multicolumn{3}{|c|}{Motor options} \\
\hline & Holding brake & Shaft end & Oil seal \\
\hline 0 & \multirow[b]{2}{*}{No} & Smooth shaft & \multirow{4}{*}{No} \\
\hline 1 & & Keyed shaft & \\
\hline 2 & \multirow[b]{2}{*}{Yes} & Smooth shaft & \\
\hline 3 & & Keyed shaft & \\
\hline 4 & \multirow[b]{2}{*}{No} & Smooth shaft & \multirow{4}{*}{Yes} \\
\hline 5 & & Keyed shaft & \\
\hline 6 & \multirow[t]{2}{*}{Yes} & Smooth shaft & \\
\hline 7 & & Keyed shaft & \\
\hline
\end{tabular}

8D1B / 8D1C
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Order code (g) } & \multicolumn{2}{c|}{ Motor options } & \\
\cline { 2 - 3 } & Holding brake & Gearbox shaft end & Oil seal \\
\hline \(\mathbf{0}\) & No & see "Gearbox options & (k)" on page 27
\end{tabular}

\section*{Holding brake}

The holding brake is a permanent magnet brake. Voltage (see the technical data) must be applied to release the brake. Based on principle, this type of holding brake exhibits a minimal amount of backlash.
The brake is designed as a holding brake. It not permitted to be used for operational braking! Loaded braking during an emergency stop is permitted but reduces its service life.

\section*{Information:}

The required brake holding torque is determined based on the actual load torque. It is recommended by the brake manufacturer to take into account a safety factor of 2 .

\section*{Warning!}

The holding brake is not intended for normal braking. The maximum motor torque far exceeds the holding torque for the brake.

\section*{Warning!}

The number of revolutions of the motor shaft with the holding brake applied is not permitted to exceed the value 3200 since safety function STO can no longer be ensured in this case. \({ }^{2 / 3)}\)

\section*{Technical data}
\begin{tabular}{|l|c|c|}
\hline & & Motor size \\
\cline { 2 - 4 } & 8D1x2 & \\
\hline Holding torque \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & 2.2 & 8D1x3 \\
\hline Connected load \(\mathrm{P}_{\mathrm{On}}[\mathrm{W}]\) & 8.4 & 3.2 \\
\hline Maximum speed \(\mathrm{n}_{\max }[\mathrm{rpm}]\) & 12000 & 13.4 \\
\hline Supply current \(\mathrm{I}_{\mathrm{On}}[\mathrm{A}]\) & 0.35 & 12000 \\
\hline Supply voltage \(\mathrm{U}_{\mathrm{On}}[\mathrm{V}]\) & \(24 \mathrm{VDC}+6 \% /-10 \%\) & 0.56 \\
\hline Moment of inertia \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & 0.07 & \\
\hline Weight \(\mathrm{m}_{\mathrm{Br}}[\mathrm{kg}]\) & 0.16 & \(24 \mathrm{VDC} \mathrm{+6} \mathrm{\% /-10} \mathrm{\%}\) \\
\hline Service life & Approx. \(5,000,000\) switching cycles \({ }^{1)}\) & \\
\hline
\end{tabular}
1) This specification is only valid if all conditions are observed.

Releasing and re-engaging corresponds to 1 switching cycle.
The brake is designed as a holding brake. It not permitted to be used for operational braking! Loaded braking during an emergency stop is permitted but reduces its service life.

\section*{8D1A - Shaft end design}

ACOPOSmotor Compact modules (8D1A) can be delivered with a smooth shaft end or keyed shaft end.
A smooth shaft end is used for a force-fit shaft-hub connection and guarantees a backlash-free connection between the shaft and hub as well as a high degree of operating smoothness. The end of the shaft has a threaded center hole.
A keyed shaft end is used for a form-fit torque transfer with low demands on the shaft-hub connection and for handling torque in a constant direction.
The keyways for ACOPOSmotor Compact modules conform to keyway form N1 per DIN 6885-1. Form A keyed

\footnotetext{
2) The current value of the revolutions when the holding brake is applied can be read out under parameter ID BRAKE_WEARMON_REVO.
}
\({ }^{3)}\) Values are only valid for size 2.
shafts that conform to DIN 6885-1 are used. Balancing motors with keyways is done using the shaft and fitment key convention per DIN ISO 8821.
The end of the shaft has a threaded center hole that can be used to install machine actuators with shaft end cover plates.

\section*{8D1A - Oil seal}

All ACOPOSmotor Compact modules without gearbox (8D1A) are available with an optional form A oil seal per DIN 3760.
With an oil seal, the ACOPOSmotor Compact modules meet the requirements for IP65 protection per EN 60529. Proper lubrication of the oil seal must be ensured throughout the entire service life of the motor.

\subsection*{4.1.7 Gearbox (h)}

The gearbox is specified by a code (k) in the order key. Code 0 must be used in the order code for no gearbox.

\section*{8D1A}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Order code & Gearbox type & Class & Toothing type & \begin{tabular}{c} 
Degree of \\
protection
\end{tabular} & \multicolumn{2}{|c|}{ Gearbox type - Description } \\
\hline 0 & Without gearbox & -- & -- & - & - & \\
\hline
\end{tabular}

\section*{8D1B}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order code & Gearbox type & Class & Toothing type & Degree of protection & & Gearbox type - Description \\
\hline B & 8GM40 & \multirow{5}{*}{Standard} & \multirow{5}{*}{Straight} & \multirow{3}{*}{IP54} & C. & \multirow{4}{*}{Planetary gearbox with output shaft} \\
\hline C & 8GM45 & & & & & \\
\hline D & 8GM50 & & & & & \\
\hline E & 8GM55 & & & IP65 & & \\
\hline H & 8GG40 & & & IP54 & & Planetary gearbox with output flange \\
\hline
\end{tabular}

\section*{8D1C}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order code & Gearbox type & Class & Toothing type & Degree of protection & & Gearbox type - Description \\
\hline B & 8GP40 & \multirow{4}{*}{Standard} & \multirow{5}{*}{Straight} & \multirow{3}{*}{IP54} & & \\
\hline C & 8GP45 & & & & \[
\sqrt{5}
\] & \\
\hline D & 8GP50 & & & & & \\
\hline E & 8GP55 & & & \multirow{3}{*}{IP65} & & \\
\hline F & 8GP60 & \multirow{2}{*}{Premium \({ }^{1)}\)} & & & & \\
\hline G & 8GP70 & & Helical & & & \\
\hline H & 8GF40 & Standard & Straight & IP54 & & \multirow{3}{*}{Planetary gearbox with output flange} \\
\hline I & 8GF60 & \multirow{2}{*}{Premium \({ }^{1)}\)} & Straight & \multirow{2}{*}{IP65} & & \\
\hline J & 8GF70 & & Helical & & & \\
\hline K & 8GA40 & \multirow{4}{*}{Standard} & \multirow{4}{*}{Straight} & \multirow{4}{*}{IP54} & & \multirow{5}{*}{Angular planetary gearbox} \\
\hline L & 8GA45 & & & & & \\
\hline M & 8GA50 & & & & & \\
\hline N & 8GA55 & & & & & \\
\hline P & 8GA60 & Premium & Spiral bevel & IP65 & & \\
\hline
\end{tabular}
1) Premium class

For applications that demand high precision. In addition to standard spur toothing, helical gearing, which runs even smoother and quieter, is also possible.

\subsection*{4.1.8 Gearbox size (i)}

8D1 b \(\mathbf{c} \quad \mathbf{d} \cdot \mathbf{e} \quad \mathbf{f} \quad \mathbf{g} \quad \mathbf{h} \quad \mathbf{i} \quad \mathbf{j} \quad \mathbf{k} \quad\) II \(\quad \mathbf{1} \quad\) see "Order key" on page 17
\(B \& R\) gearboxes are available in different sizes.
The gearbox size is specified by a code (i) in the order key (e.g. H).
The larger the size (e.g. 080), the larger the flange dimensions and power data of the respective gearbox.
\begin{tabular}{|l|l|l|}
\hline 8D1A & 8D1B & 8D1C \\
\hline Order code ... Without gearbox & Order code ... Gearbox size & Order code ... Gearbox size \\
\hline \(\mathbf{0} \ldots\) Without gearbox & D \(\ldots 060\) & D ... 060 \\
& E \(\ldots 064\) & E \(\ldots 064\) \\
& F \(\ldots 067\) & F... 067 \\
& G \(\ldots 070\) & G ... 070 \\
& & H ... 080 \\
& & I 089 \\
\hline
\end{tabular}

\section*{8D1B (8GM / 8GG) - Possible gearbox sizes}
\begin{tabular}{|l|c|}
\hline Gearbox series & Gearbox size \({ }^{\text {1) }}\) \\
\hline 8GM40 & 060 \\
\hline 8GM40 & 080 \\
\hline 8GM45 & 067 \\
\hline 8GM45 & 089 \\
\hline 8GM50 & 070 \\
\hline 8GM50 & 090 \\
\hline 8GM55 & 060 \\
\hline 8GM55 & 080 \\
\hline 8GG40 & 064 \\
\hline 8GG40 & 090 \\
\hline
\end{tabular}

\section*{8D1C (8GP) - Possible gearbox sizes}
\begin{tabular}{|l|c|}
\hline Gearbox series & Gearbox size \(^{2)}\) \\
\hline 8GP40 & 060,080 \\
\hline 8GP45 & 067,089 \\
\hline 8GP50 & 070,090 \\
\hline 8GP55 & 060,080 \\
\hline 8GP60 & 070,090 \\
\hline 8GP70 & 070,090 \\
\hline
\end{tabular}

\section*{8D1C (8GF) - Possible gearbox sizes}
\begin{tabular}{|l|c|}
\hline Gearbox series & Gearbox size \(^{2)}\) \\
\hline 8GF40 & 064 \\
\hline 8GF60 & 064,090 \\
\hline 8GF70 & 064,090 \\
\hline
\end{tabular}

8D1C (8GA) - Possible gearbox sizes
\begin{tabular}{|l|c|}
\hline Gearbox series & Gearbox size \(^{2)}\) \\
\hline 8GA40 & 060,080 \\
\hline 8GA45 & 067,089 \\
\hline 8GA50 & 070,090 \\
\hline 8GA55 & 064,090 \\
\hline 8GA60 & 070,090 \\
\hline
\end{tabular}

\footnotetext{
1) 1-stage or 2 -stage: Defined only by the selected gear ratio.
2) 1-stage, \(\mathbf{2}\)-stage or 3 -stage: Defined only by the selected gear ratio.
}

\section*{Technical data}

\subsection*{4.1.9 Gear ratio (j)}

\section*{ \\ see "Order key" on page 17}
\(B \& R\) gearboxes are available with different gear ratios.
The code ( \(\mathbf{j}\) ) in the order number contains the gear ratio.
\begin{tabular}{|c|c|c|c|}
\hline 8D1A & \multicolumn{3}{|c|}{8D1B / 8D1C} \\
\hline Order code ... Without gearbox & \multicolumn{3}{|c|}{Order code ... Gear ratio} \\
\hline 0 ... Without gearbox & B \(\ldots 003\)
C \(\ldots 004\)
D \(\ldots 005\)
E \(\ldots 007\)
F \(\ldots 008\)
G \(\ldots 009\)
H ... 010 &  & \begin{tabular}{|l|l}
\hline \(\mathbf{Q} \ldots 040\) \\
\(\mathbf{R} \ldots 050\) \\
\(\mathbf{S} \ldots 060\) \\
\(\mathbf{T} \ldots .064\) \\
\(\mathbf{U} \ldots 070\) \\
\(\mathbf{V} \ldots 080\) \\
\(\mathbf{W} \ldots\) & \(\ldots 00\)
\end{tabular} \\
\hline
\end{tabular}

\section*{8D1B - Possible gear ratios}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Gearbox series \(/\) \\
Gearbox size
\end{tabular} & \multicolumn{4}{c|}{ Gear ratio } \\
\cline { 2 - 5 } 1-stage: & 2-stage: & 3-stage: \\
\hline 8GM40 /060 /080 & \(005,008,010\) & \(015,020,025,032,040,064,100\) & --- \\
\hline 8GM45 /067 /089 & \(005,008,010\) & \(015,020,025,032,040,064,100\) & --- \\
\hline 8GM50 /070 /090 & \(005,008,010\) & \(015,020,025,032,040,064,100\) & --- \\
\hline 8GM55 /060 /080 & \(005,008,010\) & \(015,020,025,032,040,064,100\) & --- \\
\hline 8GG40 /064/090 & \(005,008,010\) & \(015,020,025,032,040,064,100\) & --- \\
\hline
\end{tabular}

\section*{8D1C (8GP) - Possible gear ratios}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Gearbox series / Gearbox size} & \multicolumn{3}{|c|}{Gear ratio} \\
\hline & 1-stage: & 2-stage: & 3-stage: \\
\hline 8GP40 / 060 & 003, 004, 007 & 009, 012, 016 & --- \\
\hline 8GP40 / 080 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GP45 / 067 & 003, 004, 007 & 009, 012, 016 & --- \\
\hline 8GP45 / 089 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GP50 / 070 & 003, 004, 007 & 009, 012, 016 & --- \\
\hline 8GP50 / 090 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & --- \\
\hline 8GP55 / 060 & 003, 004, 007 & 009, 012, 016 & --- \\
\hline 8GP55 / 080 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & --- \\
\hline 8GP60 / 070 & 003, 004, 005, 007, 008, 010 & 012, 015, 016, 020, 025, 032, 040, 064, 100 & --- \\
\hline 8GP60 / 090 & 003, 004, 005, 007, 008, 010 & 012, 015, 016, 020, 025, 032, 040, 064, 100 & \\
\hline 8GP70 / 070 & 003, 004, 005, 007, 010 & 012, 015, 016, 020, 025, 035, 040, 050, 070, 100 & --- \\
\hline 8GP70 / 090 & 003, 004, 005, 007, 010 & 012, 015, 016, 020, 025, 035, 040, 050, 070, 100 & \\
\hline
\end{tabular}

\section*{8D1C (8GF) - Possible gear ratios}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Gearbox series / Gearbox size} & \multicolumn{3}{|c|}{Gear ratio} \\
\hline & 1-stage: & 2-stage: & 3-stage: \\
\hline 8GF40 / 064 & 003, 004, 007 & 009, 012, 016 & --- \\
\hline 8GF60 / 064 & 004, 005, 007, 008, 010 & 016, 020, 025, 032, 040, 050, 064, 100 & --- \\
\hline 8GF60 / 090 & 004, 005, 007, 008, 010 & 016, 020, 025, 032, 040, 050, 064, 100 & \\
\hline 8GF70 / 064 & 004, 005, 007, 010 & 016, 020, 025, 035, 040, 050, 070, 100 & --- \\
\hline 8GF70 / 090 & 004, 005, 007, 010 & 016, 020, 025, 035, 040, 050, 070, 100 & \\
\hline
\end{tabular}

\section*{8D1C (8GA) - Possible gear ratios}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Gearbox series / Gearbox size} & \multicolumn{3}{|c|}{Gear ratio} \\
\hline & 1-stage: & 2-stage: & 3-stage: \\
\hline 8GA40 / 060 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GA40 / 080 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GA45 / 067 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GA45 / 089 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & 060, 080 \\
\hline 8GA50 / 070 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & --- \\
\hline 8GA50 / 090 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & \\
\hline 8GA55 / 064 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & --- \\
\hline 8GA55 / 090 & 003, 004, 005, 007, 008, 010 & 009, 012, 015, 016, 020, 025, 032, 040, 064, 100 & \\
\hline 8GA60 / 070 & 004, 005, 008, 010 & 016, 020, 025, 032, 040, 050, 064, 100 & --- \\
\hline 8GA60 / 090 & 004, 005, 008, 010 & 016, 020, 025, 032, 040, 050, 064, 100 & \\
\hline
\end{tabular}

\subsection*{4.1.10 Gearbox options (k)}

\(B \& R\) gearboxes are available with various options.
The respective option is specified by a character ( \(\mathbf{k}\) ) in the order key.

1) Reduced backlash is only available for premium gearboxes: 8GP60, 8GP70 / 8GA60, 8GA75 / 8GF60, 8GF70.

\subsection*{4.1.11 Special motor options (II)}
```

8D1 b c d . e f g h i j k II - 1
see "Order key" on page 17

```

The special motor options are specified as part of the order number in the form of a 2-digit code (II).
For ACOPOSmotor Compact 8D1C modules with an 8GA angular gearbox, a mounting position for the gearbox must be defined using code (II).
For all other motors, there are no special motor options and code 00 must be used.
Valid values: 00, 0A, OB, OC, OD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Without gearbox} & \multicolumn{5}{|c|}{Order code (II)} \\
\hline & & \multirow[t]{2}{*}{With 8GP / 8GF gearbox} & \multicolumn{4}{|c|}{With 8GA angular gearbox (mounting position)} \\
\hline & & & (A) & (B) & (C) & (D) \\
\hline 8D1A & 00 & --- & --- & --- & --- & --- \\
\hline 8D1B & --- & 00 & --- & --- & --- & --- \\
\hline 8D1C & --- & 00 & 0A & OB & 0C & OD \\
\hline & & &  & & & \\
\hline
\end{tabular}

\section*{8D1C example:}

ACOPOSmotor Compact 8D1C with 8GA angular gearbox in mounting position \(A\) (code 0A)
Order key =8D1Cxx.xxxxx0A-1

\subsection*{4.2 Load due to radial and axial force}

Radial and axial forces ( \(\mathrm{F}_{\mathrm{r}}, \mathrm{F}_{\mathrm{a}}\) ) applied to the shaft end during operation and installation must observe the conditions listed below.

Simultaneously loading the shaft end with the maximum values of \(F_{r}\) and \(F_{a}\) is not permitted! Contact \(B \& R\) if this occurs.

\section*{Radial force}

Radial force \(F_{r}\) on the shaft end is a function of the loads during installation (e.g. belt tension on pulleys) and operation (e.g. load torque on the pinion). Maximum permissible radial force \(F_{r}\) depends on the shaft end variant, bearing type, average speed, the position where the radial force is applied and the desired service life of the bearings.

\section*{Axial force, shift in shaft position caused by axial force}

Axial force \(F_{a}\) on the shaft end is a function of the loads during installation (e.g. stress caused by mounting) and operation (e.g. thrust caused by slanted tooth pinions). The maximum axial force \(F_{a}\) depends on the bearing type and the desired service life of the bearings.

\section*{8D1x2 (with holding brake)}

The fixed bearing is secured on the \(\mathbf{B}\)-side flange with a retaining ring. The floating bearing on the A -side flange is preloaded with a spring in the direction of the B-side flange. Axial forces in the direction of the A-side flange can cause the spring bias to be overcome, which shifts the shaft by the amount of axial backlash in the bearing (approx. 0.1-0.2 mm). This shift can cause problems on motors with holding brakes or all motors with inductive encoder systems. As a result, no axial force in excess of the calculated values is permitted in the direction of the \(A\)-side flange when using these motor (see "Determining permissible values of \(F_{r}\) and \(F_{a}\) ).

\section*{8D1x2 (without holding brake) \\ 8D1x3 (with/without holding brake)}

The fixed bearing is secured on the A-side flange with a retaining ring. The floating bearing on the B-side flange is preloaded with a spring in the direction of the A-side flange. Axial forces in the direction of the B-side flange can cause the spring bias to be overcome, which shifts the shaft by the amount of axial backlash in the bearing (approx. 0.1-0.2 mm). This shift can cause problems on motors with holding brakes or all motors with inductive encoder systems. As a result, no axial force in excess of the calculated values is permitted in the direction of the \(B\)-side flange when using these motor (see "Determining permissible values of \(F_{r}\) and \(F_{a}\) ).

\section*{A- and B-side flange position}

\section*{Definition for permissible shaft load diagrams}


Figure 3: Definition of shaft load
\(F_{\text {r.......... Radial force }}\)
\(F_{\text {a }}\)......... Axial force
\(\mathbf{x}\)........... Distance between the motor flange and the point where radial force Fr is applied

\section*{Overdetermined bearing}

Avoid an overdetermined bearing when attaching drive elements onto the output shaft!. The necessarily occurring tolerances cause additional forces on the output shaft bearing. This can damage or significantly reduce the service life of the bearings!

\subsection*{4.3 Status indicators}


\subsection*{4.3.1 POWERLINK - LED status indicators}
\begin{tabular}{|c|c|c|c|}
\hline Color & Function & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{8}{*}{Green/Red} & \multirow[t]{8}{*}{Ready/Error} & LED off & The module is not supplied with power or network interface initialization has failed. \\
\hline & & Solid red & The POWERLINK node number of the module is 0 . \\
\hline & & Blinking red/green & The client is in an error state (drops out of cyclic operation). \\
\hline & & Blinking green (1x) & The client detects a valid POWERLINK frame on the network. \\
\hline & & Blinking green (2x) & Cyclic operation on the network, but the client itself is not yet in cyclic operation. \\
\hline & & Blinking green
(3x) & Cyclic operation of the client is in preparation. \\
\hline & & Solid green & The client is in cyclic operation. \\
\hline & & Flickering green & The client is not in cyclic operation and also does not detect any other stations on the network in cyclic operation. \\
\hline
\end{tabular}

Table 1: POWERLINK - LED status indicators

\subsection*{4.3.2 RDY/ERR - LED status indicators}
\begin{tabular}{|c|c|c|c|}
\hline Color & Function & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{2}{*}{Green} & \multirow[t]{2}{*}{Ready} & Solid green & The module is ready for operation and the power stage can be enabled (operating system present and booted, no pending permanent or temporary errors). \\
\hline & & Blinking green & \begin{tabular}{l}
The module is not ready for operation. \\
Examples: \\
- No signal on the enable input \\
- DC bus voltage outside the tolerance range \\
- Overtemperature on the motor \\
- Motor feedback not connected or defective \\
- Overtemperature on the module \\
- Disturbance on network
\end{tabular} \\
\hline Red & Error & Solid red & \begin{tabular}{l}
There is a permanent error on the module. \\
Examples: \\
- Permanent overcurrent \\
- Data in EPROM not valid
\end{tabular} \\
\hline
\end{tabular}

Table 2: RDY/ERR - LED status indicators

\subsection*{4.3.3 Status changes when starting up the operating system loader}

The following intervals are used for the LED status indicators:
Width of box: 50 ms
Repeats after: 3,000 ms


Table 3: Status changes when starting up the operating system loader

\subsection*{4.4 Order data for ACOPOSmotor Compact modules}


Table 4: 8D1bcd.efghijkhh-1 - Order data

\subsection*{4.5 Technical data}

\subsection*{4.5.1 General information}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{General information} & \\
\hline & \\
\hline Module type & ACOPOSmotor Compact \\
\hline \multicolumn{2}{|l|}{Current-carrying capacity of 9-pin hybrid connector} \\
\hline Power contacts & Max. 20 A at \(40^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Certifications} \\
\hline CE & Yes \\
\hline UL & \begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Support} \\
\hline \multicolumn{2}{|l|}{Motion system} \\
\hline mapp Motion ACP10 & V5.22.1 or higher V5.22.1 or higher \\
\hline \multicolumn{2}{|l|}{Thermal properties} \\
\hline \multicolumn{2}{|l|}{Cooling method per EN 60034-6 (IC code)} \\
\hline Standard & Self-cooling, free circulation surface cooling (IC4A0A0) \\
\hline \multicolumn{2}{|l|}{Operating conditions} \\
\hline Type of construction and mounting arrangement per EN 60034-7 (IM code) & Horizontal, motor shaft aligned horizontally (IM 3001) Vertical, motor standing on the machine (IM 3011) Vertical, motor hanging on the machine (IM 3031) \({ }^{1)}\) \\
\hline \begin{tabular}{l}
Reduction of the continuous current at temperatures above \(40^{\circ} \mathrm{C}\) : \\
8D1A22.el... (4500 rpm) \\
8D1A23.eD... (2000 rpm) \\
8D1A23.eH... (4100 rpm) \\
8D1A33.eB... (1200 rpm)
\end{tabular} & \[
\begin{aligned}
& \text { 0.156 A/K } \\
& 0.139 \mathrm{~A} / \mathrm{K} \\
& 0.273 \mathrm{~A} / \mathrm{K} \\
& 0.177 \mathrm{~A} / \mathrm{K}
\end{aligned}
\] \\
\hline Reduction of the nominal current and stall current at installation elevations over 1000 m above sea level & -10\% per 1,000 m \\
\hline \multicolumn{2}{|l|}{Installation elevation above sea level} \\
\hline Nominal & 0 to 500 m \\
\hline Maximum & \(4,000 \mathrm{~m}\) \\
\hline Degree of protection per EN \(60529{ }^{\text {2) }}\) & Without oil seal option: IP54 With oil seal option: IP65 \\
\hline Degree of protection per UL 50 & Type 1 \\
\hline \multicolumn{2}{|l|}{Ambient conditions} \\
\hline \multicolumn{2}{|l|}{Temperature} \\
\hline \multicolumn{2}{|l|}{Operation} \\
\hline Nominal & 5 to \(40^{\circ} \mathrm{C}\) \\
\hline Maximum & \(55^{\circ} \mathrm{C}{ }^{3)}\) \\
\hline Storage & -25 to \(55^{\circ} \mathrm{C}\) \\
\hline Transport & -25 to \(70^{\circ} \mathrm{C}\) \\
\hline Max. flange temperature & \(65^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Relative humidity} \\
\hline Operation & 5-85\%, non-condensing \\
\hline Storage & 5\%-95\%, non-condensing \\
\hline Transport & Max. \(95 \%\) at \(40^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Mechanical properties} \\
\hline Motor coating & Water-based paint, RAL 9005 flat \\
\hline Inverter coating & EPD coating, RAL 9005 flat \\
\hline Roller bearing, dynamic load rating and nominal service life & Based on DIN ISO 281 \\
\hline Shaft end per DIN 748 & Form E \\
\hline Oil seal per DIN 3760 & Form A \\
\hline Key and keyway per DIN 6885-1 & Keyway form N1, key form A \\
\hline Shaft balancing per ISO 1940/1, G6.3 & Shaft and fitment key convention \\
\hline Radial runout, concentricity and axial runout of mounting flange per DIN 42955 & Tolerance R \\
\hline
\end{tabular}

Table 5: Technical data
1) The IM3031 type of construction and mounting arrangement (vertical, motor hanging on the machine) must be avoided since production fluids or oils, e.g from a gearbox, can penetrate the motor and damage it. If this is not possible, it is mandatory to select the oil seal option and to ensure that no production fluids or oils get onto the seal.
2) The specified degree of protection is only met if all connectors on the module that are not being used are closed with suitable threaded caps or slot covers! Suitable threaded caps covers are available as optional accessories. The module is delivered with IP20 protection
3) Continuous operation at an ambient temperature of \(40^{\circ} \mathrm{C}\) to max. \(55^{\circ} \mathrm{C}\) is possible taking the reduction of continuous torque into account, but this results in premature aging of components.

\subsection*{4.5.2 Inverter module}
\begin{tabular}{|c|c|c|}
\hline Product ID & \[
\begin{aligned}
& \hline \text { 8D1xxx.A... } \\
& \text { 8D1xxx.B... }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8D1xxx.G... } \\
& \text { 8D1xxx.H... }
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{DC bus connection} \\
\hline \multicolumn{3}{|l|}{Voltage} \\
\hline Minimum & \multicolumn{2}{|c|}{\multirow[t]{3}{*}{24 VDC 54 VDC 58 VDC}} \\
\hline Nominal & & \\
\hline Maximum & & \\
\hline Continuous power consumption \({ }^{1)}\) & \multicolumn{2}{|l|}{\(\mathrm{P}_{\text {mech }} / 0.85+\mathrm{P}_{\text {ln }}(\) optional \()+\mathrm{P}_{24 \mathrm{Vdc}, \text { Out }}(\) optional \()+10 \mathrm{~W}\)} \\
\hline DC bus capacitance & \multicolumn{2}{|c|}{\(264 \mu \mathrm{~F}\)} \\
\hline Variant & \multicolumn{2}{|c|}{9-pin hybrid connector \({ }^{3)}\)} \\
\hline Max. line length & \multicolumn{2}{|c|}{\(15 \mathrm{~m}^{2}\)} \\
\hline \multicolumn{3}{|l|}{24 VDC Out 1} \\
\hline Output voltage \({ }^{\text {7) }}\) & - & 24 VDC \(\pm 3 \%\) \\
\hline Continuous current & - & Max. 250 mA \({ }^{\text {4) }}\) \\
\hline Fuse protection & - & Electronic \\
\hline Variant & \multicolumn{2}{|c|}{M8 connector} \\
\hline Max. line length & \multicolumn{2}{|c|}{30 m} \\
\hline \multicolumn{3}{|l|}{24 VDC Out 2} \\
\hline Output voltage \({ }^{7}\) & - & 24 VDC \(\pm 3 \%\) \\
\hline Continuous current & - & Max. \(250 \mathrm{~mA}{ }^{4)}\) \\
\hline Fuse protection & - & Electronic \\
\hline Variant & \multicolumn{2}{|c|}{M8 connector} \\
\hline Max. line length & \multicolumn{2}{|c|}{30 m} \\
\hline \multicolumn{3}{|l|}{Motor connection} \\
\hline Nominal switching frequency & \multicolumn{2}{|c|}{40 kHz} \\
\hline Max. output frequency & \multicolumn{2}{|c|}{\(598 \mathrm{~Hz}^{5}\)} \\
\hline \multicolumn{3}{|l|}{Motor holding brake} \\
\hline Max. switching frequency & \multicolumn{2}{|c|}{0.5 Hz} \\
\hline Response threshold for undervoltage monitoring & \multicolumn{2}{|c|}{24 VDC -10\%} \\
\hline \multicolumn{3}{|l|}{Fieldbus} \\
\hline Type & \multicolumn{2}{|c|}{POWERLINK V2 controlled node (CN)} \\
\hline Variant & \multicolumn{2}{|c|}{Internal 2-port hub, 2x 9-pin male hybrid connector \({ }^{3)}\)} \\
\hline Line length & \multicolumn{2}{|c|}{Max. 30 m between two stations} \\
\hline Transfer rate & \multicolumn{2}{|c|}{\(100 \mathrm{Mbit} / \mathrm{s}\)} \\
\hline \multicolumn{3}{|l|}{Enable inputs} \\
\hline Quantity & \multicolumn{2}{|c|}{1} \\
\hline Circuit & \multicolumn{2}{|c|}{Sink} \\
\hline \multicolumn{3}{|l|}{Electrical isolation} \\
\hline Input - Inverter module & \multicolumn{2}{|c|}{Yes} \\
\hline \multicolumn{3}{|l|}{Input voltage} \\
\hline Nominal & \multicolumn{2}{|c|}{24 VDC} \\
\hline Maximum & \multicolumn{2}{|c|}{30 VDC} \\
\hline Input current at nominal voltage & \multicolumn{2}{|c|}{Approx. 4 mA (typical/nominal)} \\
\hline \multicolumn{3}{|l|}{Switching threshold} \\
\hline Low & \multicolumn{2}{|c|}{\(<5 \mathrm{~V}\)} \\
\hline High & \multicolumn{2}{|c|}{\(>15 \mathrm{~V}\)} \\
\hline \multicolumn{3}{|l|}{Switching delay at nominal input voltage} \\
\hline Enable \(1 \rightarrow 0\), PWM off & \multicolumn{2}{|c|}{2 ms} \\
\hline Enable \(0 \rightarrow 1\), ready for PWM & \multicolumn{2}{|c|}{1 ms} \\
\hline Modulation compared to ground potential & \multicolumn{2}{|c|}{Max. \(\pm 38 \mathrm{~V}\)} \\
\hline OSSD signal connections & \multicolumn{2}{|c|}{\(0.05-0.5 \mathrm{~ms}^{6)}\)} \\
\hline Variant & \multicolumn{2}{|c|}{9-pin hybrid connector \({ }^{3)}\)} \\
\hline \multicolumn{3}{|l|}{Trigger inputs} \\
\hline Quantity & - & 2 \\
\hline Circuit & - & Sink \\
\hline \multicolumn{3}{|l|}{Electrical isolation} \\
\hline Input - Inverter module & - & No \\
\hline Input - Input & - & No \\
\hline \multicolumn{3}{|l|}{Input voltage} \\
\hline Nominal & - & 24 VDC \\
\hline Maximum & - & 30 VDC \\
\hline \multicolumn{3}{|l|}{Switching threshold} \\
\hline Low & - & \(<5 \mathrm{~V}\) \\
\hline High & - & \(>15 \mathrm{~V}\) \\
\hline Input current at nominal voltage & - & 4 mA \\
\hline \multicolumn{3}{|l|}{Switching delay} \\
\hline Rising edge & - & \(51 \mu \mathrm{~s}\) \\
\hline Falling edge & - & \(51 \mu \mathrm{~s}\) \\
\hline Modulation compared to ground potential & - & Max. \(\pm 38 \mathrm{~V}\) \\
\hline Variant & - & male connector, \\
\hline
\end{tabular}

Table 6: 8D1bcd.efghijkhh-1 - Technical data
\begin{tabular}{|c|c|c|c|}
\hline Product ID & \[
\begin{aligned}
& \text { 8D1xxx.A... } \\
& \text { 8D1xxx.B... }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { 8D1xxx.G... } \\
& \text { 8D1xxx.H... }
\end{aligned}
\] \\
\hline Max. line length & \multicolumn{3}{|c|}{30 m} \\
\hline \multicolumn{4}{|l|}{Support} \\
\hline \multicolumn{4}{|l|}{Motion system} \\
\hline mapp Motion ACP10 & & V5.22.1 or higher \({ }^{8)}\) V5.22.1 or higher \({ }^{8)}\) & \\
\hline
\end{tabular}

Table 6: 8D1bcd.efghijkhh-1 - Technical data
1) Valid under the following conditions: 54 VDC DC bus voltage, 40 kHz switching frequency, \(40^{\circ} \mathrm{C}\) ambient temperature, installation elevation \(<500 \mathrm{~m}\) above sea level, no derating due to cooling type.
\(\mathbf{P}_{\text {mech }} \ldots\) Mechanical power at the motor shaft: \(P_{\text {mech }}=\omega \cdot M=2 \pi \cdot n[r p m] / 60 \mathrm{~s} \cdot M\)
\(\mathbf{P}_{\text {In }} \ldots\) Connection power of the holding brake depending on the motor size, see "holding brake technical data" on page 21
\(\mathbf{P}_{\text {24VDC,Out }} \ldots\) Maximum power consumption of the 24 VDC output: 7 W
2) Also valid for the daisy-chain connection from module to module.
3) \(<500\) mating cycles
4) The continuous current of 24 VDC Out 1 and Out 2 together are not permitted to exceed 250 mA .
5) The module's electrical output frequency (SCTRL_SPEED_ACT * MOTOR_POLEPAIRS) is monitored to protect against dual use in accordance with Regulation (EC) 428/2009 | 3A225. If the electrical output frequency of the module exceeds the limit value of 598 Hz uninterrupted for more than 0.5 s , then the current movement is aborted and error 6060 is output ("Power unit: Limit speed exceeded").
6) If shorter or no OSSD low pulses are applied, STO must be tested manually at regular intervals. If this is not done, the safety characteristics cannot be maintained. (Diagnostic test interval: see "Chapter "Safety technology", ACOPOSmotor Compact, General information, table 1" on page 163)
7) Depends on the DC bus. Dropout voltage of 2 V must be taken into account. starting at a DC bus voltage <26 VDC.
8) Valid for ACOPOSmotor Compact 8D1 modules with 8ZDI... starting with revision yyy.

ACOPOSmotor Compact 8D1 modules with 8ZDI... up to revision xxx can be operated with V5.17 or higher. B\&R also recommends operation with V5.22.1 and higher for these modules.

\subsection*{4.5.3 Power dissipation}

Power from ACOPOSmotor Compact modules is dissipated via the motor flange and surface of the motor. The following factors are important to ensure optimal heat dissipation:
- Thermally open installation
- Free convection

The motor data specified for the nominal operating point apply to a motor installed in a thermally open system. The dimensions of the flange plates used for the measurement are shown in the table below.

Generally speaking, the larger the flange, the better the heat dissipation.
\begin{tabular}{|l|l|l|}
\hline Size & Dimensions [mm] & Material \\
\hline \(8 \mathrm{D} 1 \times 2,8 \mathrm{D} 1 \times 3\) & \(250 \times 250 \times 6\) & Aluminum \\
\hline
\end{tabular}

\subsection*{4.5.4 Formula symbols}
\begin{tabular}{|c|c|c|c|}
\hline Term & Symbol & Unit & Description \\
\hline Nominal speed & \(\mathrm{n}_{\mathrm{N}}\) & rpm & Nominal speed of the motor \\
\hline Nominal torque & \(\mathrm{M}_{\mathrm{N}}\) & Nm & The nominal torque is output by the motor with \(\mathrm{n}=\mathrm{n}_{\mathrm{N}}\) when the nominal current is absorbed. This is possible for any length of time if the ambient conditions are correct. \\
\hline Nominal power & \(\mathrm{P}_{\mathrm{N}}\) & kW & The nominal power is supplied by the motor when \(\mathrm{n}=\mathrm{n}_{\mathrm{N}}\). This is possible for any length of time if the ambient conditions are correct. \\
\hline Nominal current & \(\mathrm{I}_{\mathrm{N}}\) & A & The nominal current is the effective value of the phase current (current in the motor supply line) for the development of the nominal torque at nominal speed. This is possible for any length of time if the ambient conditions are correct. \\
\hline Stall torque & \(\mathrm{M}_{0}\) & Nm & The stall torque is output by the motor at speed \(\mathrm{n}_{0}\) and when the stall current is absorbed. This is possible for any length of time if the ambient conditions are correct. Speed \(n_{0}\) must be high enough for the temperature in all windings to be homogeneous and stationary (for B\&R motors, \(\left.\mathrm{n}_{0}=50 \mathrm{rpm}\right)\). The continuous torque is reduced at a real standstill. \\
\hline Stall current & \(\mathrm{I}_{0}\) & A & The stall current is the effective value of the phase current (current in the motor supply line) for the development of the standstill torque at speed \(n_{0}\). This can be output for any length of time if the ambient conditions are maintained. Speed \(\mathrm{n}_{0}\) must be high enough for the temperature in all windings to be homogeneous and stationary (for B\&R motors, \(\mathrm{n}_{0}=50 \mathrm{rpm}\) ). \\
\hline Peak torque & \(\mathrm{M}_{\text {max }}\) & Nm & The peak torque is briefly output by the motor when the peak current is absorbed. \\
\hline Peak current & \(I_{\text {max }}\) & A & The peak current is the effective value of the phase current (current in the motor supply line) for the development of the peak torque. This is only permitted to be used for a short time. The peak current is determined by the magnetic circuit. Exceeding this value for a short time can cause irreversible damage (demagnetization of the magnet material). \\
\hline Maximum speed & \(\mathrm{n}_{\text {max }}\) & rpm & Maximum motor speed. This is a mechanical condition (centrifugal force, bearing wear). \\
\hline Average speed & \(\mathrm{n}_{\text {average }}\) & rpm & Average speed for one cycle. \\
\hline Torque constant & \(\mathrm{K}_{\mathrm{T}}\) & Nm/A & The torque constant specifies the torque generated by the motor at 1 Arms phase current. This value applies at a motor temperature of \(20^{\circ} \mathrm{C}\). If the temperature increases, the torque constant is reduced (typically down to \(10 \%\) ). If the current increases, the torque constant is reduced (typically starting at twice the value of the nominal current). \\
\hline Voltage constant & \(\mathrm{K}_{\mathrm{E}}\) & V/1000 rpm & The voltage constant specifies the RMS value (phase-phase) of the reverse voltage induced by the motor at a speed of 1000 rpm (EMF). This value applies at a motor temperature of \(20^{\circ} \mathrm{C}\). When the temperature increases, the voltage constant is reduced (usually down to \(5 \%\) ). If the current increases, the voltage constant is reduced (typically starting at twice the value of the nominal current). \\
\hline Stator resistance & \(\mathrm{R}_{\text {2ph }}\) & \(\Omega\) (Ohm) & Resistance measured in ohms between two motor leads (phase-phase) at \(20^{\circ} \mathrm{C}\) winding temperature. On B\&R motors, the windings use a star connection. \\
\hline Stator inductance & \(\mathrm{L}_{\text {2ph }}\) & mH & Winding inductance measured between two motor leads. The stator inductance depends on the rotor position. \\
\hline Electrical time constant & \(\mathrm{t}_{\text {el }}\) & ms & Corresponds to \(1 / 5\) of the time needed for the stator current to stabilize with constant operating conditions. \\
\hline Thermal time constant & \(\mathrm{t}_{\text {herm }}\) & min & Corresponds to \(1 / 5\) of the time needed for the motor temperature to stabilize with constant operating conditions. \\
\hline Moment of inertia without brake & J & kgcm \({ }^{2}\) & Moment of inertia for a motor without a holding brake. \\
\hline Weight without brake & m & kg & Mass of motor without holding brake. \\
\hline Moment of inertia of brake & \(\mathrm{J}_{\mathrm{Br}}\) & \(\mathrm{kgcm}^{2}\) & Moment of inertia for the built-in holding brake. \\
\hline Mass of brake & \(\mathrm{m}_{\mathrm{Br}}\) & kg & Mass of built-in holding brake. \\
\hline Brake holding torque & \(\mathrm{M}_{\mathrm{Br}}\) & Nm & Minimum torque required to hold the rotor when the brake is activated. \\
\hline Installed load & \(\mathrm{P}_{\text {on }}\) & W & Installed load for the built-in holding brake. \\
\hline Installed current & \(\mathrm{I}_{\text {on }}\) & A & Installed current for the built-in holding brake. \\
\hline Connection voltage & \(\mathrm{U}_{\text {on }}\) & V & Operating voltage for the built-in holding brake. \\
\hline Activation delay & \(\mathrm{t}_{\text {on }}\) & ms & Delay time required for the holding torque of the brake to be established after the operating voltage has been removed from the holding brake. \\
\hline Release delay & \(\mathrm{t}_{\text {off }}\) & ms & Delay time required until the holding torque of the holding brake is reduced by \(90 \%\) (the brake is released) after operating voltage has been returned to the holding brake. \\
\hline
\end{tabular}

\subsection*{4.6 8D1Ax - Technical data}

\subsection*{4.6.1 Technical data}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1A22.elg000000-1 & 8D1A23.eDg000000-1 & 8D1A23.eHg000000-1 & 8D1A33.eBg000000-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & \multicolumn{4}{|l|}{} \\
\hline CE & \multicolumn{3}{|c|}{Yes} & In preparation \\
\hline UKCA & \multicolumn{3}{|c|}{Yes} & In preparation \\
\hline UL & \multicolumn{3}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} & In preparation \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}[\mathrm{rpm}]\) & 4500 & 2000 & 4100 & 1200 \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & 0.536 & 1.047 & 0.792 & 2.000 \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & 253 & 219 & 340 & 251 \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & 5.360 & 4.760 & 7.200 & 6.060 \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & 0.659 & 1.118 & 0.880 & 2.001 \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & 6.590 & 5.080 & 8.000 & 6.064 \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & 1.34 & 3.01 & 1.56 & 4.92 \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & 0.100 & 0.220 & 0.110 & 0.330 \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & 5.97 & 13.41 & 6.60 & 19.90 \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & 0.400 & 0.760 & 0.200 & 0.540 \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & 0.37000 & 0.93000 & 0.24000 & 0.80000 \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}\) [ms] & 0.930 & \multicolumn{2}{|c|}{1.200} & 1.555 \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & 35.0 & \multicolumn{2}{|c|}{38.0} & 34.0 \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & 0.2200 & \multicolumn{2}{|c|}{0.4100} & 1.6000 \\
\hline Weight without brake m [kg] & 1.26 & \multicolumn{2}{|c|}{1.62} & 2.71 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{3}{|c|}{2.20} & 3.20 \\
\hline Mass of brake [kg] & \multicolumn{3}{|c|}{0.28} & 0.57 \\
\hline Moment of inertia of brake \(J_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|c|}{0.1200} & 0.3800 \\
\hline
\end{tabular}

Table 7: 8D1A22.elg000000-1, 8D1A23.eDg000000-1, 8D1A23.eHg000000-1, 8D1A33.eBg000000-1 - Technical data

\subsection*{4.6.2 8D1A22.elghijkhh-1 - Speed-Torque characteristic curve}

With 54 VDC DC bus voltage


Figure 4: 8D1A22.elghijkhh-1 with 54 VDC DC bus voltage - Speed-torque characteristic curve

\subsection*{4.6.3 8D1A23.eDghijkhh-1 - Speed-Torque characteristic curve}

With 54 VDC DC bus voltage


Figure 5: 8D1A23.eDghijkhh-1 with 54 VDC DC bus voltage - Speed-torque characteristic curve

\subsection*{4.6.4 8D1A23.eHghijkhh-1 - Speed-Torque characteristic curve}

With 54 VDC DC bus voltage


Figure 6: 8D1A23.eHghijkhh-1 with 54 VDC DC bus voltage - Speed-torque characteristic curve

\subsection*{4.6.5 8D1A33.eBghijkhh-1 - Speed-Torque characteristic curve}

With 54 VDC DC bus voltage


\subsection*{4.6.6 Permissible shaft load}

The values in the diagram below are based on a mechanical service life of the bearings of 20000 operating hours.



Figure 7: Definition of shaft load

\footnotetext{
\(\mathrm{F}_{\mathrm{r}}\).......... Radial force
\(F_{\mathrm{a}}\)......... Axial force
X............ Distance between the motor flange and the point where radial force \(F_{r}\) is applied
}

\subsection*{4.7 8D1Bx - Technical data}

\subsection*{4.7.1 Overview}

8D1B22-4,500 rpm


\section*{8D1B23-2,000 rpm}
\begin{tabular}{|c|c|c|c|}
\hline Order number & Gearbox type Gearbox size & & Technical data \\
\hline 8D1B23.eDgBD & 8GM40, 060 & & see "8D1B23.eD - 2,000 rpm (8GM40, gearbox size 060) - Technical data" on page 50 \\
\hline 8D1B23.eDgCF & 8GM45, 067 & & see "8D1B23.eD - 2,000 rpm (8GM45, gearbox size 067) - Technical data" on page 52 \\
\hline 8D1B23.eDgDG & 8GM50, 070 & & see "8D1B23.eD - 2,000 rpm (8GM50, gearbox size 070) - Technical data" on page 54 \\
\hline 8D1B23.eDgED & 8GM55, 060 & & see "8D1B23.eD - 2,000 rpm (8GM50, gearbox size 070) - Technical data" on page 54 \\
\hline 8D1B23.eDgHE & 8GG40, 064 & & see "8D1B23.eD - 2,000 rpm (8GG40, gearbox size 064) - Technical data" on page 58 \\
\hline
\end{tabular}

\section*{8D1B23-4,100 rpm}
\begin{tabular}{|c|c|c|c|}
\hline Order number & Gearbox type Gearbox size & & Technical data \\
\hline 8D1B23.eHgBD & 8GM40, 060 & & see "8D1B23.eH-4,100 rpm (8GM40, gearbox size 060) - Technical data" on page 60 \\
\hline 8D1B23.eHgCF & 8GM45, 067 & & see "8D1B23.eH-4,100 rpm (8GM45, gearbox size 067) - Technical data" on page 62 \\
\hline 8D1B23.eHgDG & 8GM50, 070 & & see "8D1B23.eH-4,100 rpm (8GM50, gearbox size 070) - Technical data" on page 64 \\
\hline 8D1B23.eHgED & 8GM55, 060 & & see "8D1B23.eH-4,100 rpm (8GM50, gearbox size 070) - Technical data" on page 64 \\
\hline 8D1B23.eHgHE & 8GG40, 064 & & see "8D1B23.eH-4,100 rpm (8GG40, gearbox size 064) - Technical data" on page 68 \\
\hline
\end{tabular}

\section*{8D1B33-1,200 rpm}
\begin{tabular}{|c|c|c|c|}
\hline Order number & Gearbox type Gearbox size & & Technical data \\
\hline 8D1B33.eBgBH & 8GM40, 080 & & see "8D1B33.eB - 1,200 rpm (8GM40, gearbox size 080) - Technical data" on page 70 \\
\hline 8D1B33.eHgCl & 8GM45, 067 & & see "8D1B33.eB - 1,200 rpm (8GM45, gearbox size 067) - Technical data" on page 71 \\
\hline 8D1B33.eHgDJ & 8GM50, 070 & & see "8D1B33.eB - 1,200 rpm (8GM50, gearbox size 070) - Technical data" on page 73 \\
\hline 8D1B33.eBgEH & 8GM55, 060 & & see "8D1B33.eB-1,200 rpm (8GM55, gearbox size 060) - Technical data" on page 75 \\
\hline 8D1B33.eBgHJ & 8GG40, 064 & & see "8D1B33.eB - 1,200 rpm (8GG40, gearbox size 064) - Technical data" on page 77 \\
\hline
\end{tabular}

\subsection*{4.7.2 8D1B22.el - 4,500 rpm (8GM40, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \hline \text { 8D1B22. } \\
& \text { elgBDDk00-1 } \\
& \hline
\end{aligned}
\] & 8D1B22.elgBDFk00-1 & 8D1B22. elgBDHk00-1 & 8D1B22.elgBDJk00-1 & 8D1B22.elgBDLk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia J [ \(\left.\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|r|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 2.6 & 2.3 & 2.2 & 2.4 & 2.5 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|r|}{0.57} & 0.58 & 0.75 & 0.76 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.019 & 0.007 & 0.004 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgBDMk00-1 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgBDNk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgBDQk00-1 } \\
& \hline
\end{aligned}
\] & 8D1B22.elgBDTk00-1 & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgBDWk00-1 } \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{cURus E225616 Power conversion equipment} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \text { ph }}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}[\mathrm{ms}]\) & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|l|}{\begin{tabular}{l|l}
2.6 & 2.5
\end{tabular}} & 2.3 & 2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.77} & \multicolumn{2}{|r|}{0.78} & 0.96 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & \multicolumn{3}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.3 8D1B22.el - 4,500 rpm (8GM45, gearbox size 067) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & 8D1B22.elgCFDk00-1 & 8D1B22.elgCFFk00-1 & 8D1B22.elgCFHk00-1 & 8D1B22.elgCFJk00-1 & 8D1B22.elgCFLk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline Certifications & & & & & \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(M_{K \max }\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|r|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|r|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 32 & \multicolumn{2}{|r|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N50\% }}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|r|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.1 & 3.4 & 3.1 & 3.6 & 3.8 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|r|}{0.78} & 0.79 & 0.96 & 0.97 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.024 & 0.008 & 0.005 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgCFMk00-1 } \\
\hline
\end{gathered}
\] & 8D1B22.elgCFNk00-1 & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgCFQk00-1 }
\end{gathered}
\] & 8D1B22.elgCFTk00-1 & 8D1B22. elgCFWk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}[\mathrm{ms}]\) & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(M_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 3.9 & 3.8 & 3.9 & 3.3 & 2.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|r|}{0.98} & \multicolumn{2}{|r|}{0.99} & 1.16 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & 0.006 & \multicolumn{2}{|r|}{0.005} & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.4 8D1B22.el - 4,500 rpm (8GM50, gearbox size 070) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGDk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 8D1B22. } \\
\text { elgDGFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGHk00-1 } \\
\hline
\end{gathered}
\] & 8D1B22.elgDGJk00-1 & \[
\begin{gathered}
\hline \text { 8D1B22. } \\
\text { elgDGLk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia J [ \(\left.\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & & 1 & & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{33} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 26 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{53} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{66} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.7 & 4.4 & 3.9 & 4.9 & 5.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & 1.1 & 1.12 & 1.13 & 1.39 & 1.4 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.035 & 0.013 & 0.008 & 0.018 & 0.016 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGMk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGQk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgDGTk00-1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgDGWk00-1 }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 30 & 33 & 30 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 48 & 53 & 48 & 29 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 60 & 66 & 60 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.3 & 5.1 & 5.2 & 4.2 & 3.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}\) [dB(A)] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.4 & \multicolumn{2}{|c|}{1.41} & 1.42 & 1.57 \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.5 8D1B22.el - 4,500 rpm (8GM55, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgEDDk00-1 } \\
& \hline
\end{aligned}
\] & 8D1B22.elgEDFk00-1 & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgEDHk00-1 } \\
\hline
\end{gathered}
\] & 8D1B22.elgEDJk00-1 & 8D1B22.elgEDLk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{cURus E225616 Power conversion equipment} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.93 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(T_{\text {2stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3400 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|r|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.5 & 3.7 & 3.3 & 3.9 & 4.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.037 & 0.014 & 0.008 & 0.021 & 0.019 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgEDMk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgEDNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgEDQk00-1 }
\end{gathered}
\] & 8D1B22.elgEDTk00-1 & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgEDWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.2 & 4.1 & 4.2 & 3.5 & 2.9 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.018 & \multicolumn{2}{|c|}{0.007} & 0.006 & 0.004 \\
\hline
\end{tabular}

\subsection*{4.7.6 8D1B22.el - 4,500 rpm (8GG40, gearbox size 064) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgHEDk00-1 } \\
\hline
\end{gathered}
\] & 8D1B22.elgHEFk00-1 & 8D1B22. elgHEHk00-1 & 8D1B22.elgHEJk00-1 & 8D1B22.elgHELk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{cURus E225616 Power conversion equipment} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.8 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(T_{\text {2stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4000 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|r|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 14.2 & 8.2 & 6.4 & 10.2 & 11.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & 1 & 1.02 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.049 & 0.018 & 0.011 & 0.019 & 0.017 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgHEMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgHENk00-1 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8D1B22. } \\
& \text { elgHEQk00-1 }
\end{aligned}
\] & 8D1B22.elgHETk00-1 & \[
\begin{gathered}
\text { 8D1B22. } \\
\text { elgHEWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4500} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.536} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{253} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{5.360} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.659} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.590} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.34} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.100} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{5.97} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.400} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.37000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}[\mathrm{ms}]\) & \multicolumn{5}{|c|}{0.930} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{35.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.2200} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.26} \\
\hline Max. permissible output torque \(M_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 12 & 11.4 & 11.8 & 7.5 & 5.1 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.02 & 1.03 & 1.04 & 1.03 & 1.09 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.7 8D1B23.eD - 2,000 rpm (8GM40, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eDgBDDk00-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDFk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDLk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [ \(\left.\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & & 1 & & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 2.6 & 2.3 & 2.2 & 2.4 & 2.5 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.57} & 0.58 & 0.75 & 0.76 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.019 & 0.007 & 0.004 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDQk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDTk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgBDWk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {trerm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 2.6 & \multicolumn{2}{|c|}{2.5} & 2.3 & 2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}\) [dB(A)] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.77} & \multicolumn{2}{|c|}{0.78} & 0.96 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & \multicolumn{3}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

\section*{Technical data}

\subsection*{4.7.8 8D1B23.eD - 2,000 rpm (8GM45, gearbox size 067) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFDk00-1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eDgCFFk00-1 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFHk00-1 } \\
\hline
\end{gathered}
\] & 8D1B23. eDgCFJk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFLk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{cURus E225616 Power conversion equipment} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [ \(\left.\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.1 & 3.4 & 3.1 & 3.6 & 3.8 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & 0.96 & 0.97 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.024 & 0.008 & 0.005 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFMk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFNk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFQk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgCFTk00-1 }
\end{gathered}
\] & 8D1B23. eDgCFWk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{\text {KN }}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at 100\% \(\mathrm{T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 3.9 & 3.8 & 3.9 & 3.3 & 2.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.98} & \multicolumn{2}{|c|}{0.99} & 1.16 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & 0.006 & \multicolumn{2}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.9 8D1B23.eD - 2,000 rpm (8GM50, gearbox size 070) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGDk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGJk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGLk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{33} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 26 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{53} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{66} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.7 & 4.4 & 3.9 & 4.9 & 5.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & 1.1 & 1.12 & 1.13 & 1.39 & 1.4 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.035 & 0.013 & 0.008 & 0.018 & 0.016 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & 8D1B23. eDgDGMk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGNk00-1 }
\end{gathered}
\] & 8D1B23. eDgDGQk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGTk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgDGWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {trerm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 30 & 33 & 30 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 48 & 53 & 48 & 29 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 60 & 66 & 60 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.3 & 5.1 & 5.2 & 4.2 & 3.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}\) [dB(A)] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.4 & \multicolumn{2}{|c|}{1.41} & 1.42 & 1.57 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.10 8D1B23.eD - 2,000 rpm (8GM55, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eDgEDDk00-1 }
\end{aligned}
\] & 8D1B23. eDgEDFk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDLk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.93 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & & 1 & & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3400 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.5 & 3.7 & 3.3 & 3.9 & 4.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.037 & 0.014 & 0.008 & 0.021 & 0.019 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDQk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDTk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgEDWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\max }[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \text { ph }}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}[\mathrm{ms}]\) & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{\text {KN }}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}\) [ Nm ] & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [Nm] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.2 & 4.1 & 4.2 & 3.5 & 2.9 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.018 & \multicolumn{2}{|c|}{0.007} & 0.006 & 0.004 \\
\hline
\end{tabular}

\subsection*{4.7.11 8D1B23.eD - 2,000 rpm (8GG40, gearbox size 064) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEDk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEFk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEJk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHELk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.8 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4000 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 14.2 & 8.2 & 6.4 & 10.2 & 11.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & 1 & 1.02 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.049 & 0.018 & 0.011 & 0.019 & 0.017 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEMk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHENk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEQk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHETk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eDgHEWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{2000} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.047} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{219} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{4.760} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.118} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{5.080} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.01} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{5}{|c|}{0.220} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{13.41} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.760} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.93000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 12 & 11.4 & 11.8 & 7.5 & 5.1 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.02 & 1.03 & 1.04 & 1.03 & 1.09 \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.12 8D1B23.eH - 4,100 rpm (8GM40, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDDk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDLk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 2.6 & 2.3 & 2.2 & 2.4 & 2.5 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.57} & 0.58 & 0.75 & 0.76 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.019 & 0.007 & 0.004 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDNk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgBDQk00-1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eHgBDTk00-1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eHgBDWk00-1 }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(J_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N50\% }}\) [rpm]
at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 2.6 & \multicolumn{2}{|c|}{2.5} & 2.3 & 2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{500} \\
\hline Operating noise \(L_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.77} & \multicolumn{2}{|c|}{0.78} & 0.96 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & \multicolumn{3}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.13 8D1B23.eH - 4,100 rpm (8GM45, gearbox size 067) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgCFDk00-1 } \\
\hline
\end{gathered}
\] & 8D1B23. eHgCFFk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgCFHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgCFJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgCFLk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.1 & 3.4 & 3.1 & 3.6 & 3.8 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & 0.96 & 0.97 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.024 & 0.008 & 0.005 & 0.016 & 0.015 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & 8D1B23. eHgCFMk00-1 & 8D1B23. eHgCFNk00-1 & \begin{tabular}{l}
8D1B23. \\
eHgCFQk00-1
\end{tabular} & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgCFTk00-1 }
\end{gathered}
\] & 8D1B23. eHgCFWk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \text { ph }}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{\text {Kmax }}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline \begin{tabular}{l} 
Max. average drive speed \(\mathrm{n}_{1 \text { N50\% }}\) [rpm] \\
at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 \\
\hline
\end{tabular} & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 3.9 & 3.8 & 3.9 & 3.3 & 2.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.98} & \multicolumn{2}{|c|}{0.99} & 1.16 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.014 & 0.006 & \multicolumn{2}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.14 8D1B23.eH - 4,100 rpm (8GM50, gearbox size 070) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGDk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGFk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGLk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.69 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{33} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 26 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{53} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{66} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.7 & 4.4 & 3.9 & 4.9 & 5.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & 1.1 & 1.12 & 1.13 & 1.39 & 1.4 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.035 & 0.013 & 0.008 & 0.018 & 0.016 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGQk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGTk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgDGWk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{\text {2ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \text { ph }}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {trerm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 30 & 33 & 30 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 48 & 53 & 48 & 29 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 60 & 66 & 60 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.3 & 5.1 & 5.2 & 4.2 & 3.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}\) [dB(A)] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.4 & \multicolumn{2}{|c|}{1.41} & 1.42 & 1.57 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.15 8D1B23.eH - 4,100 rpm (8GM55, gearbox size 060) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B23. } \\
& \text { eHgEDDk00-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDFk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDJk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDLk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.93 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & & 1 & & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3400 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.5 & 3.7 & 3.3 & 3.9 & 4.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.037 & 0.014 & 0.008 & 0.021 & 0.019 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDMk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDNk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDQk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDTk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgEDWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 4.2 & 4.1 & 4.2 & 3.5 & 2.9 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.018 & \multicolumn{2}{|c|}{0.007} & 0.006 & 0.004 \\
\hline
\end{tabular}

\subsection*{4.7.16 8D1B23.eH - 4,100 rpm (8GG40, gearbox size 064) - Technical data}

Gear ratio 005 to 020
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHEDk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHEFk00-1 }
\end{gathered}
\] & 8D1B23. eHgHEHk00-1 & 8D1B23. eHgHEJk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHELk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 1.8 & 2.7 & 3.37 & 5.06 & 6.74 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 6.7 & 10.72 & 13.4 & 20.1 & 26.8 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & & 1 & & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 15 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{44} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & \multicolumn{2}{|c|}{70} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{88} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4000 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 14.2 & 8.2 & 6.4 & 10.2 & 11.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & 1 & 1.02 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.049 & 0.018 & 0.011 & 0.019 & 0.017 \\
\hline
\end{tabular}

Gear ratio 025 to 100
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & 8D1B23. eHgHEMk00-1 & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHENk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHEQk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHETk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B23. } \\
\text { eHgHEWk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{4100} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.792} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{340} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{7.200} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{0.880} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{8.000} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{1.56} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.110} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{6.60} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.200} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.24000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.200} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{38.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{0.4100} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{1.62} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 8.43 & 10.78 & 13.48 & 21.57 & 33.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 33.5 & 42.88 & 53.6 & 85.76 & 134 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.28} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.1200} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 40 & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64 & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 80 & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 12 & 11.4 & 11.8 & 7.5 & 5.1 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} \\
\hline Weight m [kg] & 1.02 & 1.03 & 1.04 & 1.03 & 1.09 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.015 & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

\subsection*{4.7.17 8D1B33.eB - 1,200 rpm (8GM40, gearbox size 080) - Technical data}

Gear ratio 005-025
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgBHDk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgBHFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgBHHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgBHLk00-1 }
\end{gathered}
\] & 8D1B33. eBgBHMk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{4.92} \\
\hline Maximum current \(I_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{5}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{34.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{5}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\)
\([\mathrm{Nm}]\) & 7.75 & 12.4 & 15.5 & 31 & 39 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 24.6 & 39.4 & 49.2 & 98.4 & 123 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.3800} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & \multicolumn{2}{|c|}{50} & 38 & 120 & 110 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & \multicolumn{2}{|c|}{80} & 61 & 192 & 176 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & \multicolumn{2}{|c|}{100} & 76 & 240 & 220 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{7} & \multicolumn{2}{|c|}{9} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 9.9 & 8.4 & 8.3 & 9.8 & 9.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{1.32} & 1.35 & 1.8 & 1.82 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.085 & 0.027 & 0.017 & 0.068 & 0.066 \\
\hline
\end{tabular}

Table 38: 8D1B33.eBgBHDk00-1, 8D1B33.eBgBHFk00-1, 8D1B33.eBgB-HHk00-1, 8D1B33.eBgBHLk00-1, 8D1B33.eBgBHMk00-1 - Technical data

Gear ratio 032-100
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1B33.eBgBHNk00-1 & 8D1B33.eBgBHQk00-1 & 8D1B33.eBgBHTk00-1 & 8D1B33.eBgBHWk00-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & & & & \\
\hline CE & \multicolumn{4}{|c|}{Yes} \\
\hline UKCA & \multicolumn{4}{|c|}{Yes} \\
\hline UL & \multicolumn{4}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{4}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\max }[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{4}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{4}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{4}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{4}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}[\mathrm{ms}]\) & \multicolumn{4}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{4}{|c|}{34.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{4}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\text {KN }}\) [ Nm ] & 49.6 & 62 & 99.15 & 154.92 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\text {Kmax }}\) [ Nm ] & 157.4 & 196.8 & 314.9 & 492 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{4}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.3800} \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120 & 110 & 50 & 38 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 192 & 176 & 80 & 61 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 240 & 220 & 100 & 76 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{9} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} /\) arcmin] & 9.7 & 9.6 & 7.9 & 7.2 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\mathrm{PA}}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{60} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Weight m [kg] & 1.83 & 1.85 & 1.84 & 2.27 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|c|}{0.023} & 0.013 \\
\hline
\end{tabular}

Table 39: 8D1B33.eBgBHNk00-1, 8D1B33.eBgBHQk00-1, 8D1B33.eBgBHTk00-1, 8D1B33.eBgBHWk00-1 - Technical data

\subsection*{4.7.18 8D1B33.eB - 1,200 rpm (8GM45, gearbox size 067) - Technical data}

Gear ratio 005-025
\begin{tabular}{|l|c|c|c|c|c|}
\hline Order number & \begin{tabular}{c} 
8D1B33. \\
eBgCIDk00-1
\end{tabular} & 8D1B33.eBgCIFk00-1 & \begin{tabular}{c} 
8D1B33. \\
eBgCIHk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33.eBgCILk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33. \\
eBgCIMk00-1
\end{tabular} \\
\hline General information & & & \\
\hline Certifications & & Yes \\
\hline CE & & Yes \\
\hline UKCA & & \begin{tabular}{c} 
cURus E225616 \\
UL
\end{tabular} & \\
\hline
\end{tabular}

Table 40: 8D1B33.eBgCIDk00-1, 8D1B33.eBgCIFk00-1, 8D1B33.e-BgCIHk00-1, 8D1B33.eBgCILk00-1, 8D1B33.eBgCIMk00-1 - Technical data
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8D1B33. } \\
& \text { eBgCIDk00-1 } \\
& \hline
\end{aligned}
\] & 8D1B33.eBgCIFk00-1 & 8D1B33. eBgCIHk00-1 & 8D1B33.eBgCILk00-1 & 8D1B33. eBgCIMk00-1 \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{34.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{2.71} \\
\hline Max. permissible output torque \(M_{\text {KN }}\) [ Nm ] & 7.75 & 12.39 & 15.5 & 31 & 38.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 24.6 & 39.4 & 49.2 & 98.4 & 123 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.3800} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & 44 & 40 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & 70 & 64 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & 88 & 80 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at 100\% \(\mathrm{T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.1 & 3.4 & 3.1 & 3.8 & 3.9 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|r|}{0.78} & 0.79 & 0.97 & 0.98 \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.024 & 0.008 & 0.005 & 0.015 & 0.014 \\
\hline
\end{tabular}

Table 40: 8D1B33.eBgCIDk00-1, 8D1B33.eBgCIFk00-1, 8D1B33.e-
BgClHk00-1, 8D1B33.eBgCILk00-1, 8D1B33.eBgCIMk00-1 - Technical data

Gear ratio 032-100
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1B33.eBgCINk00-1 & 8D1B33.eBgClQk00-1 & 8D1B33.eBgCITk00-1 & 8D1B33.eBgClWk00-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & & & & \\
\hline CE & \multicolumn{4}{|c|}{Yes} \\
\hline UKCA & \multicolumn{4}{|c|}{Yes} \\
\hline UL & \multicolumn{4}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{4}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{4}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & \multicolumn{4}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{4}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{4}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{4}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{4}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{4}{|c|}{34.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{4}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{4}{|c|}{2.71} \\
\hline Max. permissible output torque \(M_{K N}\) [ Nm ] & 49.6 & 62 & 99.15 & 154.92 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 157.44 & 196.8 & 314.9 & 492 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{4}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{4}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\text {Br }}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.3800} \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N50\% }}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 3.8 & 3.9 & 3.3 & 2.7 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Weight m [kg] & 0.98 & \multicolumn{2}{|c|}{0.99} & 1.16 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.006 & \multicolumn{2}{|c|}{0.005} & 0.003 \\
\hline
\end{tabular}

Table 41: 8D1B33.eBgCINk00-1, 8D1B33.eBgCIQk00-1, 8D1B33.eBgCITk00-1, 8D1B33.eBgCIWk00-1 - Technical data

\subsection*{4.7.19 8D1B33.eB-1,200 rpm (8GM50, gearbox size 070) - Technical data}

Gear ratio 005-025
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJDk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJLk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJMk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & \multicolumn{5}{|c|}{Yes} \\
\hline UKCA & \multicolumn{5}{|c|}{Yes} \\
\hline UL & \multicolumn{5}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline
\end{tabular}

Table 42: 8D1B33.eBgDJDk00-1, 8D1B33.eBgDJFk00-1, 8D1B33.e-BgDJHk00-1, 8D1B33.eBgDJLk00-1, 8D1B33.eBgDJMk00-1 - Technical data
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJDk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJFk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJHk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJLk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgDJMk00-1 }
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{34.0} \\
\hline Moment of inertia J [kgcm \({ }^{2}\) ] & \multicolumn{5}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 7.75 & 12.4 & 15.5 & 31 & 38.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 24.6 & 39.4 & 49.2 & 98.4 & 123 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.3800} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & 33 & 30 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 26 & \multicolumn{2}{|c|}{24} & 53 & 48 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & 66 & 60 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.7 & 4.4 & 3.9 & 5.2 & 5.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & 1.1 & 1.12 & 1.13 & \multicolumn{2}{|c|}{1.4} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.035 & 0.013 & 0.008 & 0.016 & 0.015 \\
\hline
\end{tabular}

Table 42: 8D1B33.eBgDJDk00-1, 8D1B33.eBgDJFk00-1, 8D1B33.e-BgDJHk00-1, 8D1B33.eBgDJLk00-1, 8D1B33.eBgDJMk00-1 - Technical data

Gear ratio 032-100
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1B33.eBgDJNk00-1 & 8D1B33.eBgDJQk00-1 & 8D1B33.eBgDJTk00-1 & 8D1B33.eBgDJWk00-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & & & & \\
\hline CE & \multicolumn{4}{|c|}{Yes} \\
\hline UKCA & \multicolumn{4}{|c|}{Yes} \\
\hline UL & \multicolumn{4}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{4}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{4}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}\) [ Nm ] & \multicolumn{4}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{4}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{4}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{4}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{4}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{4}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{4}{|c|}{34.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{4}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 94.6 & 62 & 99.15 & 154.92 \\
\hline Max. permissible peak torque \(M_{k \max }\) [ Nm ] & 157.4 & 196.8 & 314.9 & 492 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{4}{|c|}{0.57} \\
\hline Moment of inertia of brake \(J_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.3800} \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 33 & 30 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 53 & 48 & 29 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 60 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N50\% }}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 5.1 & 5.2 & 4.2 & 3.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{1.41} & 1.42 & 1.57 \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.006} & 0.005 & 0.003 \\
\hline
\end{tabular}

Table 43: 8D1B33.eBgDJNk00-1, 8D1B33.eBgDJQk00-1, 8D1B33.eBgDJTk00-1, 8D1B33.eBgDJWk00-1 - Technical data

\subsection*{4.7.20 8D1B33.eB-1,200 rpm (8GM55, gearbox size 060) - Technical data}

Gear ratio 005-025
\begin{tabular}{|l|c|c|c|c|c|}
\hline Order number & \begin{tabular}{c} 
8D1B33. \\
eBgEHDk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33. \\
eBgEHFk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33. \\
eBgEHHk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33. \\
eBgEHLk00-1
\end{tabular} & \begin{tabular}{c} 
8D1B33. \\
eBgEHMk00-1
\end{tabular} \\
\hline General information & & & \\
\hline Certifications & & Yes \\
\hline CE & & Yes \\
\hline UKCA & & \begin{tabular}{c} 
cURus E225616
\end{tabular} \\
UL & Power conversion equipment
\end{tabular}

Table 44: 8D1B33.eBgEHDk00-1, 8D1B33.eBgEHFk00-1, 8D1B33.eBgE-HHk00-1, 8D1B33.eBgEHLk00-1, 8D1B33.eBgEHMk00-1 - Technical data
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgEHDk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgEHFk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgEHHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgEHLk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgEHMk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{34.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 7.75 & 12.39 & 15.5 & 31 & 38.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 24.6 & 39.4 & 49.2 & 98.4 & 123 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.3800} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & 44 & 40 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 25 & \multicolumn{2}{|c|}{24} & 70 & 64 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 32 & \multicolumn{2}{|c|}{30} & 88 & 80 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3400 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.5 & 3.7 & 3.3 & & \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.037 & 0.014 & 0.008 & 0.019 & 0.018 \\
\hline
\end{tabular}

Table 44: 8D1B33.eBgEHDk00-1, 8D1B33.eBgEHFk00-1, 8D1B33.eBgE-HHk00-1, 8D1B33.eBgEHLk00-1, 8D1B33.eBgEHMk00-1 - Technical data

Gear ratio 032-100
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1B33.eBgEHNk00-1 & 8D1B33.eBgEHQk00-1 & 8D1B33.eBgEHTk00-1 & 8D1B33.eBgEHWk00-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & & & & \\
\hline CE & \multicolumn{4}{|c|}{Yes} \\
\hline UKCA & \multicolumn{4}{|c|}{Yes} \\
\hline UL & \multicolumn{4}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{4}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{4}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{4}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{4}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \text { ph }}[\Omega]\) & \multicolumn{4}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{4}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\text {el }}\) [ms] & \multicolumn{4}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{4}{|c|}{34.0} \\
\hline Moment of inertia J [kgcm²] & \multicolumn{4}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{4}{|c|}{2.71} \\
\hline Max. permissible output torque \(M_{\text {KN }}\) [ Nm ] & 94.6 & 62 & 99.15 & 154.92 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\text {Kmax }}\) [ Nm ] & 157.4 & 196.8 & 314.9 & 492 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{4}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.3800} \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 4.1 & 4.2 & 3.5 & 2.9 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{0} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.007} & 0.006 & 0.004 \\
\hline
\end{tabular}

Table 45: 8D1B33.eBgEHNk00-1, 8D1B33.eBgEHQk00-1, 8D1B33.eBgEHTk00-1, 8D1B33.eBgEHWk00-1 - Technical data

\subsection*{4.7.21 8D1B33.eB-1,200 rpm (8GG40, gearbox size 064) - Technical data}

Gear ratio 005-025
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & 8D1B33. eBgHJDk00-1 & 8D1B33. eBgHJFk00-1 & 8D1B33. eBgHJHk00-1 & 8D1B33. eBgHJLk00-1 & 8D1B33. eBgHJMk00-1 \\
\hline \multicolumn{6}{|l|}{General information} \\
\hline \multicolumn{6}{|l|}{Certifications} \\
\hline CE & & & Yes & & \\
\hline UKCA & & & Yes & & \\
\hline UL & & & cURus E22561 conversion equ & & \\
\hline
\end{tabular}

Table 46: 8D1B33.eBgHJDk00-1, 8D1B33.eBgHJFk00-1, 8D1B33.e-BgHJHk00-1, 8D1B33.eBgHJLk00-1, 8D1B33.eBgHJMk00-1 - Technical data
\begin{tabular}{|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgHJDk00-1 } \\
\hline
\end{gathered}
\] & 8D1B33. eBgHJFk00-1 & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgHJHk00-1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgHJLk00-1 } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1B33. } \\
\text { eBgHJMk00-1 } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{5}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{5}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{5}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{5}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{5}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{Imax}_{\text {max }}[\mathrm{A}]\) & \multicolumn{5}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{5}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\mathrm{Nm} / \mathrm{A}\) ] & \multicolumn{5}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{5}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{5}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{5}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{5}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{5}{|c|}{34.0} \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{5}{|c|}{2.71} \\
\hline Max. permissible output torque \(M_{\text {KN }}\) [ Nm ] & 7.75 & 12.39 & 15.5 & 31 & 38.7 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{Kmax}}\) [ Nm ] & 24.6 & 39.4 & 49.2 & 98.4 & 123 \\
\hline \multicolumn{6}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}\) [ Nm ] & \multicolumn{5}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{5}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{5}{|c|}{0.3800} \\
\hline \multicolumn{6}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 5 & 8 & 10 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 16 & \multicolumn{2}{|c|}{15} & 44 & 40 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 25 & \multicolumn{2}{|c|}{24} & 70 & 64 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 32 & \multicolumn{2}{|c|}{30} & 88 & 80 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{2}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 14.2 & 8.2 & 6.4 & 11.7 & 12 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{5}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{5}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{5}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{5}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{0.78} & 0.79 & \multicolumn{2}{|c|}{1.02} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.049 & 0.018 & 0.011 & 0.017 & 0.015 \\
\hline
\end{tabular}

Table 46: 8D1B33.eBgHJDk00-1, 8D1B33.eBgHJFk00-1, 8D1B33.e-BgHJHk00-1, 8D1B33.eBgHJLk00-1, 8D1B33.eBgHJMk00-1 - Technical data

Gear ratio 032-100
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1B33.eBgHJNk00-1 & 8D1B33.eBgHJQk00-1 & 8D1B33.eBgHJTk00-1 & 8D1B33.eBgHJWk00-1 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline Certifications & & & & \\
\hline CE & \multicolumn{4}{|c|}{Yes} \\
\hline UKCA & \multicolumn{4}{|c|}{Yes} \\
\hline UL & \multicolumn{4}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & \multicolumn{4}{|c|}{1200} \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{2.000} \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & \multicolumn{4}{|c|}{251} \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Stall torque \(\mathrm{M}_{0}\) [ Nm ] & \multicolumn{4}{|c|}{2.000} \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & \multicolumn{4}{|c|}{6.060} \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{4.92} \\
\hline Maximum current \(\mathrm{I}_{\text {max }}[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.70} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}\) [ \(\left.\mathrm{Nm} / \mathrm{A}\right]\) & \multicolumn{4}{|c|}{0.330} \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & \multicolumn{4}{|c|}{19.00} \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & \multicolumn{4}{|c|}{0.540} \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & \multicolumn{4}{|c|}{0.80000} \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}\) [ms] & \multicolumn{4}{|c|}{1.555} \\
\hline Thermal time constant \(\mathrm{t}_{\text {therm }}\) [min] & \multicolumn{4}{|c|}{34.0} \\
\hline Moment of inertia J [kgcm \(\left.{ }^{2}\right]\) & \multicolumn{4}{|c|}{1.6000} \\
\hline Weight without brake m [kg] & \multicolumn{4}{|c|}{2.71} \\
\hline Max. permissible output torque \(\mathrm{M}_{\mathrm{KN}}\) [ Nm ] & 49.6 & 62 & 99.15 & 154.92 \\
\hline Max. permissible peak torque \(\mathrm{M}_{\mathrm{kmax}}\) [ Nm ] & 157.44 & 196.8 & 314.9 & 492 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{3.20} \\
\hline Mass of brake [kg] & \multicolumn{4}{|c|}{0.57} \\
\hline Moment of inertia of brake \(\mathrm{J}_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.3800} \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 44 & 40 & 18 & 15 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 70 & 64 & 30 & 24 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\)
\([\mathrm{Nm}]\) & 88 & 80 & 36 & 30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{12} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 11.4 & 11.8 & 7.5 & 5.1 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Weight m [kg] & 1.03 & 1.04 & 1.03 & 1.09 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|r|}{0.006 0.005} & 0.003 \\
\hline
\end{tabular}

Table 47: 8D1B33.eBgHJNk00-1, 8D1B33.eBgHJQk00-1, 8D1B33.eBgHJTk00-1, 8D1B33.eBgHJWk00-1 - Technical data

\subsection*{4.8 8D1Cx - Technical data}

ACOPOSmotor Compact 8D1C modules consist of an 8D1A module with flange-mounted gearbox. Due to the variety of combinations, the technical data for the motor and gearbox is listed separately.

\section*{Motor data (without gearbox)}

\begin{tabular}{|c|c|c|c|c|}
\hline Product ID & 8D1C22 & 8D1C23 & 8D1C23 & 8D1C33 \\
\hline \multicolumn{5}{|l|}{General information} \\
\hline \multicolumn{5}{|l|}{Certifications} \\
\hline CE & \multicolumn{3}{|c|}{Yes} & In preparation \\
\hline UKCA & \multicolumn{3}{|c|}{Yes} & In preparation \\
\hline UL & \multicolumn{3}{|c|}{\begin{tabular}{l}
cURus E225616 \\
Power conversion equipment
\end{tabular}} & In preparation \\
\hline \multicolumn{5}{|l|}{Motor} \\
\hline Nominal speed \(\mathrm{n}_{\mathrm{N}}\) [rpm] & 4500 & 2000 & 4100 & 1200 \\
\hline Number of pole pairs & \multicolumn{4}{|c|}{5} \\
\hline Nominal torque \(\mathrm{M}_{\mathrm{n}}[\mathrm{Nm}]\) & 0.536 & 1.047 & 0.792 & 2 \\
\hline Nominal power \(\mathrm{P}_{\mathrm{N}}[\mathrm{W}]\) & 253 & 219 & 340 & 251 \\
\hline Nominal current \(\mathrm{I}_{\mathrm{N}}[\mathrm{A}]\) & 5.36 & 4.76 & 7.2 & 6.06 \\
\hline Stall torque \(\mathrm{M}_{0}[\mathrm{Nm}]\) & 0.659 & 1.118 & 0.88 & 2 \\
\hline Stall current \(\mathrm{I}_{0}[\mathrm{~A}]\) & 6.59 & 5.08 & 8 & 6.06 \\
\hline Maximum torque \(\mathrm{M}_{\text {max }}[\mathrm{Nm}]\) & 1.34 & 3.01 & 1.56 & 4.92 \\
\hline Maximum current \(\mathrm{I}_{\max }[\mathrm{A}]\) & \multicolumn{4}{|c|}{15.7} \\
\hline Maximum speed \(\mathrm{n}_{\text {max }}\) [rpm] & \multicolumn{4}{|c|}{6600} \\
\hline Torque constant \(\mathrm{K}_{\mathrm{T}}[\mathrm{Nm} / \mathrm{A}]\) & 0.1 & 0.22 & 0.11 & 0.33 \\
\hline Voltage constant \(\mathrm{K}_{\mathrm{E}}\) [V/1000 rpm] & 5.97 & 13.41 & 6.6 & 19 \\
\hline Stator resistance \(\mathrm{R}_{2 \mathrm{ph}}[\Omega]\) & 0.4 & 0.76 & 0.2 & 0.54 \\
\hline Stator inductance \(\mathrm{L}_{2 \mathrm{ph}}[\mathrm{mH}]\) & 0.37 & 0.93 & 0.24 & 0.8 \\
\hline Electrical time constant \(\mathrm{t}_{\mathrm{el}}[\mathrm{ms}]\) & 0.93 & \multicolumn{2}{|c|}{1.2} & 1.555 \\
\hline Thermal time constant \(\mathrm{t}_{\text {trerm }}\) [min] & 35 & \multicolumn{2}{|c|}{38} & 34 \\
\hline Moment of inertia \(\mathrm{J}\left[\mathrm{kgcm}^{2}\right]\) & 0.22 & \multicolumn{2}{|c|}{0.41} & 1.6 \\
\hline Weight without brake m [kg] & 1.26 & \multicolumn{2}{|c|}{1.62} & 2.71 \\
\hline \multicolumn{5}{|l|}{Holding brake} \\
\hline Holding torque of brake \(\mathrm{M}_{\mathrm{Br}}[\mathrm{Nm}]\) & \multicolumn{3}{|c|}{2.2} & 3.2 \\
\hline Mass of brake [kg] & \multicolumn{3}{|c|}{0.28} & 0.57 \\
\hline Moment of inertia of brake \(J_{\mathrm{Br}}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|c|}{0.12} & 0.38 \\
\hline
\end{tabular}

Table 48: 8D1A22.elg000000-1, 8D1A23.eDg000000-1, 8D1A23.eHg000000-1, 8D1A33.eBg000000-1 - Technical data

Flange-mounted 8GP - Gearbox data

\begin{tabular}{|l|l|}
\hline Gearbox & Technical data \\
\hline 8GP40, gearbox size 060 & see "8GP40, gearbox size 060 - Technical data" on page 82 \\
\hline 8GP40, gearbox size 080 & see "8GP40, gearbox size 080 - Technical data" on page 83 \\
\hline 8GP45, gearbox size 067 & see "8GP45, gearbox size 067 - Technical data" on page 86 \\
\hline 8GP45, gearbox size 089 & see "8GP45, gearbox size 089 - Technical data" on page 87 \\
\hline 8GP50, gearbox size 070 & see "8GP50, gearbox size 070 - Technical data" on page 90 \\
\hline 8GP50, gearbox size 090 & see "8GP50, gearbox size 090 - Technical data" on page 91 \\
\hline 8GP55, gearbox size 060 & see "8GP55, gearbox size 060 - Technical data" on page 94 \\
\hline 8GP55, gearbox size 080 & see "8GP55, gearbox size 080 - Technical data" on page 95 \\
\hline 8GP60, gearbox size 070 & see "8GP60, gearbox size 070 - Technical data" on page 98 \\
\hline 8GP70, gearbox size 070 & see "8GP70, gearbox size 070 - Technical data" on page 101 \\
\hline
\end{tabular}

\section*{Flange-mounted 8GF - Gearbox data}

\begin{tabular}{|l|l|}
\hline Gearbox & Technical data \\
\hline 8GF40, gearbox size 064 & see "8GF40, gearbox size 064 - Technical data" on page 104 \\
\hline 8GF60, gearbox size 064 & see "8GF60, gearbox size 064 - Technical data" on page 105 \\
\hline 8GF70, gearbox size 064 & see "8GF70, gearbox size 064 - Technical data" on page 108 \\
\hline
\end{tabular}

\section*{Flange-mounted 8GA - Gearbox data}

\begin{tabular}{|l|l|}
\hline Gearbox & Technical data \\
\hline 8GA40, gearbox size 060 & see "8GA40, gearbox size 060 - Technical data" on page 110 \\
\hline 8GA40, gearbox size 080 & see "8GA40, gearbox size 080 - Technical data" on page 113 \\
\hline 8GA45, gearbox size 067 & see "8GA45, gearbox size 067 - Technical data" on page 116 \\
\hline 8GA45, gearbox size 089 & see "8GA45, gearbox size 089 - Technical data" on page 119 \\
\hline 8GA50, gearbox size 070 & see "8GA50, gearbox size 070 - Technical data" on page 122 \\
\hline 8GA50, gearbox size 090 & see "8GA50, gearbox size 090 - Technical data" on page 125 \\
\hline 8GA55, gearbox size 064 & see "8GA55, gearbox size 064 - Technical data" on page 128 \\
\hline 8GA60, gearbox size 070 & see "8GA60, gearbox size 070 - Technical data" on page 131 \\
\hline
\end{tabular}

\subsection*{4.8.1 8GP40, gearbox size 060 - Technical data}

\section*{Gear ratio 003 to 016}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP40-060h- } \\
& \text { h003klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP40-060h- } \\
& \text { h004klmm }
\end{aligned}
\] & 8GP40-060hh007klmm & 8GP40-060hh009kImm & \[
\begin{aligned}
& \text { 8GP40-060h- } \\
& \text { h012klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP40-060h- } \\
& \text { h016klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline Gear ratio i & 3 & 4 & 7 & 9 & 12 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 28.0 & 38.0 & 25.0 & \multicolumn{3}{|c|}{44.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 45.0 & 61.0 & 40.0 & \multicolumn{3}{|c|}{70.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 66 & 88 & 80 & \multicolumn{3}{|c|}{88} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.15 & \multicolumn{5}{|c|}{0.10} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{3}{|c|}{12} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{2.3} & \multicolumn{3}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{3}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{0.90} & \multicolumn{3}{|c|}{1.10} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.135 & 0.093 & 0.072 & 0.131 & 0.127 & 0.088 \\
\hline
\end{tabular}

\subsection*{4.8.2 8GP40, gearbox size 080 - Technical data}

\section*{Gear ratio 003 to 010}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP40-080h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP40-080hh004kImm & 8GP40-080hh005kImm & 8GP40-080hh007kImm & 8GP40-080hh008klmm & 8GP40-080hh010kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{1} \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 10 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 85.0 & 115.0 & 110.0 & 65.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 136.0 & 184.0 & 176.0 & 104.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{2}{|c|}{0.35} & 0.25 & \multicolumn{3}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4000 & 3900 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2700 & 2500 & 3000 & & 4000 & \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{6}{|c|}{96} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.10} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.770 & 0.520 & 0.450 & 0.420 & \multicolumn{2}{|c|}{0.390} \\
\hline
\end{tabular}

\section*{Technical data}

Gear ratio 009 to 025
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \hline \text { 8GP40-080h- } \\
& \text { h009klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP40-080h- } \\
& \text { h012klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP40-080h- } \\
& \text { h015klmm }
\end{aligned}
\] & 8GP40-080hh016klmm & \[
\begin{aligned}
& \text { 8GP40-080h- } \\
& \text { h }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP40-080h- } \\
& \text { h025klmm } \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 9 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 130.0 & 120.0 & 110.0 & & & 110.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 208.0 & 192.0 & 176.0 & & & 176.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 260 & 240 & 220 & & & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{4}{|c|}{0.25} & \multicolumn{2}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3050 & 3750 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.60} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.740 & 0.720 & 0.710 & 0.500 & \multicolumn{2}{|c|}{0.440} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 080}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP40-080h- } \\
& \text { h032klmm }
\end{aligned}
\] & 8GP40-080hh040klmm & 8GP40-080hh064kImm & 8GP40-080hh100klmm & 8GP40-080hh060kImm & 8GP40-080hh080klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} & \multicolumn{2}{|c|}{3} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 & 60 & 80 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120.0 & 110.0 & 50.0 & 38.0 & 110.0 & 120.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}[\mathrm{Nm}]\) & 192.0 & 176.0 & 80.0 & 61.0 & 176.0 & 192.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 240 & 220 & 190 & 200 & 220 & 240 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.20 & \multicolumn{3}{|c|}{0.15} & \multicolumn{2}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{9} & \multicolumn{2}{|c|}{11} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{4}{|c|}{6.5} & \multicolumn{2}{|c|}{6.3} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} & \multicolumn{2}{|c|}{90} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{2.60} & \multicolumn{2}{|c|}{3.10} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.390} & 0.510 & 0.500 \\
\hline
\end{tabular}

\subsection*{4.8.3 8GP45, gearbox size 067 - Technical data}

\section*{Gear ratio 003 to 016}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP45-067h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP45-067hh004kImm & 8GP45-067hh007klmm & \[
\begin{aligned}
& \text { 8GP45-067h- } \\
& \text { h009klmm }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8GP45-067h- } \\
\text { h012kImm }
\end{gathered}
\] & 8GP45-067hh016kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline Gear ratio i & 3 & 4 & 7 & 9 & 12 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 28.0 & 38.0 & 25.0 & \multicolumn{3}{|c|}{44.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 45.0 & 61.0 & 40.0 & \multicolumn{3}{|c|}{70.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 66 & 88 & 80 & \multicolumn{3}{|c|}{88} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.20 & 0.15 & 0.10 & 0.15 & & \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4200 & 4300 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{3}{|c|}{12} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{2.3} & \multicolumn{3}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{3}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{1.10} & \multicolumn{3}{|c|}{1.30} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.135 & 0.093 & 0.072 & 0.131 & 0.127 & 0.088 \\
\hline
\end{tabular}

\subsection*{4.8.4 8GP45, gearbox size 089 - Technical data}

\section*{Gear ratio 003 to 010}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP45-089hh004kImm & 8GP45-089hh005kImm & 8GP45-089hh007kImm & 8GP45-089hh008klmm & 8GP45-089hh010kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{1} \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 10 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 85.0 & 115.0 & 110.0 & 65.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 136.0 & 184.0 & 176.0 & 104.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.55 & 0.50 & 0.40 & 0.30 & \multicolumn{2}{|c|}{0.25} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3400 & 3450 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2400 & 2350 & 2800 & & 4000 & \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{6}{|c|}{96} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.20} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.770 & 0.520 & 0.450 & 0.420 & \multicolumn{2}{|c|}{0.390} \\
\hline
\end{tabular}

\section*{Technical data}

Gear ratio 009 to 025
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \hline \text { 8GP45-089h- } \\
& \text { h009klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP45-089h- } \\
& \text { h012klmm }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8GP45-089h- } \\
\text { h015klmm }
\end{gathered}
\] & 8GP45-089hh016klmm & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h020kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 9 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 130.0 & 120.0 & 110.0 & \multicolumn{2}{|c|}{120.0} & 110.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 208.0 & 192.0 & 176.0 & \multicolumn{2}{|c|}{192.0} & 176.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 260 & 240 & 220 & \multicolumn{2}{|c|}{240} & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & \multicolumn{2}{|c|}{0.25} & 0.30 & \multicolumn{2}{|c|}{0.25} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2950 & 3650 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.70} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.740 & 0.720 & 0.710 & 0.500 & \multicolumn{2}{|c|}{0.440} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \hline \text { 8GP45-089h- } \\
& \text { h032klmm }
\end{aligned}
\] & 8GP45-089h-
h040kImm & \[
\begin{gathered}
\text { 8GP45-089h- } \\
\text { h060klmm } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h064kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h080kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP45-089h- } \\
& \text { h100klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{2}{|c|}{2} & 3 & 2 & 3 & 2 \\
\hline Gear ratio i & 32 & 40 & 60 & 64 & 80 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120.0 & \multicolumn{2}{|c|}{110.0} & 50.0 & 120.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}[\mathrm{Nm}]\) & 192.0 & \multicolumn{2}{|c|}{176.0} & 80.0 & 192.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 240 & \multicolumn{2}{|c|}{220} & 190 & 240 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{5}{|c|}{0.20} & 0.15 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{2}{|c|}{9} & 11 & 9 & 11 & 9 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{2}{|c|}{6.5} & 6.3 & 6.5 & 6.3 & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{2}{|c|}{94} & 90 & 94 & 90 & 94 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{3.70} & 4.20 & 3.70 & 4.20 & 3.70 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.390} & 0.510 & 0.390 & 0.500 & 0.390 \\
\hline
\end{tabular}

\subsection*{4.8.5 8GP50, gearbox size 070 - Technical data}

\section*{Gear ratio 003 to 016}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP50-070h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP50-070hh004kImm & 8GP50-070hh007klmm & 8GP50-070hh009klmm & \[
\begin{aligned}
& \text { 8GP50-070h- } \\
& \text { h012klmm }
\end{aligned}
\] & 8GP50-070hh016kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline Gear ratio i & 3 & 4 & 7 & 9 & 12 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 28.0 & 33.0 & 25.0 & \multicolumn{3}{|c|}{33.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 45.0 & 53.0 & 40.0 & \multicolumn{3}{|c|}{53.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 88 & 80 & \multicolumn{3}{|c|}{88} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.40 & 0.25 & \multicolumn{3}{|c|}{0.15} & 0.10 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3650 & 4100 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{3}{|c|}{12} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{2.3} & \multicolumn{3}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{3}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{1.50} & \multicolumn{3}{|c|}{1.80} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.157 & 0.106 & 0.078 & 0.133 & 0.128 & 0.089 \\
\hline
\end{tabular}

\subsection*{4.8.6 8GP50, gearbox size 090 - Technical data}

\section*{Gear ratio 003 to 010}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP50-090h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP50-090hh004kimm & 8GP50-090hh005kImm & 8GP50-090hh007klmm & 8GP50-090hh008klmm & 8GP50-090hh010klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{1} \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 10 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 85.0 & 90.0 & 82.0 & 65.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 136.0 & 144.0 & 131.0 & 104.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.75 & 0.55 & 0.45 & \multicolumn{2}{|c|}{0.30} & 0.25 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3250 & 3750 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2300 & 2650 & 3200 & \multicolumn{3}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{3}{|c|}{7000} & 0 & \multicolumn{2}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{6}{|c|}{96} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.00} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.820 & 0.570 & 0.480 & 0.450 & \multicolumn{2}{|c|}{0.400} \\
\hline
\end{tabular}

\section*{Technical data}

Gear ratio 009 to 025
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP50-090h- } \\
& \text { h009klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP50-090h- } \\
& \text { h012klmm }
\end{aligned}
\] & 8GP50-090h-
h015klmm & 8GP50-090hh016kImm & \[
\begin{aligned}
& \text { 8GP50-090h- } \\
& \text { h020klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP50-090h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 9 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 97.0 & 90.0 & 82.0 & & & 82.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}[\mathrm{Nm}]\) & 155.0 & 144.0 & 131.0 & & & 131.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 260 & 240 & 220 & & & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{2}{|c|}{0.30} & \multicolumn{3}{|c|}{0.25} & 0.20 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3450 & \multicolumn{5}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.70} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.750 & 0.730 & 0.710 & 0.500 & \multicolumn{2}{|c|}{0.440} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8GP50-090hh032kImm & 8GP50-090hh040kImm & 8GP50-090hh064kImm & 8GP50-090hh100kImm \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 90.0 & 82.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 144.0 & 131.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\) [ Nm ] & 240 & 220 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{3}{|c|}{0.20} & 0.15 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{\text {1max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{4}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{4}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{4}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{4}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{3.70} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.390} \\
\hline
\end{tabular}

\subsection*{4.8.7 8GP55, gearbox size 060 - Technical data}

\section*{Gear ratio 003 to 016}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP55-060h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP55-060hh004kimm & 8GP55-060hh007klmm & 8GP55-060hh009kImm & 8GP55-060hh012kImm & 8GP55-060hh016kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline Gear ratio i & 3 & 4 & 7 & 9 & 12 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 28.0 & 38.0 & 25.0 & \multicolumn{3}{|c|}{44.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 45.0 & 61.0 & 40.0 & \multicolumn{3}{|c|}{70.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 66 & 88 & 80 & \multicolumn{3}{|c|}{88} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.50 & 0.35 & \multicolumn{2}{|c|}{0.20} & \multicolumn{2}{|c|}{0.15} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 2950 & 3500 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2500 & 2900 & 4500 & 4200 & \multicolumn{2}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{3}{|c|}{12} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{2.3} & \multicolumn{3}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{3}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{1.40} & \multicolumn{3}{|c|}{1.60} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.150 & 0.102 & 0.075 & 0.133 & 0.128 & 0.089 \\
\hline
\end{tabular}

\subsection*{4.8.8 8GP55, gearbox size 080 - Technical data}

\section*{Gear ratio 003 to 010}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP55-080h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP55-080hh004kimm & 8GP55-080hh005kImm & 8GP55-080hh007klmm & 8GP55-080hh008kImm & 8GP55-080hh010kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{1} \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 10 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 85.0 & 115.0 & 110.0 & 65.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 136.0 & 184.0 & 176.0 & 104.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.90 & 0.70 & 0.55 & 0.40 & 0.35 & 0.30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 2450 & 2700 & 3250 & & 4000 & \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 1900 & 2000 & 2400 & & 4000 & \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{4800} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{5500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{5700} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{6400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{6}{|c|}{96} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.70} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.803 & 0.538 & 0.462 & 0.428 & 0.395 & 0.393 \\
\hline
\end{tabular}

\section*{Technical data}

Gear ratio 009 to 025
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \hline \text { 8GP55-080h- } \\
& \text { h009klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP55-080h- } \\
& \text { h012klmm }
\end{aligned}
\] & 8GP55-080h-
h015kImm & \[
\begin{aligned}
& \hline \text { 8GP55-080h- } \\
& \text { h016klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 8GP55-080h- } \\
& \text { h020kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP55-080h- } \\
& \text { h025klmm } \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 9 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 130.0 & 120.0 & 110.0 & \multicolumn{2}{|c|}{120.0} & 110.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 208.0 & 192.0 & 176.0 & \multicolumn{2}{|c|}{192.0} & 176.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 260 & 240 & 220 & \multicolumn{2}{|c|}{240} & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.40 & 0.35 & 0.30 & 0.35 & & \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2850 & 3550 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{4800} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{5500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{5700} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{6400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.40} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.744 & 0.722 & 0.710 & 0.500 & \multicolumn{2}{|c|}{0.440} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8GP55-080hh032kImm & 8GP55-080hh040kImm & 8GP55-080hh064kImm & 8GP55-080hh100kImm \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120.0 & 110.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 192.0 & 176.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 240 & 220 & 190 & 200 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{3}{|c|}{0.20} & 0.15 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{\text {2N }}\) and S 1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{9} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{4}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{4}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{4}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{4800} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{5500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{5700} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{6400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{60} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{4}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{3.40} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.390} \\
\hline
\end{tabular}

\subsection*{4.8.9 8GP60, gearbox size 070 - Technical data}

\section*{Gear ratio 003 to 010}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GP60-070h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GP60-070hh004kImm & \[
\begin{aligned}
& \text { 8GP60-070h- } \\
& \text { h005klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GP60-070h- } \\
& \text { h007klmm }
\end{aligned}
\] & 8GP60-070hh008kImm & \[
\begin{aligned}
& \text { 8GP60-070h- } \\
& \text { h010klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{1} \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 10 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 45.0 & 60.0 & 65.0 & 45.0 & 40.0 & 27.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 72.0 & 96.0 & 104.0 & 72.0 & 64.0 & 43.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 90 & 120 & 130 & 80 & \multicolumn{2}{|c|}{90} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.70 & 0.50 & 0.40 & 0.35 & 0.30 & 0.25 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2050 & 2300 & 2650 & 3450 & 3800 & 4400 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 1700 & 1900 & 2100 & 2950 & 3300 & 4000 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{3} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{6.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{98} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{1.90} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.400 & 0.320 & 0.280 & 0.260 & \multicolumn{2}{|c|}{0.250} \\
\hline
\end{tabular}

Gear ratio 012 to 032
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GP60-070hh012klmm & 8GP60-070hh015klmm & 8GP60-070hh016kImm & 8GP60-070h-
h020kImm & \[
\begin{aligned}
& \text { 8GP60-070h- } \\
& \text { h025kImm }
\end{aligned}
\] & 8GP60-070hh032klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 12 & 15 & 16 & 20 & 25 & 32 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & \multicolumn{2}{|c|}{68.0} & \multicolumn{2}{|c|}{77.0} & 65.0 & 77.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}[\mathrm{Nm}]\) & \multicolumn{2}{|c|}{109.0} & \multicolumn{2}{|c|}{123.0} & 104.0 & 123.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & \multicolumn{2}{|c|}{135} & \multicolumn{4}{|c|}{150} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.35 & \multicolumn{2}{|c|}{0.30} & \multicolumn{2}{|c|}{0.25} & 0.20 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3550 & 4000 & 3800 & 4300 & \multicolumn{2}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2900 & 3300 & 3150 & 3600 & 4100 & 4500 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{7.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.40} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.400 & 0.380 & 0.350 & 0.330 & 0.300 & 0.320 \\
\hline
\end{tabular}

\section*{Gear ratio 040 to 100}
\begin{tabular}{|c|c|c|c|}
\hline Order number & 8GP60-070hh040kImm & 8GP60-070hh064kImm & 8GP60-070hh100kImm \\
\hline \multicolumn{4}{|l|}{Gearbox} \\
\hline Number of gear stages & & 2 & \\
\hline Gear ratio i & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 65.0 & 40.0 & 27.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 104.0 & 64.0 & 43.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}[\mathrm{Nm}]\) & 150 & \multicolumn{2}{|c|}{80} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{3}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{3}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}[\mathrm{rpm}]\) at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{3}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{3}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{3}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{7.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{3}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{3}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{3}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{3}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{3}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{3}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\left[{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{3}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\left[{ }^{\circ} \mathrm{C}\right.\) ] & \multicolumn{3}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{3}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{3}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{2.40} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.290 & 0.260 & 0.250 \\
\hline
\end{tabular}

\subsection*{4.8.10 8GP70, gearbox size 070 - Technical data}

\section*{Gear ratio 003 to 012}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GP70-070hh003klmm & 8GP70-070hh004kImm & 8GP70-070hh005klmm & 8GP70-070hh007kImm & 8GP70-070hh010kImm & 8GP70-070hh012kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{1} & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 10 & 12 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 29.0 & 39.0 & 40.0 & 37.0 & 28.0 & 29.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 46.0 & 62.0 & 64.0 & 59.0 & 45.0 & 46.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 90 & 120 & 130 & 80 & 90 & 135 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.65 & 0.45 & 0.35 & 0.25 & 0.20 & 0.45 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3000 & 3700 & 4400 & & 4500 & \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2850 & 3400 & 4050 & & 4500 & \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{3} & 5 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{5.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & 63 & \multicolumn{5}{|c|}{57} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{98} & 95 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{1.90} & 2.70 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.273 & 0.191 & 0.163 & 0.137 & 0.125 & 0.180 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 015 to 040}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GP70-070hh015kImm & 8GP70-070hh016kImm & 8GP70-070hh020kImm & 8GP70-070hh025kImm & 8GP70-070hh035kImm & 8GP70-070hh040kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 15 & 16 & 20 & 25 & 35 & 40 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 29.0 & \multicolumn{2}{|c|}{39.0} & \multicolumn{2}{|c|}{40.0} & 39.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 46.0 & \multicolumn{2}{|c|}{62.0} & \multicolumn{2}{|c|}{64.0} & 62.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 135 & \multicolumn{5}{|c|}{150} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & 0.40 & \multicolumn{2}{|c|}{0.30} & 0.20 & 0.15 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{5.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{57} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.70} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.156 & 0.175 & 0.152 & 0.151 & 0.131 & 0.123 \\
\hline
\end{tabular}

Gear ratio 050 to 100
\begin{tabular}{|c|c|c|c|}
\hline Order number & 8GP70-070hh050klmm & 8GP70-070hh070kImm & 8GP70-070hh100kImm \\
\hline \multicolumn{4}{|l|}{Gearbox} \\
\hline Number of gear stages & & 2 & \\
\hline Gear ratio i & 50 & 70 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40.0 & 37.0 & 28.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 64.0 & 59.0 & 45.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}[\mathrm{Nm}]\) & 150 & \multicolumn{2}{|c|}{80} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{3}{|c|}{0.15} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{3}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}[\mathrm{rpm}]\) at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{3}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{3}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{3}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{5.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{3}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{3}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{3}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{3}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{3}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{3}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{3}{|c|}{57} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\left[{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{3}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\left[{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{3}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{3}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{3}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{2.70} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|c|}{0.122} \\
\hline
\end{tabular}

\subsection*{4.8.11 8GF40, gearbox size 064 - Technical data}

Gear ratio 003 to 016
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GF40-064hh003klmm & 8GF40-064hh004kImm & 8GF40-064hh007klmm & 8GF40-064hh009kImm & \[
\begin{aligned}
& \text { 8GF40-064h- } \\
& \text { h012klmm }
\end{aligned}
\] & 8GF40-064hh016klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline Gear ratio i & 3 & 4 & 7 & 9 & 12 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 28.0 & 38.0 & 25.0 & \multicolumn{3}{|c|}{44.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 45.0 & 61.0 & 40.0 & \multicolumn{3}{|c|}{70.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 88 & 80 & \multicolumn{3}{|c|}{88} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & 0.20 & \multicolumn{3}{|c|}{0.15} & 0.10 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3950 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3200 & 3450 & 4500 & 4400 & \multicolumn{2}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{10} & \multicolumn{3}{|c|}{12} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{18.0} & \multicolumn{3}{|c|}{12.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{58} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{96} & \multicolumn{3}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{1.10} & \multicolumn{3}{|c|}{1.50} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.183 & 0.123 & 0.084 & 0.145 & 0.134 & 0.101 \\
\hline
\end{tabular}

\subsection*{4.8.12 8GF60, gearbox size 064 - Technical data}

\section*{Gear ratio 004 to 016}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GF60-064hh004klmm & 8GF60-064hh005kImm & 8GF60-064hh007kImm & 8GF60-064hh008kImm & 8GF60-064hh010klmm & 8GF60-064hh016klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 4 & 5 & 7 & 8 & 10 & 16 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 60.0 & 65.0 & 45.0 & 40.0 & 27.0 & 77.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 96.0 & 104.0 & 72.0 & 64.0 & 43.0 & 123.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 120 & 130 & \multicolumn{3}{|c|}{90} & 150 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.70 & 0.55 & 0.40 & 0.35 & 0.30 & 0.35 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 2100 & 2450 & 3200 & 3550 & 4100 & 3700 \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 1750 & 2000 & 2800 & 3100 & 3800 & 3050 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{3} & 5 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{16.0} & 14.0 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{117.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{148.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2100} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3800} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4300} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{65} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{98} & 95 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{1.50} & 2.20 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.290 & 0.260 & 0.240 & 0.220 & 0.210 & 0.320 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 020 to 064}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GF60-064hh020kImm & 8GF60-064hh025kImm & 8GF60-064hh032kImm & 8GF60-064hh040kImm & 8GF60-064hh050kImm & 8GF60-064hh064kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 20 & 25 & 32 & 40 & 50 & 64 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 77.0 & 65.0 & 77.0 & & & 40.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 123.0 & 104.0 & 123.0 & & & 64.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & \multicolumn{5}{|c|}{150} & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & \multicolumn{2}{|c|}{0.25} & \multicolumn{3}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3500 & 4000 & 4400 & \multicolumn{3}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{14.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{117.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{148.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2100} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4300} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{65} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.20} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.300 & 0.270 & 0.290 & 0.260 & 0.220 & 0.230 \\
\hline
\end{tabular}

Gear ratio 100
\begin{tabular}{|c|c|}
\hline Order number & 8GF60-064hh100kImm \\
\hline \multicolumn{2}{|l|}{Gearbox} \\
\hline Number of gear stages & 2 \\
\hline Gear ratio i & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 27.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 43.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}[\mathrm{Nm}]\) & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.20 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4500 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}[\mathrm{rpm}]\) at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4500 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & 14000 \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 5 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & 2 \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 14.0 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 117.0 \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & 148.0 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & 2100 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & 2400 \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & 3800 \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 20,000 h & 4300 \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & 65 \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & 95 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\left[{ }^{\circ} \mathrm{C}\right]\) & -25 \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\left[{ }^{\circ} \mathrm{C}\right.\) ] & 90 \\
\hline Mounting orientation & Any \\
\hline Degree of protection & IP 65 \\
\hline Weight m [kg] & 2.20 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.220 \\
\hline
\end{tabular}

\subsection*{4.8.13 8GF70, gearbox size 064 - Technical data}

Gear ratio 004 to 020
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GF70-064hh004kImm & 8GF70-064hh005kImm & 8GF70-064hh007klmm & 8GF70-064hh010kImm & 8GF70-064hh016kImm & 8GF70-064hh020kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 4 & 5 & 7 & 10 & 16 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 39.0 & 40.0 & 37.0 & 28.0 & \multicolumn{2}{|c|}{39.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 62.0 & 64.0 & 59.0 & 45.0 & \multicolumn{2}{|c|}{62.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 120 & 130 & 80 & 90 & \multicolumn{2}{|c|}{150} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.65 & 0.50 & 0.35 & 0.25 & 0.45 & 0.30 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3200 & 3800 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3000 & 3600 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{3} & & \multicolumn{2}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{16.0} & & \multicolumn{2}{|c|}{14.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{117.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{148.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2100} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{4300} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{57} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{98} & \multicolumn{2}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{1.50} & \multicolumn{2}{|c|}{2.20} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.192 & 0.163 & 0.138 & 0.125 & 0.175 & 0.152 \\
\hline
\end{tabular}

\section*{Gear ratio 025 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GF70-064hh025kImm & 8GF70-064hh035kImm & 8GF70-064hh040kImm & 8GF70-064hh050kImm & 8GF70-064hh070kImm & 8GF70-064hh100kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 25 & 35 & 40 & 50 & 70 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & \multicolumn{2}{|c|}{40.0} & 39.0 & 40.0 & 37.0 & 28.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & \multicolumn{2}{|c|}{64.0} & 62.0 & 64.0 & 59.0 & 45.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & \multicolumn{4}{|c|}{150} & 80 & 90 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & 0.20 & \multicolumn{4}{|c|}{0.15} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{14000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{5} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{2} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{14.0} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{117.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{148.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2100} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4300} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{57} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{95} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{2.20} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.151 & 0.131 & 0.123 & \multicolumn{3}{|c|}{0.122} \\
\hline
\end{tabular}

\subsection*{4.8.14 8GA40, gearbox size 060 - Technical data}

Gear ratio 003 to 009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h003klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h004klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h005klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h007klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h008kImm }
\end{aligned}
\] & 8GA40-060hh009klmm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 14.0 & 19.0 & 24.0 & 25.0 & 18.0 & 44.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 22.0 & 30.0 & 38.0 & 40.0 & 29.0 & 70.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 86 & & 80 & & 88 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{2}{|c|}{0.25} & \multicolumn{3}{|c|}{0.20} & 0.25 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3900 & 3950 & 4000 & & & 3550 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{16} & 18 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{1.5} & 2.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{1.70} & 1.90 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.246 & 0.204 & 0.189 & 0.183 & 0.176 & 0.242 \\
\hline
\end{tabular}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA40-060hh010kImm & 8GA40-060hh012kImm & 8GA40-060hh015klmm & 8GA40-060hh016kImm & 8GA40-060hh020kImm & \[
\begin{aligned}
& \text { 8GA40-060h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 15.0 & \multicolumn{4}{|c|}{44.0} & 40.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 24.0 & \multicolumn{4}{|c|}{70.0} & 64.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 70 & \multicolumn{4}{|c|}{88} & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.20 & 0.25 & \multicolumn{4}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4500 & 4150 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 16 & \multicolumn{5}{|c|}{18} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 1.5 & \multicolumn{5}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 1.70 & \multicolumn{5}{|c|}{1.90} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.175 & 0.238 & 0.188 & 0.199 & \multicolumn{2}{|c|}{0.186} \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA40-060hh032kImm & 8GA40-060hh040kImm & 8GA40-060hh060kImm & 8GA40-060hh064kImm & 8GA40-060hh080kImm & 8GA40-060hh100kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{2}{|c|}{2} & 3 & 2 & 3 & 2 \\
\hline Gear ratio i & 32 & 40 & 60 & 64 & 80 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 44.0 & 40.0 & 44.0 & 18.0 & 44.0 & 15.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 70.0 & 64.0 & 70.0 & 29.0 & 70.0 & 24.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 88 & 80 & 88 & 80 & 88 & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{6}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{2}{|c|}{18} & 21 & 18 & 21 & 18 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{340} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{400} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{450} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{2}{|c|}{92} & 88 & 92 & 88 & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{1.90} & 2.10 & 1.90 & 2.10 & 1.90 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.175} & 0.187 & 0.175 & 0.186 & 0.175 \\
\hline
\end{tabular}

\subsection*{4.8.15 8GA40, gearbox size 080 - Technical data}

\section*{Gear ratio 003 to 009}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA40-080hh003kImm & 8GA40-080hh004kImm & 8GA40-080hh005kImm & 8GA40-080hh007kImm & 8GA40-080hh008kimm & 8GA40-080hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40.0 & 53.0 & 67.0 & 65.0 & 50.0 & 130.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64.0 & 85.0 & 107.0 & 104.0 & 80.0 & 208.0 \\
\hline Emergency switch-off torque \(T_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 260 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{2}{|c|}{0.60} & 0.55 & \multicolumn{2}{|c|}{0.50} & 0.55 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3500 & 3550 & 3600 & \multicolumn{2}{|c|}{4000} & 3250 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2500 & \multicolumn{2}{|c|}{2450} & 3100 & 3800 & 2100 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{13} & 15 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{4.5} & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{4.40} & 5.00 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 1.189 & 0.939 & 0.869 & 0.839 & 0.809 & 1.159 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA40-080hh010kImm & 8GA40-080hh012kImm & 8GA40-080hh015kImm & 8GA40-080hh016kImm & 8GA40-080hh020kImm & 8GA40-080hh025kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 38.0 & 120.0 & 110.0 & \multicolumn{2}{|c|}{120.0} & 110.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 61.0 & 192.0 & 176.0 & \multicolumn{2}{|c|}{192.0} & 176.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) [ Nm ] & 170 & 240 & 220 & \multicolumn{2}{|c|}{240} & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.50 & 0.55 & 0.50 & 0.55 & \multicolumn{2}{|c|}{0.50} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & 3850 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & 2650 & 3150 & 3100 & 3550 & 4000 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 13 & \multicolumn{5}{|c|}{15} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 4.5 & \multicolumn{5}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 4.40 & \multicolumn{5}{|c|}{5.00} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.809 & 1.139 & 1.129 & 0.919 & \multicolumn{2}{|c|}{0.859} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA40-080h- } \\
& \text { h032klmm }
\end{aligned}
\] & 8GA40-080h-
h040kImm & 8GA40-080h h064kImm & 8GA40-080hh060kImm & 8GA40-080hh080kImm & 8GA40-080h-
h100kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{3}{|c|}{2} & \multicolumn{2}{|c|}{3} & 2 \\
\hline Gear ratio i & 32 & 40 & 64 & 60 & 80 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120.0 & 110.0 & 50.0 & 110.0 & 120.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 192.0 & 176.0 & 80.0 & 176.0 & 192.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 240 & 220 & 190 & 220 & 240 & 170 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{3}{|c|}{0.45} & \multicolumn{2}{|c|}{0.50} & 0.45 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm]
at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{3}{|c|}{15} & \multicolumn{2}{|c|}{17} & 15 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{3}{|c|}{6.5} & \multicolumn{2}{|c|}{6.3} & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{650} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{750} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{3}{|c|}{92} & \multicolumn{2}{|c|}{88} & 92 \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \(\left.{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{3}{|c|}{5.00} & \multicolumn{2}{|c|}{5.50} & 5.00 \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{3}{|c|}{0.809} & 0.929 & 0.919 & 0.809 \\
\hline
\end{tabular}

\subsection*{4.8.16 8GA45, gearbox size 067 - Technical data}

Gear ratio 003 to 009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h003klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h004kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h005kImm }
\end{aligned}
\] & 8GA45-067hh007kImm & 8GA45-067hh008kImm & 8GA45-067hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{1} & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 14.0 & 19.0 & 24.0 & 25.0 & 18.0 & 44.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 22.0 & 30.0 & 38.0 & 40.0 & 29.0 & 70.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 86 & \multicolumn{3}{|c|}{80} & 88 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & \multicolumn{3}{|c|}{0.25} & 0.20 & 0.25 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3700 & 3800 & 3850 & \multicolumn{2}{|c|}{4500} & 3500 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{16} & 18 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{1.5} & 2.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{1.90} & 2.10 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.246 & 0.204 & 0.189 & 0.183 & 0.176 & 0.242 \\
\hline
\end{tabular}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA45-067hh010kImm & \[
\begin{gathered}
\text { 8GA45-067h- } \\
\text { h012klmm }
\end{gathered}
\] & 8GA45-067hh015klmm & 8GA45-067hh016kImm & 8GA45-067hh020klmm & \[
\begin{gathered}
\text { 8GA45-067h- } \\
\text { h025klmm } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 15.0 & \multicolumn{4}{|c|}{44.0} & 40.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 24.0 & \multicolumn{4}{|c|}{70.0} & 64.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2stop }}\)
\([\mathrm{Nm}]\) & 70 & \multicolumn{4}{|c|}{88} & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.20 & 0.25 & \multicolumn{4}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4500 & 4100 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 16 & \multicolumn{5}{|c|}{18} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 1.5 & \multicolumn{5}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 1.90 & \multicolumn{5}{|c|}{2.10} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.175 & 0.238 & 0.188 & 0.199 & \multicolumn{2}{|c|}{0.186} \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA45-067hh032kImm & 8GA45-067hh040kImm & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h060klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h064klmm }
\end{aligned}
\] & 8GA45-067hh080kImm & \[
\begin{aligned}
& \text { 8GA45-067h- } \\
& \text { h100klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{2}{|c|}{2} & 3 & 2 & 3 & 2 \\
\hline Gear ratio i & 32 & 40 & 60 & 64 & 80 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~L}}[\mathrm{Nm}]\) & 44.0 & 40.0 & 44.0 & 18.0 & 44.0 & 15.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 70.0 & 64.0 & 70.0 & 29.0 & 70.0 & 24.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 88 & 80 & 88 & 80 & 88 & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{6}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{2}{|c|}{18} & 21 & 18 & 21 & 18 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{800} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{2}{|c|}{92} & 88 & 92 & 88 & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{2.10} & 2.30 & 2.10 & 2.30 & 2.10 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.175} & 0.187 & 0.175 & 0.186 & 0.175 \\
\hline
\end{tabular}

\subsection*{4.8.17 8GA45, gearbox size 089 - Technical data}

\section*{Gear ratio 003 to 009}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA45-089hh003klmm & 8GA45-089hh004kImm & 8GA45-089hh005kImm & 8GA45-089hh007kImm & 8GA45-089hh008kImm & 8GA45-089hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40.0 & 53.0 & 67.0 & 65.0 & 50.0 & 130.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64.0 & 85.0 & 107.0 & 104.0 & 80.0 & 208.0 \\
\hline Emergency switch-off torque \(T_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 260 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.85 & 0.75 & 0.65 & & & 0.60 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3100 & 3250 & 3350 & & & 3150 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{2}{|c|}{2300} & 2350 & 3000 & 3650 & 2050 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{13} & 15 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{4.5} & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{5.50} & 6.10 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 1.189 & 0.939 & 0.869 & 0.839 & 0.809 & 1.159 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA45-089h- } \\
& \text { h010kImm }
\end{aligned}
\] & 8GA45-089hh012klmm & 8GA45-089hh015kImm & \[
\begin{aligned}
& \text { 8GA45-089h- } \\
& \text { h016kImm }
\end{aligned}
\] & 8GA45-089hh020kImm & \[
\begin{gathered}
\text { 8GA45-089h- } \\
\text { h025kImm }
\end{gathered}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 38.0 & 120.0 & 110.0 & \multicolumn{2}{|c|}{120.0} & 110.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 61.0 & 192.0 & 176.0 & \multicolumn{2}{|c|}{192.0} & 176.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2top }}\) [ Nm ] & 170 & 240 & 220 & \multicolumn{2}{|c|}{240} & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.50 & \multicolumn{3}{|c|}{0.55} & \multicolumn{2}{|c|}{0.50} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & 3750 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & 2600 & 3100 & 3050 & 3500 & 4000 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 13 & \multicolumn{5}{|c|}{15} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 4.5 & \multicolumn{5}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 5.50 & \multicolumn{5}{|c|}{6.10} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.809 & 1.139 & 1.129 & 0.919 & \multicolumn{2}{|c|}{0.859} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA45-089hh032kImm & 8GA45-089hh040kImm & 8GA45-089h-
h060kImm & \[
\begin{aligned}
& \text { 8GA45-089h- } \\
& \text { h064klmm }
\end{aligned}
\] & 8GA45-089hh080kImm & 8GA45-089hh100kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{2}{|c|}{2} & 3 & 2 & 3 & 2 \\
\hline Gear ratio i & 32 & 40 & 60 & 64 & 80 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 120.0 & \multicolumn{2}{|c|}{110.0} & 50.0 & 120.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 192.0 & \multicolumn{2}{|c|}{176.0} & 80.0 & 192.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 240 & \multicolumn{2}{|c|}{220} & 190 & 240 & 170 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{2}{|c|}{0.45} & 0.50 & 0.45 & 0.50 & 0.45 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}[\mathrm{rpm}]\) at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{2}{|c|}{15} & 17 & 15 & 17 & 15 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{2}{|c|}{6.5} & 6.3 & 6.5 & 6.3 & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{2500} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{2}{|c|}{92} & 88 & 92 & 88 & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{2}{|c|}{6.10} & 6.60 & 6.10 & 6.60 & 6.10 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.809} & 0.929 & 0.809 & 0.919 & 0.809 \\
\hline
\end{tabular}

\subsection*{4.8.18 8GA50, gearbox size 070 - Technical data}

Gear ratio 003 to 009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h003klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h004kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h005kImm }
\end{aligned}
\] & 8GA50-070hh007klmm & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h008klmm }
\end{aligned}
\] & 8GA50-070hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{5}{|c|}{1} & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 14.0 & 19.0 & 24.0 & 25.0 & 18.0 & 33.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 22.0 & 30.0 & 38.0 & 40.0 & 29.0 & 53.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 86 & \multicolumn{3}{|c|}{80} & 88 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.50 & 0.40 & 0.35 & 0.30 & \multicolumn{2}{|c|}{0.25} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4200 & \multicolumn{5}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3300 & 3500 & 3600 & 4300 & 4500 & 4000 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{16} & 18 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{1.5} & 2.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(20,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{2.30} & 2.60 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.157 & 0.106 & 0.086 & 0.077 & 0.068 & 0.133 \\
\hline
\end{tabular}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA50-070hh010kImm & 8GA50-070hh012kImm & 8GA50-070hh015klmm & 8GA50-070hh016kImm & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h020kImm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA50-070h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 15.0 & \multicolumn{4}{|c|}{33.0} & 30.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 24.0 & \multicolumn{4}{|c|}{53.0} & 48.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 70 & \multicolumn{3}{|c|}{88} & & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{4}{|c|}{0.25} & \multicolumn{2}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 16 & \multicolumn{5}{|c|}{18} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 1.5 & \multicolumn{5}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 2.30 & \multicolumn{5}{|c|}{2.60} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.066 & 0.128 & 0.078 & 0.089 & 0.076 & 0.075 \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8GA50-070hh032kImm & 8GA50-070hh040kImm & 8GA50-070hh064kImm & 8GA50-070hh100kImm \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 33.0 & 30.0 & 18.0 & 15.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 53.0 & 48.0 & 29.0 & 24.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 88 & \multicolumn{3}{|c|}{80} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{4}{|c|}{0.20} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{18} \\
\hline Reduced backlash \(J_{t}\) [arcmin] less than & \multicolumn{4}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{4}{|c|}{2.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{4}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{900} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1050} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1000} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1350} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{4}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{92} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{-25} \\
\hline \[
\begin{aligned}
& \text { Max. operating temperature } \mathrm{B}_{\text {Tempmax }} \\
& {\left[\left[^{\circ} \mathrm{C}\right]\right.} \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{4}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{2.60} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.064} \\
\hline
\end{tabular}

\subsection*{4.8.19 8GA50, gearbox size 090 - Technical data}

\section*{Gear ratio 003 to 009}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA50-090h- } \\
& \text { h003klmm }
\end{aligned}
\] & 8GA50-090hh004kImm & 8GA50-090hh005kImm & 8GA50-090hh007kImm & 8GA50-090hh008kImm & 8GA50-090hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 40.0 & 53.0 & 67.0 & 65.0 & 50.0 & 97.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 64.0 & 85.0 & 107.0 & 104.0 & 80.0 & 155.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 180 & 240 & 220 & 178 & 190 & 260 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 1.05 & 0.85 & 0.75 & \multicolumn{3}{|c|}{0.60} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 3000 & 3150 & 3250 & 3950 & 4000 & 3500 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 2200 & 2250 & 2300 & 2900 & 3550 & 2450 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{13} & 15 \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{5}{|c|}{4.5} & 6.5 \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{5}{|c|}{94} & 92 \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{5.30} & 6.10 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.820 & 0.570 & 0.480 & 0.440 & 0.400 & 0.750 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{aligned}
& \text { 8GA50-090h- } \\
& \text { h010klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA50-090h- } \\
& \text { h012kImm }
\end{aligned}
\] & 8GA50-090hh015kImm & 8GA50-090hh016klmm & 8GA50-090hh020kImm & \[
\begin{aligned}
& \text { 8GA50-090h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 38.0 & 90.0 & 82.0 & \multicolumn{2}{|c|}{90.0} & 82.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 61.0 & 144.0 & 131.0 & \multicolumn{2}{|c|}{144.0} & 131.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{\text {2top }}\) [ Nm ] & 170 & 240 & 220 & \multicolumn{2}{|c|}{240} & 220 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & \multicolumn{4}{|c|}{0.55} & \multicolumn{2}{|c|}{0.50} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4000 & 3000 & 3500 & 3450 & 3900 & 4000 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 13 & \multicolumn{5}{|c|}{15} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & 4.5 & \multicolumn{5}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & 94 & \multicolumn{5}{|c|}{92} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 5.30 & \multicolumn{5}{|c|}{6.10} \\
\hline Moment of inertia \(J_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.400 & 0.730 & 0.710 & 0.500 & \multicolumn{2}{|c|}{0.440} \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8GA50-090hh032kImm & 8GA50-090hh040kImm & 8GA50-090hh064kImm & 8GA50-090hh100kImm \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 90.0 & 82.0 & 50.0 & 38.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}\) [ Nm ] & 144.0 & 131.0 & 80.0 & 61.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 240 & 220 & 190 & 170 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.50 & \multicolumn{3}{|c|}{0.45} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4000} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{7000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{15} \\
\hline Reduced backlash \(J_{t}\) [arcmin] less than & \multicolumn{4}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{4}{|c|}{6.5} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{4}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}[\mathrm{Nm}]\) & \multicolumn{4}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{1700} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1500} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{2000} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})\) ] & \multicolumn{4}{|c|}{73} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{4}{|c|}{92} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{-25} \\
\hline \[
\begin{aligned}
& \text { Max. operating temperature } \mathrm{B}_{\text {Tempmax }} \\
& {\left[\left[^{\circ} \mathrm{C}\right]\right.} \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{4}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{6.10} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{4}{|c|}{0.390} \\
\hline
\end{tabular}

\subsection*{4.8.20 8GA55, gearbox size 064 - Technical data}

\section*{Gear ratio 003 to 009}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8GA55-064h- } \\
\text { h003klmm }
\end{gathered}
\] & 8GA55-064hh004kImm & \[
\begin{gathered}
\text { 8GA55-064h- } \\
\text { h005klmm }
\end{gathered}
\] & 8GA55-064hh007kImm & 8GA55-064hh008klmm & 8GA55-064hh009kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & & & 1 & & & 2 \\
\hline Gear ratio i & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 14.0 & 19.0 & 24.0 & 25.0 & 18.0 & 44.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 22.0 & 30.0 & 38.0 & 40.0 & 29.0 & 70.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 66 & 86 & & 80 & & 88 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.30 & 0.25 & 0.15 & 0.10 & 0.40 & 0.15 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 4000 & 4400 & & 4500 & & 4300 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 3300 & 3500 & 3700 & 4400 & 4500 & 3200 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{5}{|c|}{16} & 18 \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} /\) arcmin] & 11.6 & 11.9 & 11.3 & 10.7 & 9.8 & 11.6 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{3}{|c|}{93} & 92 & 91 & 92 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{5}{|c|}{1.40} & 2.30 \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.439 & 0.294 & 0.265 & 0.240 & 0.235 & 0.359 \\
\hline
\end{tabular}

\section*{Gear ratio 010 to 025}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA55-064hh010kImm & 8GA55-064hh012klmm & 8GA55-064hh015kImm & \[
\begin{aligned}
& \text { 8GA55-064h- } \\
& \text { h016klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA55-064h- } \\
& \text { h020klmm }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8GA55-064h- } \\
& \text { h025klmm }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & 1 & \multicolumn{5}{|c|}{2} \\
\hline Gear ratio i & 10 & 12 & 15 & 16 & 20 & 25 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 15.0 & \multicolumn{4}{|c|}{44.0} & 40.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 24.0 & \multicolumn{4}{|c|}{70.0} & 64.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & 70 & \multicolumn{4}{|c|}{88} & 80 \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.15 & 0.20 & 0.40 & 0.20 & 0.10 & 0.35 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{6}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 4500 & 3700 & 4300 & 4400 & \multicolumn{2}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & 16 & \multicolumn{5}{|c|}{18} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & 8.9 & 11.6 & \multicolumn{3}{|c|}{11.9} & 11.3 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & 90 & 92 & \multicolumn{2}{|c|}{91} & 90 & 89 \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP54} \\
\hline Weight m [kg] & 1.40 & \multicolumn{5}{|c|}{2.30} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.228 & 0.352 & 0.235 & 0.244 & 0.233 & 0.232 \\
\hline
\end{tabular}

\section*{Gear ratio 032 to 100}
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8GA55-064hh032kImm & 8GA55-064hh040kImm & 8GA55-064hh064kImm & 8GA55-064hh100kImm \\
\hline \multicolumn{5}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|c|}{2} \\
\hline Gear ratio i & 32 & 40 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 44.0 & 40.0 & 18.0 & 15.0 \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 70.0 & 64.0 & 29.0 & 24.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\)
\([\mathrm{Nm}]\) & 88 & \multicolumn{3}{|c|}{80} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.10 & \multicolumn{3}{|c|}{0.35} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 100 \%}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & \multicolumn{4}{|c|}{4500} \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{4}{|c|}{13000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{18} \\
\hline Torsional rigidity \(\mathrm{C}_{121}\) [ \(\mathrm{Nm} /\) arcmin] & 10.5 & 10.1 & 9.6 & 9.1 \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{4}{|c|}{500} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{550} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{1200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{1200} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{4}{|c|}{70} \\
\hline Efficiency at full load \(\eta\) [\%] & 89 & 87 & 75 & 64 \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{4}{|c|}{-25} \\
\hline Max. operating temperature \(B_{\text {Tempmax }}\) \(\left[{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{4}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{4}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP54} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{2.30} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & \multicolumn{2}{|c|}{0.223} & 0.222 & 0.220 \\
\hline
\end{tabular}

\subsection*{4.8.21 8GA60, gearbox size 070 - Technical data}

\section*{Gear ratio 004 to 020}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA60-070hh004kImm & 8GA60-070hh005kImm & 8GA60-070hh008klmm & 8GA60-070hh010kImm & 8GA60-070hh016kImm & 8GA60-070hh020kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{4}{|l|}{1} & \multicolumn{2}{|c|}{2} \\
\hline Gear ratio i & 4 & 5 & 8 & 10 & 16 & 20 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 45.0 & 42.0 & 27.0 & 22.0 & \multicolumn{2}{|c|}{77.0} \\
\hline Max. output torque \(\mathrm{T}_{2 \text { max }}[\mathrm{Nm}]\) & 72.0 & 67.0 & 43.0 & 35.0 & \multicolumn{2}{|c|}{123.0} \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & \multicolumn{2}{|c|}{100} & \multicolumn{2}{|c|}{75} & \multicolumn{2}{|c|}{150} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 1.50 & 1.35 & 1.25 & 1.20 & 1.00 & 0.90 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 1800 & 2000 & 2350 & 2500 & 1850 & 2000 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \text { N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S1 & 1450 & 1650 & 2100 & 2300 & 1550 & 1700 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}[\mathrm{rpm}]\) & \multicolumn{6}{|c|}{16000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{4}{|c|}{5} & \multicolumn{2}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{2.4} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for \(30,000 \mathrm{~h}\) & \multicolumn{4}{|c|}{3700} & \multicolumn{2}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{4}{|c|}{4300} & \multicolumn{2}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{66} \\
\hline Efficiency at full load \(\mathrm{\eta}\) [\%] & \multicolumn{4}{|c|}{96} & \multicolumn{2}{|c|}{94} \\
\hline Min. operating temperature \(B_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{4}{|c|}{3.00} & \multicolumn{2}{|c|}{3.90} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.654 & 0.600 & 0.532 & 0.516 & 0.639 & 0.591 \\
\hline
\end{tabular}

\section*{Technical data}

\section*{Gear ratio 025 to 100}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Order number & 8GA60-070hh025kImm & 8GA60-070hh032kImm & 8GA60-070hh040kImm & 8GA60-070hh050kImm & 8GA60-070hh064kImm & 8GA60-070hh100kImm \\
\hline \multicolumn{7}{|l|}{Gearbox} \\
\hline Number of gear stages & \multicolumn{6}{|c|}{2} \\
\hline Gear ratio i & 25 & 32 & 40 & 50 & 64 & 100 \\
\hline Nominal output torque \(\mathrm{T}_{2 \mathrm{~N}}[\mathrm{Nm}]\) & 65.0 & 77.0 & \multicolumn{2}{|c|}{65.0} & 40.0 & 27.0 \\
\hline Max. output torque \(\mathrm{T}_{\text {max }}\) [ Nm ] & 104.0 & 123.0 & \multicolumn{2}{|c|}{104.0} & 64.0 & 43.0 \\
\hline Emergency switch-off torque \(\mathrm{T}_{2 \text { stop }}\) [ Nm ] & \multicolumn{4}{|c|}{150} & \multicolumn{2}{|c|}{80} \\
\hline Idle torque [ Nm ] at \(20^{\circ} \mathrm{C}\) and 3000 rpm & 0.90 & \multicolumn{2}{|c|}{0.80} & 0.75 & 0.80 & 0.75 \\
\hline Max. average drive speed \(\mathrm{n}_{1 \mathrm{~N} 50 \%}\) [rpm] at \(50 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 2150 & 2300 & 2400 & 2500 & 2600 & 2700 \\
\hline Max. average drive speed \(\mathrm{n}_{\text {1N100\% }}\) [rpm] at \(100 \% \mathrm{~T}_{2 \mathrm{~N}}\) and S 1 & 1900 & 2000 & 2200 & 2300 & 2500 & 2650 \\
\hline Max. drive speed \(\mathrm{n}_{1 \text { max }}\) [rpm] & \multicolumn{6}{|c|}{16000} \\
\hline Max. backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] & \multicolumn{6}{|c|}{7} \\
\hline Reduced backlash \(\mathrm{J}_{\mathrm{t}}\) [arcmin] less than & \multicolumn{6}{|c|}{0} \\
\hline Torsional rigidity \(\mathrm{C}_{\mathrm{t} 21}\) [ \(\mathrm{Nm} /\) arcmin] & \multicolumn{6}{|c|}{2.4} \\
\hline Tilting rigidity \(\mathrm{C}_{2 \mathrm{~K}}\) [ \(\mathrm{Nm} / \mathrm{arcmin}\) ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. breakdown torque \(\mathrm{M}_{2 \mathrm{Kmax}}\) [ Nm ] & \multicolumn{6}{|c|}{0.0} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. radial force \(\mathrm{Fr}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{3200} \\
\hline Max. axial force \(\mathrm{Fa}_{\max }[\mathrm{N}]\) for 30,000 h & \multicolumn{6}{|c|}{3900} \\
\hline Max. axial force \(\mathrm{Fa}_{\text {max }}[\mathrm{N}]\) for 20,000 h & \multicolumn{6}{|c|}{4400} \\
\hline Operating noise \(\mathrm{L}_{\text {PA }}[\mathrm{dB}(\mathrm{A})]\) & \multicolumn{6}{|c|}{66} \\
\hline Efficiency at full load \(\eta\) [\%] & \multicolumn{6}{|c|}{94} \\
\hline Min. operating temperature \(\mathrm{B}_{\text {Tempmin }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{-25} \\
\hline Max. operating temperature \(\mathrm{B}_{\text {Tempmax }}\) [ \({ }^{\circ} \mathrm{C}\) ] & \multicolumn{6}{|c|}{90} \\
\hline Mounting orientation & \multicolumn{6}{|c|}{Any} \\
\hline Degree of protection & \multicolumn{6}{|c|}{IP 65} \\
\hline Weight m [kg] & \multicolumn{6}{|c|}{3.90} \\
\hline Moment of inertia \(\mathrm{J}_{1}\left[\mathrm{kgcm}^{2}\right]\) & 0.590 & \multicolumn{4}{|c|}{0.528} & 0.514 \\
\hline
\end{tabular}

\subsection*{4.9 Dimension diagrams and installation dimensions}

\subsection*{4.9.1 Overview}
\begin{tabular}{|c|c|c|c|}
\hline Motor construction type & Order code & Gearbox & Dimension diagrams \({ }^{1)}\) \\
\hline 8D1A2x & 8D1A2x.xxx00 & Without gearbox & see "8D1A2x" on page 134 \\
\hline \multirow{5}{*}{8D1B2x} & 8D1B2x.xxxBD & 8GM40 (gearbox size 060) & see "8D1B2x.xxxBD - 8GM40 gearbox (gearbox size 060)" on page 135 \\
\hline & 8D1B2x.xxxCF & 8GM45 (gearbox size 067) & see "8D1B2x.xxxCF - 8GM45 gearbox (gearbox size 067)" on page 136 \\
\hline & 8D1B2x.xxxDG & 8GM50 (gearbox size 070) & see "8D1B2x.xxxDG - 8GM50 gearbox (gearbox size 070)" on page 137 \\
\hline & 8D1B2x.xxxED & 8GM55 (gearbox size 060) & see "8D1B2x.xxxED - 8GM55 gearbox (gearbox size 060)" on page 138 \\
\hline & 8D1B2x.xxxHE & 8GG40 (gearbox size 064) & see "8D1B2x.xxxHE - 8GG40 gearbox (gearbox size 064)" on page 139 \\
\hline 8D1C2x & 8D1C2x.xxxxx & With gearbox & Dimension diagrams can only be retrieved in the CAD configurator at cad.br-automation.com. \\
\hline 8D1A3x & 8D1A3x.xxx00 & Without gearbox & see "8D1A3x" on page 140 \\
\hline \multirow{5}{*}{8D1B3x} & 8D1B3x.xxxBH & 8GM40 (gearbox size 080) & see "8D1B3x.xxxBH - 8GM40 gearbox (gearbox size 080)" on page 141 \\
\hline & 8D1B3x.xxxCl & 8GM45 (gearbox size 089) & see "8D1B3x.xxxCl - 8GM45 gearbox (gearbox size 089)" on page 142 \\
\hline & 8D1B3x.xxxDJ & 8GM50 (gearbox size 090) & see "8D1B3x.xxxDJ - 8GM50 gearbox (gearbox size 090)" on page 143 \\
\hline & 8D1B3x.xxxEH & 8GM55 (gearbox size 080) & see "8D1B3x.xxxEH - 8GM55 gearbox (gearbox size 080)" on page 144 \\
\hline & 8D1B3x.xxxHJ & 8GG40 (gearbox size 090) & see "8D1B3x.xxxHJ - 8GG40 gearbox (gearbox size 090)" on page 145 \\
\hline
\end{tabular}
1) Dimension diagrams can also be retrieved in the CAD configurator at cad.br-automation.com.
4.9.2 8D1A2x


Without electronics option (8D1A2x.A, 8D1A2x.B)
\begin{tabular}{|l|c|c|}
\hline & \multicolumn{2}{c|}{\(\mathbf{K}_{0}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1A22 & 126 & 159.5 \\
\hline 8D1A23 & 146.5 & 180 \\
\hline
\end{tabular}

With electronics option (8D1A2x.G, 8D1A2x.H)
\begin{tabular}{|l|c|c|}
\hline & \multicolumn{2}{c|}{\(\mathbf{K}_{1}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1A22 & 141 & 174.5 \\
\hline 8D1A23 & 161.5 & 195 \\
\hline
\end{tabular}

\subsection*{4.9.3 8D1B2x.xxxBD - 8GM40 gearbox (gearbox size 060)}


Without electronics option (8D1B2x.A, 8D1B2x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{0}[\mathbf{m m}]\)} \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM40 1-stage & 173 & 206.5 \\
\hline 8D1B22 with 8GM40 2-stage & 185.5 & 219 \\
\hline 8D1B23 with 8GM40 1-stage & 193.5 & 227 \\
\hline 8D1B23 with 8GM40 2-stage & 206 & 239.5 \\
\hline
\end{tabular}

With electronics option (8D1B2x.G, 8D1B2x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{1}}\) [ mm\(]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM40 1-stage & 188 & 221.5 \\
\hline 8D1B22 with 8GM40 2-stage & 200.5 & 234 \\
\hline 8D1B23 with 8GM40 1-stage & 208.5 & 242 \\
\hline 8D1B23 with 8GM40 2-stage & 221 & 254.5 \\
\hline
\end{tabular}

\subsection*{4.9.4 8D1B2x.xxxCF - 8GM45 gearbox (gearbox size 067)}


Without electronics option (8D1B2x.A, 8D1B2x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{0}[\mathrm{~mm}]\)} \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM45 1-stage & 181 & 214.5 \\
\hline 8D1B22 with 8GM45 2-stage & 193.5 & 227 \\
\hline 8D1B23 with 8GM45 1-stage & 201.5 & 235 \\
\hline 8D1B23 with 8GM45 2-stage & 214 & 247.5 \\
\hline
\end{tabular}

With electronics option (8D1B2x.G, 8D1B2x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{1}}\) [mm] } \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM45 1-stage & 196 & 229.5 \\
\hline 8D1B22 with 8GM45 2-stage & 208.5 & 242 \\
\hline 8D1B23 with 8GM45 1-stage & 216.5 & 250 \\
\hline 8D1B23 with 8GM45 2-stage & 229 & 262.5 \\
\hline
\end{tabular}

\subsection*{4.9.5 8D1B2x.xxxDG - 8GM50 gearbox (gearbox size 070)}


Without electronics option (8D1B2x.A, 8D1B2x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{0}[\mathbf{m m}]\)} \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM50 1-stage & 177 & 210.5 \\
\hline 8D1B22 with 8GM50 2-stage & 190 & 223.5 \\
\hline 8D1B23 with 8GM50 1-stage & 197.5 & 231 \\
\hline 8D1B23 with 8GM50 2-stage & 210.5 & 244 \\
\hline
\end{tabular}

With electronics option (8D1B2x.G, 8D1B2x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{\mathbf{1}}[\mathrm{mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM50 1-stage & 192 & 225.5 \\
\hline 8D1B22 with 8GM50 2-stage & 205 & 238.5 \\
\hline 8D1B23 with 8GM50 1-stage & 212.5 & 246 \\
\hline 8D1B23 with 8GM50 2-stage & 225.5 & 259 \\
\hline
\end{tabular}

\subsection*{4.9.6 8D1B2x.xxxED - 8GM55 gearbox (gearbox size 060)}


Without electronics option (8D1B2x.A, 8D1B2x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{0}}\) [mm] } \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM55 1-stage & 181 & 214.5 \\
\hline 8D1B22 with 8GM55 2-stage & 193.5 & 227 \\
\hline 8D1B23 with 8GM55 1-stage & 201.5 & 235 \\
\hline 8D1B23 with 8GM55 2-stage & 214 & 247.5 \\
\hline
\end{tabular}

With electronics option (8D1B2x.G, 8D1B2x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{1}}\) [mm] } \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GM55 1-stage & 196 & 229.5 \\
\hline 8D1B22 with 8GM55 2-stage & 208.5 & 242 \\
\hline 8D1B23 with 8GM55 1-stage & 216.5 & 250 \\
\hline 8D1B23 with 8GM55 2-stage & 229 & 262.5 \\
\hline
\end{tabular}

\subsection*{4.9.7 8D1B2x.xxxHE - 8GG40 gearbox (gearbox size 064)}


Without electronics option (8D1B2x.A, 8D1B2x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{0}[\mathrm{~mm}]\)} \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GG40 1-stage & 151.5 & 185 \\
\hline 8D1B22 with 8GG40 2-stage & 164 & 197.5 \\
\hline 8D1B23 with 8GG40 1-stage & 172 & 205.5 \\
\hline 8D1B23 with 8GG40 2-stage & 184.5 & 218 \\
\hline
\end{tabular}

With electronics option (8D1B2x.G, 8D1B2x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{1}}\) [ mm\(]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B22 with 8GG40 1-stage & 166.5 & 200 \\
\hline 8D1B22 with 8GG40 2-stage & 179 & 212.5 \\
\hline 8D1B23 with 8GG40 1-stage & 187 & 220.5 \\
\hline 8D1B23 with 8GG40 2-stage & 199.5 & 233 \\
\hline
\end{tabular}

\subsection*{4.9.8 8D1A3x}


Without electronics option
\begin{tabular}{|l|c|c|}
\hline & \multicolumn{2}{|c|}{\(\mathbf{K}_{0}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1A3x & 161 & 197 \\
\hline
\end{tabular}

\section*{With electronics option}
\begin{tabular}{|l|c|c|}
\hline & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{1}}[\mathrm{mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1A3x & 176 & 212 \\
\hline
\end{tabular}

\subsection*{4.9.9 8D1B3x.xxxBH - 8GM40 gearbox (gearbox size 080)}


Without electronics option (8D1B3x.A, 8D1B3x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{0}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM40 1-stage & 221 & 257 \\
\hline 8D1B33 with 8GM40 2-stage & 238.5 & 274.5 \\
\hline
\end{tabular}

With electronics option (8D1B3x.G, 8D1B3x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{1}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM40 1-stage & 236 & 272 \\
\hline 8D1B33 with 8GM40 2-stage & 253.5 & 289.5 \\
\hline
\end{tabular}

\subsection*{4.9.10 8D1B3x.xxxCI - 8GM45 gearbox (gearbox size 089)}


81DB3x.xxxCxxIxx-1 81DB3x.xxxCxxKxx-1

\footnotetext{
81DB3x.A
81DB3x.B
}

Without electronics option (8D1B3x.A, 8D1B3x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{*}{ Gearbox motor } & \multicolumn{2}{|c|}{\(\mathbf{K}_{\mathbf{0}}\) [mm] } \\
\cline { 2 - 4 } & Without holding brake & \\
\hline 8D1B33 with 8GM45 1-stage & 232.5 & With holding brake \\
\hline 8D1B33 with 8GM45 2-stage & 250 & 283.5 \\
\hline
\end{tabular}

With electronics option (8D1B3x.G, 8D1B3x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{1}[\mathrm{~mm}]\)} \\
\hline 8D1B33 with 8GM45 1-stage & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM45 2-stage & 247.5 & 298.5 \\
\hline
\end{tabular}

\subsection*{4.9.11 8D1B3x.xxxDJ - 8GM50 gearbox (gearbox size 090)}


8D1B3x.A
8D1B3x.B

Without electronics option (8D1B3x.A, 8D1B3x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{\mathbf{0}}\) [mm] } \\
\hline \cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM50 1-stage & 228.5 & 264.5 \\
\hline 8D1B33 with 8GM50 2-stage & 246.5 & 282.5 \\
\hline
\end{tabular}

With electronics option (8D1B3x.G, 8D1B3x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{3}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{1}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM50 1-stage & 243.5 & 279 \\
\hline 8D1B33 with 8GM50 2-stage & 261.5 & 297.5 \\
\hline
\end{tabular}

\subsection*{4.9.12 8D1B3x.xxxEH - 8GM55 gearbox (gearbox size 080)}


Without electronics option (8D1B3x.A, 8D1B3x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathrm{K}_{0}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM55 1-stage & 230.5 & 266.5 \\
\hline 8D1B33 with 8GM55 2-stage & 248.5 & 284.5 \\
\hline
\end{tabular}

With electronics option (8D1B3x.G, 8D1B3x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{1}[\mathrm{~mm}]\)} \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GM55 1-stage & 245.5 & 281.5 \\
\hline 8D1B33 with 8GM55 2-stage & 263.5 & 299.5 \\
\hline
\end{tabular}
4.9.13 8D1B3x.xxxHJ - 8GG40 gearbox (gearbox size 090)


Without electronics option (8D1B3x.A, 8D1B3x.B)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathbf{K}_{0}\) [mm] } \\
\cline { 2 - 4 } & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GG40 1-stage & 226 & 262 \\
\hline 8D1B33 with 8GG40 2-stage & 243.5 & 279.5 \\
\hline
\end{tabular}

With electronics option (8D1B3x.G, 8D1B3x.H)
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Gearbox motor } & \multicolumn{2}{c|}{\(\mathrm{K}_{1}[\mathrm{~mm}]\)} \\
\hline & Without holding brake & With holding brake \\
\hline 8D1B33 with 8GG40 1-stage & 241 & 277 \\
\hline 8D1B33 with 8GG40 2-stage & 258.5 & 294.5 \\
\hline
\end{tabular}

\subsection*{4.10 Pinouts}

\section*{Danger!}

Before performing service work, disconnect the power supply and wait 5 minutes to ensure that the DC bus of the drive system has discharged. Observe regulations!

\section*{Warning!}

Drive systems can carry high levels of electrical voltage.
Never connect or disconnect the connector while voltage is applied!

\section*{Information:}

ACOPOSmotor Compact modules are only permitted to be wired using the cables provided by B\&R for this purpose.
see "Cables" on page 184

\subsection*{4.10.1 Hybrid cable - Pinout}


ACOPOSmotor Compact modules are equipped with two connections for hybrid cables; as a result, only one cable to the control cabinet is needed. The hybrid cable ensures the power supply and transfer of POWERLINK data. Additional ACOPOSmotor Compact modules are easily connected via daisy chaining.

(1) Power supply cable (X3A / control cabinet)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 915 connector 2+3+Bus female & Pin & Function & Color & Pin & RJ45 connector \\
\hline \multirow[t]{9}{*}{} & 1 & DC bus + & Red & --- & \multirow[t]{9}{*}{} \\
\hline & 2 & DC bus - & Black & --- & \\
\hline & A & BAT \({ }^{1)}\) & Pink & --- & \\
\hline & B & Receive signal inverted & --- & 6 & \\
\hline & C & Receive signal & --- & 3 & \\
\hline & D & Transmit signal & --- & 1 & \\
\hline & E & Transmit signal inverted & --- & 2 & \\
\hline & F & Enable signal - & Brown & --- & \\
\hline & G & Enable signal + & Violet & --- & \\
\hline
\end{tabular}
1) Function BAT is currently not supported. The open cable end must be insulated by the customer.

\subsection*{4.10.2 Electronics option - Pinout}
(O) 8D1bcd.G..., 8D1bcd.H..., 8D1bcd.I..

X23A, X24A (trigger)


Table 100: X23A, X24A connector - Pinout
1) The sensor/actuator power supply is not permitted to be external.

\subsection*{4.11 POWERLINK node number setting}

The POWERLINK node number can be set using the two hexadecimal coded rotary switches located on the back of the module:
\begin{tabular}{|l|l|l|l|l|}
\hline
\end{tabular}

Table 101: POWERLINK node number setting

\section*{5 Dimensioning}

\subsection*{5.1 Power supply}


The power supply of ACOPOSmotor Compact modules (8D1) is provided via the X3A connection.

\section*{Information:}

The permissible supply voltage for ACOPOSmotor Compact 8D1 modules is 24 to 58 VDC.

\section*{Warning!}

The maximum current-carrying capacity of the power contacts of the 9-pin hybrid connector (connection \(X 3 A\) ) is 20 A at \(40^{\circ} \mathrm{C}\).

\section*{Warning!}

Fuse protection of the ACOPOSmotor Compact power supply cable must take place in accordance with the national regulations for the installation location.

\subsection*{5.1.1 Power supply unit}

The power supply unit must be certified and meet the following requirements:
- Galvanic isolation between input and output
- Max. permissible output voltage: 24 to 58 VDC
- Overvoltage protection max. 60 VDC (also against internal overvoltages)
- Max. permissible output current: 60 A
- Fuse protection output: DC fuse or circuit breaker with max. 35 A
- Output protective measures: No-load proof, overload-proof, continuous short circuit protection and feedback protection
- The power supply unit must have UL certification for the USA.

\section*{Information:}

ACOPOSmulti auxiliary supply module \(8 \mathrm{BOC} 0320 \mathrm{Hx} 00 . \mathrm{B00}-1\) meets these requirements. Output fuse protection is not necessary since \(8 \mathrm{BOCO32OHx} 00 . \mathrm{B00}-1\) has module-internal current limitation.

\subsection*{5.2 Fuse protection of the power supply cable}

Due to the daisy-chain connection, there is a risk that upstream devices may be damaged in the event of a fault at the end of the connection (e.g. short circuit, defective wiring). For the power connection (DC+ and DC-), this is prevented by an overload and short-circuit shutdown of the supplying module.

\section*{Information:}

It is recommended that the STO circuit be protected accordingly.
- A max. operating current of 6 mA is expected per connected device.
- The maximum permissible current in the STO line is not permitted to permanently exceed 500 mA .
- The fuse component used must be suitable for DC and have a breaking capacity corresponding to the voltage source.

\subsection*{5.3 Procedure for sizing the DC bus}

The dimensioning examples presented in this section are intended to provide a rough estimate of the application sizing based on the power balance of the individual modules for a static operating point. This does not allow a detailed sizing of dynamic operating cycles since this depends on other factors such as the cable lengths used between modules.

The power consumption on the DC bus of an ACOPOSmotor Compact module can be calculated as follows depending on the order option and the static operating point ( \(\mathrm{n}>0\) ):
\[
\begin{aligned}
& P=P_{\text {mech }} / 0.85+P_{\text {on }}(\text { optional })+P_{24 V D c, \text { out }}(\text { optional })+10 \mathrm{~W} \\
& P_{\text {mech }}=\omega \cdot M=2 \pi \cdot n[r p m] / 60 \mathrm{~s} \cdot \mathrm{M}
\end{aligned}
\]

Maximum permissible power on the DC bus at \(40^{\circ} \mathrm{C}\) ambient temperature and supply voltage of 58 V :
\[
\mathrm{P}_{\mathrm{DC} \text { bus }}=\mathrm{U}_{\mathrm{DC} \text { bus }} \cdot \mathrm{I}_{\mathrm{DC} \text { bus, max }}=58 \mathrm{VDC} \cdot 20 \mathrm{~A}=1.16 \mathrm{~kW}
\]

At lower supply voltages, the power on the DC bus is also reduced accordingly.

\section*{Formula symbols used}
\begin{tabular}{|c|c|}
\hline Symbol & Name \\
\hline \(\mathrm{P}_{\mathrm{x}}\) & Power requirements [W] of the ACOPOSmotor Compact module \\
\hline \(\mathrm{P}_{\text {mech }}\) & Mechanical power [W] on the motor shaft \\
\hline \(\mathrm{P}_{\text {on }}\) & Connection power [W] of the holding brake \\
\hline \(\mathrm{P}_{24 \mathrm{VDC,} \text { Out }}\) & Maximum power consumption [W] of the 24 VDC output \\
\hline \(\omega\) & Angular velocity \\
\hline M & Torque [ Nm ] \\
\hline n & Speed [rpm] \\
\hline \(\mathrm{P}_{\text {DC bus }}\) & Permissible power [W] on the DC bus \\
\hline \(\mathrm{U}_{\mathrm{DC} \text { bus }}\) & DC bus voltage [V] \\
\hline \(\mathrm{I}_{\text {DC bus, max }}\) & Maximum permissible DC bus current [A] \\
\hline \(\mathrm{P}_{\text {sum }}\) & Total power [W] of the ACOPOSmotor Compact modules on a daisy-chain segment \\
\hline
\end{tabular}

\subsection*{5.3.1 Dimensioning example 1}

This dimensioning example assumes simultaneous daisy-chain operation of three ACOPOSmotor Compact modules ( \(\mathrm{U}_{\mathrm{DC} \text { bus }}=54 \mathrm{~V}\) ).

\begin{tabular}{|l|c|c|c|}
\hline & \multicolumn{2}{|c|}{ ACOPOSmotor Compact } & \\
\hline & Module 1 & Module 2 & Module 3 \\
\hline Order code & 8D1A22.HI2000000-1 & 8D1A23.AD0000000-1 & 8D1A23.HH2000000-1 \\
\hline Size & & 2 & \\
\hline Gearbox & Yes & No & \\
\hline Electronics option & Yes & No & Yes \\
\hline Holding brake & 2,500 & No & Yes \\
\hline Speed \([\mathrm{rpm}]\) & 0.49 & 1,750 & 3,200 \\
\hline Torque \([\mathrm{Nm}]\) & & 0.95 & 0.35 \\
\hline
\end{tabular}

Calculation of power consumption ( \(\mathrm{P}_{\mathrm{x}}\) ):
Module 1
\(P_{\text {mech } 1}=2 \pi \cdot 2500 / 60 \mathrm{~s} \cdot 0.49 \mathrm{Nm}=128 \mathrm{~W}\)
\(P_{1}=128 \mathrm{~W} / 0.85+8.4 \mathrm{~W}+7 \mathrm{~W}+10 \mathrm{~W}=176 \mathrm{~W}\)
Module 2
\(P_{\text {mech2 }}=2 \pi \cdot 1750 / 60 \mathrm{~s} \cdot 0.95 \mathrm{Nm}=174 \mathrm{~W}\) \(\mathrm{P}_{2}=174 \mathrm{~W} / 0.85+10 \mathrm{~W}=215 \mathrm{~W}\)

Module 3
\[
\begin{aligned}
& P_{\text {mech } 3}=2 \pi \cdot 1200 / 60 \mathrm{~s} \cdot 0.95 \mathrm{Nm}=117 \mathrm{~W} \\
& \mathrm{P}_{3}=117 \mathrm{~W} / 0.85+8.4 \mathrm{~W}+7 \mathrm{~W}+10 \mathrm{~W}=163 \mathrm{~W}
\end{aligned}
\]

The total power ( \(P_{\text {sum }}\) ) of the three modules is therefore as follows:
\[
P_{\text {sum }}=P_{1}+P_{2}+P_{3}=176 \mathrm{~W}+215 \mathrm{~W}+163 \mathrm{~W}=554 \mathrm{~W}<54 \mathrm{~V} \cdot \mathbf{2 0} \mathrm{~A}=1.08 \mathrm{~kW}
\]

Since the total power ( \(P_{\text {sum }}\) ) of the three modules does not exceed the maximum DC bus voltage ( \(P_{D C \text { bus }}\) ) at the considered operating point, static operation is possible in principle in this configuration.


Figure 8: Performance diagram for dimensioning example 1

\subsection*{5.3.2 Dimensioning example 2}

This dimensioning example assumes simultaneous daisy-chain operation of five ACOPOSmotor Compact modules \(\left(\mathrm{U}_{\mathrm{DC} \text { bus }}=58 \mathrm{~V}\right)\).

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ACOPOSmotor Compact} \\
\hline & Module 1 & Module 2 & Module 3 & Module 4 & Module 5 \\
\hline Order code & 8D1A23.HH0000000-1 & 8D1A23.BH2000000-1 & 8D1A22.BI0000000-1 & 8D1A23.HD0000000-1 & 8D1A23.HB2000000-1 \\
\hline Size & \multicolumn{5}{|c|}{2} \\
\hline Gearbox & \multicolumn{5}{|c|}{No} \\
\hline Electronics option & Yes & \multicolumn{2}{|c|}{No} & \multicolumn{2}{|c|}{Yes} \\
\hline Holding brake & No & Yes & \multicolumn{2}{|c|}{No} & Yes \\
\hline Speed [rpm] & 3,950 & 2,700 & 3,750 & 1,650 & 1,200 \\
\hline Torque [ Nm ] & 0.65 & 0.75 & 0.45 & 1.00 & 0.85 \\
\hline
\end{tabular}

Calculation of power consumption ( \(\mathrm{P}_{\mathrm{x}}\) ):
\begin{tabular}{ll} 
Module 1 & \(\mathrm{P}_{\text {mech1 }}=2 \pi \cdot 3950 / 60 \mathrm{~s} \cdot 0.65 \mathrm{Nm}=269 \mathrm{~W}\) \\
& \(\mathrm{P}_{1}=269 \mathrm{~W} / 0.85+7 \mathrm{~W}+10 \mathrm{~W}=333 \mathrm{~W}\) \\
Module 2 & \(\mathrm{P}_{\text {mech2 }}=2 \pi \cdot 2700 / 60 \mathrm{~s} \cdot 0.75 \mathrm{Nm}=212 \mathrm{~W}\) \\
& \(\mathrm{P}_{2}=212 \mathrm{~W} / 0.85+8.4 \mathrm{~W}+10 \mathrm{~W}=\mathbf{2 6 8} \mathrm{W}\) \\
Module 3 & \(\mathrm{P}_{\text {mech3 }}=2 \pi \cdot 3750 / 60 \mathrm{~s} \cdot 0.45 \mathrm{Nm}=177 \mathrm{~W}\) \\
& \(\mathrm{P}_{3}=177 \mathrm{~W} / 0.85+10 \mathrm{~W}=218 \mathrm{~W}\) \\
Module 4 & \(\mathrm{P}_{\text {mech4 }}=2 \pi \cdot 1650 / 60 \mathrm{~s} \cdot 1.00 \mathrm{Nm}=173 \mathrm{~W}\) \\
& \(\mathrm{P}_{4}=173 \mathrm{~W} / 0.85+7 \mathrm{~W}+10 \mathrm{~W}=\mathbf{2 2 1} \mathrm{W}\) \\
Module 5 & \(\mathrm{P}_{\text {mech } 5}=2 \pi \cdot 1200 / 60 \mathrm{~s} \cdot 0.85 \mathrm{Nm}=107 \mathrm{~W}\) \\
& \(\mathrm{P}_{5}=107 \mathrm{~W} / 0.85+8.4 \mathrm{~W}+7 \mathrm{~W}+10 \mathrm{~W}=151 \mathrm{~W}\)
\end{tabular}

The total power ( \(\mathrm{P}_{\text {sum }}\) ) of the five modules is therefore as follows:
\[
\begin{aligned}
& P_{\text {sum }}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=333 \mathrm{~W}+268 \mathrm{~W}+218 \mathrm{~W}+221 \mathrm{~W} \\
& +151 \mathrm{~W}=1.19 \mathrm{~kW}>1.16 \mathrm{~kW}
\end{aligned}
\]

Since the total power ( \(\mathrm{P}_{\text {sum }}\) ) of the five modules exceeds the maximum DC bus voltage ( \(\mathrm{P}_{\mathrm{DC}}\) bus \()\) at the considered operating point, continuous operation is not possible in this configuration.


Figure 9: Performance diagram for dimensioning example 2

\subsection*{5.4 Procedure for sizing the STO power supply cable}

The number of possible daisy-chain connections is limited by the STO power supply cable, for example.

\section*{Two factors play a role in this:}
- The maximum current-carrying capacity of 500 mA is not permitted to be exceeded.
- The voltage drop is not permitted to cause the voltage at the last enable input to fall below 15 V .

\section*{Factor 1 - Maximum current-carrying capacity}

The max. current-carrying capacity \({ }^{4}\) ( 500 mA ) and max. enable input currents ( 5.5 or 6.0 mA ) result in the following limit of modules connected via daisy chain:

24 V enable input voltage - Max. enable input current: 5.5 mA \(\mathrm{n}=500 \mathrm{~mA} / 5.5 \mathrm{~mA}=90\)
The maximum number of modules connected via daisy chain is 90 .
30 V enable input voltage - Max. enable input current: 6.0 mA \(\mathrm{n}=500 \mathrm{~mA} / 6.0 \mathrm{~mA}=83\)
The maximum number of modules connected via daisy chain is 83 .

\section*{Factor 2 - Voltage drop}

The voltage drop factor must be calculated separately for each application. This can be done using the following equivalent circuit diagram and analogously to the following dimensioning examples.


Figure 10: Equivalent circuit diagram
The calculation formulas are listed in the dimensioning examples.
The following data is available for complying with these conditions:
- Resistance of the STO line in the hybrid cable: \(R_{L}\left(T_{a m b}\right)=R_{L}\left(T_{0}\right) \cdot\left(1+\alpha \cdot\left(T_{a m b}-T_{0}\right)\right)\)
\[
\begin{array}{ll}
\text { Where: } & R_{L}\left(T_{0}\right)=\frac{\rho \cdot 1}{\mathrm{~A}} \\
& T_{0}=20^{\circ} \mathrm{C} \\
& \rho=0,01786 \frac{\Omega \mathrm{~mm}^{2}}{\mathrm{~m}} \\
& \alpha=3,93 \cdot 10^{-3} \cdot 1 /{ }^{\circ} \mathrm{C}
\end{array}
\]
- The cross-sectional area of the enable stranded wires of offered hybrid cables is \(0.34 \mathrm{~mm}^{2}\).
- Device-internal resistance in the STO path: \(\mathrm{R}_{\text {int }}=83.3 \mathrm{~m} \Omega\)

Formula symbols used
\begin{tabular}{|l|l|}
\hline Symbol & Name \\
\hline\(A\) & Cross-sectional area \(\left[\mathrm{mm}^{2}\right]\) \\
\hline\(\alpha\) & Temperature coefficient \\
\hline \(\mathrm{I}_{\text {FUSE }}\) & Fuse protection \([\mathrm{mA}]\) of the STO power supply cable \\
\hline \(\mathrm{I}_{\text {IN }}\) & Max. enable input current \([\mathrm{A}]\) at specific voltage \\
\hline \(\mathrm{I}_{\mathrm{N}, \mathrm{STO}, \mathrm{x}}\) & Current consumption \([\mathrm{A}]\) of the ACOPOSmotor Compact module \\
\hline I & Line length \([\mathrm{m}]\) \\
\hline n & Limit of modules connected via daisy chain \\
\hline\(\rho\) & Specific resistance \\
\hline 4\()\) If a fuse with & \(\mathrm{I}_{\text {FUSE }}<500 \mathrm{~mA}\) is used, this must be taken into account when calculating the limit on modules connected via daisy chain. \\
\hline 152 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Symbol & Name \\
\hline\(R_{\text {FusE }}\) & Resistance \([\Omega]\) of the fuse being used \\
\hline \(\mathrm{R}_{\text {int,STo }}\) & Device-internal resistance \([\Omega]\) in the STO path \\
\hline \(\mathrm{R}_{\mathrm{L}}(\mathrm{T})\) & Resistance \([\Omega]\) of the STO line in the hybrid cable depending on the ambient temperature \\
\hline \(\mathrm{R}_{\mathrm{L}, \mathrm{STO}, 1 \mathrm{~m}}\) & Max. cable resistance \([\Omega]\) per meter \\
\hline \(\mathrm{T}_{\text {amb }}\) & Ambient temperature \(\left[{ }^{\circ} \mathrm{C}\right]\) \\
\hline \(\mathrm{T}_{0}\) & Reference temperature \(\left[{ }^{\circ} \mathrm{C}\right]\) \\
\hline \(\mathrm{U}_{\text {STO }}\) & Voltage at the source \([\mathrm{V}]\) \\
\hline
\end{tabular}

\subsection*{5.4.1 Dimensioning example 1}

This dimensioning example assumes simultaneous daisy-chain operation of three ACOPOSmotor Compact modules.

\section*{Assumptions:}
- Fuse used: \(\mathrm{R}_{\text {Fuse }}=15 \Omega\)
- Voltage at the source: \(\mathrm{U}_{\text {sто }}=24 \mathrm{~V}\)

- Ambient temperature: \(\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}\)



Figure 11: Equivalent circuit diagram for dimensioning example 1

\section*{Cable resistance calculation:}

Maximum cable resistance per meter:
\[
R_{\mathrm{LSTO}, 1 \mathrm{~m}}=\frac{\rho \cdot \mathrm{I}}{\mathrm{~A}} \cdot\left(1+\alpha \cdot\left(\mathrm{T}_{\mathrm{amb}}-\mathrm{T}_{0}\right)\right)=\frac{0,01786 \frac{\Omega \mathrm{~mm}^{2}}{\mathrm{~m}} \cdot 1 \mathrm{~m}}{0,34 \mathrm{~mm}^{2}} \cdot\left(1+3,93 \cdot 10^{-3} \cdot \frac{1}{\mathrm{~K}} \cdot(40-20) \mathrm{K}\right)=56,7 \mathrm{~m} \Omega
\]

\section*{Calculation of the voltages applied to the enable inputs:}

\section*{10 m cable}
\[
U_{U_{N S T O, 1}}=U_{S T O}-3 \cdot \mathrm{I}_{\mathrm{N}} \cdot\left(R_{\text {FUSE }}+2 \cdot R_{\mathrm{LSTO}, 10 \mathrm{~m}}+2 \cdot R_{\text {int,STO }}\right)=\mathbf{2 4 V}-3 \cdot 5,5 \mathrm{~mA} \cdot(15 \Omega+20 \cdot 56,7 \mathrm{~m} \Omega+2 \cdot 83,3 \mathrm{~m} \Omega)=\mathbf{2 3}, 731 \mathbf{V}
\]

3 m cable
\[
\mathrm{U}_{\mathrm{INSTO}, 2}=\mathrm{U}_{\mathrm{IN}, S T \mathrm{O}, 1}-2 \cdot \mathrm{I}_{\mathrm{N}} \cdot\left(2 \cdot \mathrm{R}_{\mathrm{LSTO}, 3 \mathrm{~m}}+4 \cdot \mathrm{R}_{\mathrm{int}, \mathrm{STO}}\right)=23,73 \mathbf{1 V}-2 \cdot 5,5 \mathrm{~mA} \cdot(2 \cdot 3 \cdot 56,7 \mathrm{~m} \Omega+4 \cdot 83,3 \mathrm{~m} \Omega)=\mathbf{2 3 , 7 2 4} \mathbf{V}
\]

5 m cable

Operation in this configuration is possible from the point of view of the enable signal because 23.719 V \(>15 \mathrm{~V}\).

\subsection*{5.4.2 Dimensioning example 2}

This dimensioning example assumes simultaneous daisy-chain operation of five ACOPOSmotor Compact modules.

\section*{Assumptions:}
- Fuse used: None
- Voltage at the source: \(\mathrm{U}_{\text {sто }}=30 \mathrm{~V}\)

- Ambient temperature: \(\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}\)


Figure 12: Equivalent circuit diagram for dimensioning example 2

\section*{Cable resistance calculation:}

Maximum cable resistance per meter:
\[
R_{\mathrm{LSTO}, 1 \mathrm{~m}}=\frac{\rho \cdot 1}{\mathrm{~A}} \cdot\left(1+\alpha \cdot\left(\mathrm{T}_{\mathrm{amb}}-\mathrm{T}_{0}\right)\right)=\frac{0,01786 \frac{\Omega \mathrm{~mm}^{2}}{\mathrm{~m}} \cdot 1 \mathrm{~m}}{0,34 \mathrm{~mm}^{2}} \cdot\left(1+3,93 \cdot 10^{-3} \cdot \frac{1}{\mathrm{~K}} \cdot(20-20) \mathrm{K}\right)=52,5 \mathrm{~m} \Omega
\]

\section*{Calculation of the voltages applied to the enable inputs:} 15 m cable
\[
\mathrm{U}_{\mathrm{INSTO}, 1}=\mathrm{U}_{\mathrm{STO}}-5 \cdot \mathrm{I}_{\mathrm{N}} \cdot\left(2 \cdot \mathrm{R}_{\mathrm{LSTO}, 15 \mathrm{~m}}+2 \cdot \mathrm{R}_{\mathrm{int}, \mathrm{STO}}\right)=30 \mathrm{~V}-5 \cdot 6 \mathrm{~mA} \cdot(2 \cdot 15 \cdot 52,5 \mathrm{~m} \Omega+2 \cdot 83,3 \mathrm{~m} \Omega)=\mathbf{2 9}, 948 \quad \mathrm{~V}
\]

5 m cable
\[
U_{I_{N S T O}, 2}=U_{I_{N S T O, 1}}-4 \cdot \mathrm{I}_{\mathbb{N}} \cdot\left(2 \cdot R_{\mathrm{LSTO}, 5 \mathrm{~m}}+4 \cdot \mathrm{R}_{\mathrm{int}, \mathrm{STO}}\right)=29,948 \mathrm{~V}-4 \cdot 6 \mathrm{~mA} \cdot(2 \cdot 5 \cdot 52,5 \mathrm{~m} \Omega+4 \cdot 83,3 \mathrm{~m} \Omega)=29,927 \mathbf{V}
\] 10 m cable
\[
U_{I_{N S T O, 3}}=U_{\mathbb{I N S T O}^{2}, 2}-3 \cdot \mathrm{I}_{\mathbb{N}} \cdot\left(2 \cdot R_{\mathrm{LSTO}, 10 \mathrm{~m}}+4 \cdot \mathrm{R}_{\mathrm{int}, \mathrm{STO}}\right)=29,927 \mathrm{~V}-3 \cdot 6 \mathrm{~mA} \cdot(2 \cdot 10 \cdot 52,5 \mathrm{~m} \Omega+4 \cdot 83,3 \mathrm{~m} \Omega)=\mathbf{2 9}, 902 \mathbf{V}
\] 10 m cable
\[
U_{I_{N S T O, 4}}=U_{I N, S T O, 3}-2 \cdot \mathrm{I}_{\mathbb{N}} \cdot\left(2 \cdot R_{\mathrm{LSTO}, 10 \mathrm{~m}}+4 \cdot \mathrm{R}_{\mathrm{int}, \mathrm{STO}}\right)=29,902 \mathrm{~V}-2 \cdot 6 \mathrm{~mA} \cdot(2 \cdot 10 \cdot 52,5 \mathrm{~m} \Omega+4 \cdot 83,3 \mathrm{~m} \Omega)=29,885 \quad \mathrm{~V}
\] 15 m cable

Operation in this configuration is possible from the point of view of the enable signal because 29.874 V \(>15 \mathrm{~V}\).

\section*{6 Installation and connection}

\subsection*{6.1 Before installation}

Read this user's manual completely before performing any work activities.
In addition, take into account the technical documentation for all other machine components as well as the finished machine.

\subsection*{6.2 Safety}

Work on and wiring of ACOPOSmotor Compact (8DI) modules is only permitted to be carried out when they are in a voltage-free state and only by qualified personnel \({ }^{2}\) ). The control cabinet must first be de-energized and secured against being switched on again.

Only use appropriate equipment and tools. Protect yourself with safety equipment.

\section*{Warning!}

Personal injury and damage to property due to unauthorized modifications!
As a result of unauthorized modifications to the product, the performance and limit values can be negatively affected and dangers can arise. Due to this, severe damage to property and injuries cannot be excluded.

Unauthorized modifications are therefore prohibited!
- Do not carry out any unauthorized modifications or alterations to the product.
- If necessary, contact B\&R.

\subsection*{6.2.1 Noise emissions}

Take into account the health of personnel in proximity to the machine.

\section*{Warning!}

Hearing damage due to noise levels.
During operation, the motor can exceed the permissible workplace noise level and also cause hearing damage.
- Implement suitable noise reduction measures (e.g. housings, covers or other sound-insulating measures).
- Take into account applicable industrial safety regulations.

\subsection*{6.2.2 General sources of danger}

\section*{Tampering of protection or safety devices}

Protective and/or safety devices protect you and other persons from dangerous voltage, rotating or moving elements and hot surfaces.

\section*{Danger!}

Personal injury and damage to property due to tampering of protective equipment!
If protective or safety devices are removed or put out of operation, there is no longer any personal protection and serious personal injury and damage to property can occur.
- Do not remove any safety devices.
- Do not put any safety devices out of operation.
- Always use all safety devices also for temporary testing and trial operations!

\footnotetext{
2) see "Qualified personnel" on page 9
}

\section*{Dangerous voltage}

To operate the motors, dangerous voltage must be applied to certain parts.

\section*{Danger!}

Risk of injury due to electric shock!
If live parts are touched, there is immediate danger of fatal electric shock.
If connections are connected or disconnected in the incorrect order or while voltage is applied, electric arcs can occur and persons and contacts can be damaged.
Even if the motor is not rotating or is running as a generator driven externally, the control and power connections can still carry voltage!
- Never touch connections when the power is switched on.
- Never disconnect or connect electrical connections to the motor and servo drive while voltage is applied!
- Do not stay in the danger zone during operation and secure it against access by unauthorized persons.
- Always operate the motor with all safety equipment. Do this also for temporary testing and trial operations!
- Keep all covers and control cabinet doors closed during operation and as long as the machine is not disconnected from the mains.
- Before working on motors, gearboxes or servo drives or in the danger zone of your machine, disconnect them completely from the mains and secure them against being switched on again by other persons or automatic systems.
- Note the discharge time of any existing DC bus.
- Only connect measuring instruments in a current- and voltage-free state!

\section*{Danger due to electromagnetic fields}

Electromagnetic fields are generated by the operation of electrical power engineering equipment such as transformers, inverters and motors.

\section*{Danger!}

Danger to health due to electromagnetic fields!
The functionality of a heart pacemaker can be impaired by electromagnetic fields to such an extent that the wearer experiences harm to his or her health, possibly with a fatal outcome.
- Observe relevant national health and safety regulations.
- Persons with pacemakers are not allowed to be in endangered areas.
- Warn staff by providing information, warnings and safety identification.
- Secure the danger zone by means of barriers.
- Ensure that electromagnetic fields are reduced at their source (using shields, for example).

\section*{Dangerous motion}

By rotating and positioning motions of the motors, machine elements are moved or driven and loads conveyed.
After switching on the machine, movements of the motor shaft must always be expected! For this reason, high-er-level protective measures must be put in place to ensure that personnel and the machine are protected. This type of protection can be achieved, for example, by using stable mechanical protective equipment such as protective covers, protective fences, protective gates or photoelectric sensors.

In the immediate vicinity of the machine, provide sufficient and easily accessible emergency switch-off devices to stop the machine as quickly as possible in the event of an accident.

\section*{Danger!}

Danger of injury due to rotating or moving elements and loads!
By rotating or moving elements, body parts can be drawn in or severed or subjected to impacts.
- Do not stay in the danger zone during operation and secure it against access by unauthorized persons.
- Before working on the machine, secure it against unwanted movements. If a holding brake is available, it must be checked for functionality after machine actuators have been attached and after maintenance and repair work has been carried out!
- Keep all covers and control cabinet doors closed during operation and as long as the machine is not disconnected from the mains.
- Always operate the motor with all safety equipment. Do this also for temporary testing and trial operations!
- Motors can be started automatically via remote control! If appropriate, a corresponding warning symbol must be applied, and protective measures must be implemented to prevent entry into the high-risk area!

\section*{Danger!}

Danger of injury due to loads!
Suspended loads can result in personal injury or death if they fall down. Heavy loads can tilt and trap people or severely injure them.
Failure to comply with instructions, guidelines and regulations or use of unsuitable or damaged tools and devices can result in serious injury and/or damage to property.
- Motors should only be lifted without any additional load from other products (e.g. connection elements).
- Only use permitted lifting, transport and aids with sufficient lifting capacity.
- Never stand in the danger zone or under suspended loads.
- Secure the product against dropping and tilting.
- Wear safety shoes, protective clothing and a safety helmet.
- Comply with the national and local regulations.

\section*{Warning!}

Danger of injury due to incorrect control or a defect!
Improper control of motors or a defect can result in injuries and unintended and hazardous movements of motors.

Such incorrect behavior can be triggered by:
- Incorrect installation or faults when handling components
- Improper or incomplete wiring
- Defective devices (servo drive, motor, position encoder, cables, brake)
- Incorrect control (e.g. caused by software error)

Risk due to hot surfaces
Due to the power dissipation from the motor and friction in the gearbox, these components as well as their environment can reach a temperature of more than \(100^{\circ} \mathrm{C}\).

The resulting heat is released to the environment via the housing and the flange.

\section*{Warning!}

Risk of burns due to hot surfaces!
Touching hot surfaces (e.g. motor and gearbox housings, as well as connected components), can result in very severe burns due to the very high temperature of these parts.
- Do not stay in the danger zone during operation and secure it against access by unauthorized persons.
- Never touch the motor or gearbox housing as well as adjacent surfaces during nominal load operation.
- Be aware of hot surfaces also during standstill.
- Allow the motor and gearbox to cool down sufficiently before working on them; there remains the risk of burns for a long period of time after they are switched off.
- Always operate the motor or gearbox with all safety devices. Do this also for temporary testing and trial operations!

\subsection*{6.3 Shaft end and bearing}

The motor shaft is supported on both sides with grease-lubricated grooved ball bearings. Protect the motor from damage due to excessive radial and axial forces!
Under all circumstances, avoid the following loads on the front shaft end or the rear motor housing cover:
- Excessive pressure
- Impacts
- Hammer blows

\section*{Warning!}

\section*{Damage due to excessive axial forces!}

The motor bearings can be damaged or the service life reduced by excessive axial forces (e.g. by impacting or pressing) on the shaft. Damage to the encoder or any installed options (holding brake, gearbox) is also possible.
- Do not hit the motor or output shaft with a hammer. The impact of a hammer certainly exceeds the permissible values.
- In addition, avoid impact and excessive pressure on the motor and output shaft.

\section*{Overdetermined bearing}

Avoid an overdetermined bearing when attaching drive elements onto the output shaft!. The necessarily occurring tolerances cause additional forces on the output shaft bearing. This can damage or significantly reduce the service life of the bearings!

\section*{Lifting and transporting}

The weight of attachment elements (toothed gears, pulleys, couplings, etc.) can have a harmful effect on the bearing during lifting and transportation from the motor. Take into account these radial and axial loads during these operations!

\section*{Installing and removing attachment elements}

Always install and remove the attachment elements (toothed gears, pulleys, couplings, etc.) at the shaft end without any axial load on the motor bearings and all other parts installed in the motor. For this, use suitable clamping sets, pressure sleeves, other clamping elements, retractors, etc. The centering hole on the face side of the shaft end can be used for this work.
Pay attention to balanced connection elements or corresponding assembly.
Secure the attachments against unintended loosening after installation and before operation.

\subsection*{6.4 Installing in the system}

Before working on motors, gearboxes or servo drives or in the danger zone of your machine, disconnect them completely from the mains and secure them against being switched on again by other persons or automatic systems.

\section*{Inspection}

Before installation, inspect the components to determine whether they are suitable and undamaged.

\section*{Warning!}

Personal injury and damage to property due to damaged or unsuitable machine components!
Operating a machine with damaged or unsuitable components is a safety risk and can result in failures. Severe damage to property and injuries cannot be excluded.
- Never operate a machine with a damaged motor or gearbox or any other damaged component.
- Never install a damaged component in a machine.
- Do not use motors or gearboxes that have already been overloaded during operation.
- Before installation, ensure that the motor or gearbox is suitable for the machine.
- It is better not to carry out short-term test and trial operations with damaged or inappropriate machine components.
- Label damaged or non-operational components in a readily visible location and clearly.

\section*{Cleaning}

Clean anti-corrosive agents and dirt off the output shaft and flange of the motor as well as the opposite side of the shaft and flange on the machine.

\section*{Caution!}

Damage to property caused by improper cleaning.
Contact with cleaning agents can damage oil seals, sealing lips and gaskets.
- Only use suitable and material-friendly cleaning agents.
- Ensure that oil seals, sealing lips and gaskets do not come into contact with cleaning agents.

\section*{Installation with the mounting flange}

Attach the motor with the motor flange, which also serves as a cooling surface, directly onto the machine.
For this, the motor must be screwed to the machine via the flange.
Apply tightening torque in accordance with the standard when tightening the screws and use a screw locking mechanism.

\section*{Note:}

The nameplate should be visible at all times in installed state.

\section*{Safety notices}

A "hot surface" warning label is provided with the product. Attach it to the assembled product so that it is visible at all times.

"Hot surface" warning label

\subsection*{6.4.1 Fasteners and tightening torques}


Use socket head cap screws (ISO 4762 - Property class min. 8.8) and flat washers.
Tighten the screws evenly in diagonally opposite sequence and with the correct tightening torque to avoid distorting the flange and excessively straining screws.

The specified values for screws are calculated values and based on the following requirements:
- Coefficient of friction \(\mu=0.14\)
- Screwing into steel

If the motor is screwed onto other materials or if there are different surface roughnesses, the user must determine the correct tightening torque.

ACOPOSmotor Compact
\begin{tabular}{|l|c|c|c|}
\hline & Screw & Flat washer \([\mathrm{mm}]\) & Tightening torque [Nm] \\
\hline \(8 \mathrm{D} 1 \times 2\) & M5 & \(5.3 \times 9\) & 6 \\
\hline \(8 \mathrm{D} 1 \times 3\) & M6 & \(6.4 \times 11\) & 10 \\
\hline
\end{tabular}

\subsection*{6.5 Connecting and disconnecting the motor}

Observe the following safety guidelines and instructions when connecting and disconnecting the motor:
The module must be connected to ground potential.

\section*{Danger!}

Personal injury and damage to property due to missing ground potential!
If there is no proper ground potential on the module, fault currents can result in serious personal injury and damage to property.
- Connect the ACOPOSmotor Compact module (8D1) properly to ground potential (PE rail) via the module motor flange (also for temporary testing and trial operations!).

\section*{Danger!}

Risk of injury due to electric shock!
If live parts are touched, there is immediate danger of fatal electric shock.
If connections are connected or disconnected in the incorrect order or while voltage is applied, electric arcs can occur and persons and contacts can be damaged.

Even if the motor is not rotating or is running as a generator driven externally, the control and power connections can still carry voltage!
- Never touch connections when the power is switched on.
- Never disconnect or connect electrical connections to the motor and servo drive while voltage is applied!
- Do not stay in the danger zone during operation and secure it against access by unauthorized persons.
- Always operate the motor with all safety equipment. Do this also for temporary testing and trial operations!
- Keep all covers and control cabinet doors closed during operation and as long as the machine is not disconnected from the mains.
- Before working on motors, gearboxes or servo drives or in the danger zone of your machine, disconnect them completely from the mains and secure them against being switched on again by other persons or automatic systems.
- Note the discharge time of any existing DC bus.
- Only connect measuring instruments in a current- and voltage-free state!

\section*{Warning!}

\section*{Risk of burns due to hot surfaces!}

Touching hot surfaces (e.g. motor and gearbox housings, as well as connected components), can result in very severe burns due to the very high temperature of these parts.
- Do not stay in the danger zone during operation and secure it against access by unauthorized persons.
- Never touch the motor or gearbox housing as well as adjacent surfaces during nominal load operation.
- Be aware of hot surfaces also during standstill.
- Allow the motor and gearbox to cool down sufficiently before working on them; there remains the risk of burns for a long period of time after they are switched off.
- Always operate the motor or gearbox with all safety devices. Do this also for temporary testing and trial operations!

\subsection*{6.6 Cable clamp and bend radius}

To ensure that cables and connectors are not exposed to harmful loads, the cable clamp (A) and minimum bend radius ( R ) must be observed during installation.


\section*{Cable clamp (A)}
- A = Max. 300 mm along longitudinal axis of connector
- The connection must be free of force and torque.
- Movement relative to the connector is not permitted!
- Tensile stress on cables and connectors is not permitted!

\section*{Bend radius (R)}
- For the minimum radius values, see the current technical data sheet for the cable.

\section*{7 Safety technology}

\subsection*{7.1 Standard safety technology ("hardwired safety technology")}

Motor-integrated ACOPOSmotor Compact (8D1) drives with standard safety technology implement safety function Safe Torque Off (STO) per EN 61800-5-2. The cutoff corresponds to stop category 0 per EN 60204-1.
Safety functions SS1, SS2, SLS, SOS (EN 61800-5-2) and stop categories 1 and 2 (EN 60204-1) can also be implemented through the use of additional components (time relays, speed monitors, etc.) (see "Wiring the enable inputs per required safety category / SIL / PL and functionality (STO, SS1, SS2, SLS, SOS)" on page 171).

\section*{Caution!}

Safety function STO does not protect against faults that occur in non-safety-related functions of mo-tor-integrated ACOPOSmotor Compact drives with standard safety technology!

\section*{Danger!}

Especially in the area of safety technology, always consult the most current version of this document on the B\&R website for valid specifications (www.br-automation.com)! The specifications in this version of the document are not necessarily current. The user must verify the correctness of specifications before implementing safety functions!

\subsection*{7.1.1 General information}

Safety function STO (safe pulse disabling) is integrated in 8D1 modules for safe stopping. This is designed to satisfy the following safety classifications depending on the external wiring: \({ }^{5)}\)
\begin{tabular}{|l|c|}
\hline Criteria & \multicolumn{1}{c|}{ Characteristic values \({ }^{2)}\)} \\
\cline { 2 - 3 } & ACOPOSmotor Compact (8D1) \\
\hline Maximum safety category per EN ISO 13849 & Cat. 3 \\
\hline Maximum performance level per EN ISO 13849 & PL e \\
\hline Maximum safety integrity level per IEC 61800-5-2 & SIL 3 \\
\hline Maximum safety integrity level per IEC 62061 & SIL 3 \\
\hline Maximum safety integrity level per IEC 61508 & SIL 3 \\
\hline PFH (probability of dangerous failure per hour) & \(<6^{* 10^{-9}}\) \\
\hline \begin{tabular}{l} 
PFD (probability of dangerous failure on demand) depending on the proof test \\
interval (PTI) \\
For a PTI of 20 years
\end{tabular} & \\
\hline PTI (proof test interval) \({ }^{\text {1) }}\) & \(<4 * 10^{-4}\) \\
\hline DC (diagnostic coverage) & Max. 20 years \\
\hline Diagnostic test interval & \(>90 \%\) \\
\hline MTTFd (mean time to dangerous failure) & Max. 3 months \\
\hline
\end{tabular}

Table 102: Safety classifications, criteria and characteristic values for safety function STO
1) Corresponds to the mission time of the module.
2) These characteristic values are only valid if a diagnostic test interval of max. 3 months is observed - see "Testing" (Page 165).

The following table provides an overview of the individual safety functions that can be implemented:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Name per standard} & Short description \\
\hline EN 61800-5-2 & EN 60204-1 & \\
\hline STO (Safe Torque Off) & Stop category 0 & Cuts off the power supply \\
\hline SS1 (Safe Stop 1) & Stop category 1 & Initiates active braking and activates function STO after a defined amount of time has passed \\
\hline SS2 (Safe Stop 2) & Stop category 2 & Initiates active braking and activates function SOS after a defined amount of time has passed \\
\hline SLS (Safely Limited Speed) & --- & Protection against exceeding a defined speed limit \\
\hline SOS (Safe Operating Stop) & --- & Protection against impermissible position deviation \\
\hline
\end{tabular}

Table 103: Overview of safety functions per standard
Safety function STO (safe pulse disabling) interrupts the power supply to the motor by preventing the pulses to the power output stage over two channels. This means that a rotating field and thus electrical torque can no longer be built up in 8D1 modules.

\footnotetext{
5) For detailed information about the listed standards and safety functions, see section Standards and certifications.
}

As a result, the requirements regarding the stop functions of category 0 per EN 60204-1 are met with safety function STO present. With the use of additional components, the requirements of category 1 per EN 60204-1 are also met. Both stop functions require switching off the power supply to the machine drive elements (immediately for category 0 and after reaching standstill for category 1).

The terminology of EN 61800-5-2 (STO, SS1, SS2, SLS, SOS) will be used in the following.

\section*{Danger!}

If the safety functions integrated in the drive system are used in an application, then the safety functions must be fully validated before the drive system is switched on for the first time. There is a risk of death, serious injury or damage to property.

\section*{Information:}

If module-internal hardware errors occur, safety function STO switches to the safe state and interrupts the supply of power to the drive (failsafe principle). If a hardware defect occurs, then the entire module must be replaced.

\subsection*{7.1.2 Principle - Implementing the safety function}

Safety function STO (safe pulse disabling) is achieved by interrupting the pulse patterns to the power output stage in the ACOPOSmotor Compact. The internal power supply for the drivers \(\left(\mathrm{Vcc}_{\mathrm{HS}} / \mathrm{Vcc}_{\mathrm{LS}}\right)\) is safely switched via terminals "Enable signal+" and "Enable signal-" so that the pulse patterns can be transferred to the power output stage.

8D1


Figure 13: Block diagram of safety function STO-8D1
If control at the "Enable signal+" and "Enable signal-" terminals drops out, the driver supply is reliably interrupted and the pulse patterns are no longer transferred. It is then no longer possible to transfer the pulse pattern needed to generate the rotating field to the power output stage. This cuts off the supply of power to the motor.

\subsection*{7.1.2.1 Additional functions}

The presence of the driver supply voltages is queried by the control unit. If no voltage is applied, generation of the pulse patterns by the control system is also suppressed.

\section*{Testing}

The two switches for switching off the driver power supply are checked for plausibility by test logic. Testing is active when function STO is activated. In the event of an invalid test result - e.g. due to a defective semiconductor switch - the safe state is assumed by switching off the driver power supply. This state is locked, i.e. it can only be unlocked by removing the module power supply. In the safely locked state, "Enable off" is reported as the STO status, even if the STO input is supplied with power.

To achieve the specified safety characteristics, the diagnostic test interval of max. 3 months must be observed. Since diagnostics is only active when the safety function is activated, it must be enabled cyclically.
The user must perform the following test routine or automatic test for this.
Manual test - Test routine
\begin{tabular}{|l|l|}
\hline Step 1 & Apply the module power supply or check for its presence. \\
\hline Step 2 & Activate STO: Low level (<5 V) between terminals "Enable signal+" and "Enable signal-" \\
\hline Step 3 & Deactivate STO: High level (>15 V) between terminals "Enable signal+" and "Enable signal-" \\
\hline Step 4 & \begin{tabular}{l} 
Check for an error-free drive (STO status correct or enabling the controller possible without er- \\
rors). \\
The supply voltage is only permitted to be reapplied after this control step; otherwise, the test \\
result loses its validity!
\end{tabular} \\
\hline
\end{tabular}

\section*{Notice!}

If the drive cannot be put into service at step 4 due to a missing enable, there is a potentially dangerous error and the module must be replaced immediately or reported to \(B \& R\) customer support.

\section*{Notice!}

If an error message related to the enable input occurs during operation or after activation of safety function STO, a manual test routine must be performed.

\section*{Automatic test}

Alternatively, the test routine can be automated by using a safe output module with OSSD functionality. The OSSD test gaps in the signal of the STO control ensure cyclic activation of the test logic, which is why the manual test routine is permitted to be omitted. In the event of a module fault, the safe state is achieved by switching off the driver power supply. The module can no longer be put into service and must be replaced.

Wiring example see Fig. 15 "STO, category 3 / SIL 3 / PL e (variant B)" on page 169
For a list of safe and compatible B\&R output modules, see chapter "Connection examples" \(\rightarrow\) "Connecting drive systems" \(\rightarrow\) "Tested products" \(\rightarrow\) "B\&R" \(\rightarrow\) "ACOPOSmotor Compact" in the "Integrated safety technology user's manual".
The most current version of the "Integrated safety technology user's manual" is available for download - see the B\&R website (www.br-automation.com).

\section*{Notice!}

It is necessary to configure parameter "Disable OSSD = No".

\subsection*{7.1.3 General danger notices}

\section*{Danger!}

After activating safety function STO (safe pulse disabling) via terminals "Enable signal+" and "Enable signal-", the motor is de-energized and therefore not generating torque. If the motor was moving before safety function STO is activated, it is only stopped by a safe operational brake (if available) or by the friction of the complete system. The motor is therefore not able to hold suspended loads. Safe holding brakes must be used for this purpose.

\section*{Danger!}

The switch-off time of the enable inputs must be taken into account since it has a substantial effect on the response time of the safety functions and therefore the remaining distances and times to be considered! In order to calculate the total safety response time, the user must validate the rundown time of the complete system!

The switch-off time for the enable inputs is listed in the technical data.

\section*{Danger!}

Activating safety function STO (safe pulse disabling) via terminals "Enable signal+" and "Enable sig-nal-" is not suitable for de-energizing the motor and therefore does not provide sufficient protection against electrical shock!

\section*{Danger!}

Depending on the application, it is possible for the motor to restart after safety function STO (safe pulse disabling) is deactivated.

\section*{Danger!}

The C standards relevant to applications must be observed!

\section*{Danger!}

Note that multiple errors in the power output stage can cause a brief forward movement. Maximum angle of rotation \(\varphi\) of the motor shaft during this forward movement depends on the motor used. For permanent magnet synchronous motors, \(\varphi=360^{\circ} / 2 p\) (for \(B \& R 8 D 1\) motors, \(p=4\) so that the angle is \(45^{\circ}\) ).

This short forward movement can be excluded as a fault per EN ISO 13849-1, among other things due to the improbability that this would occur and due to general technical experience.

\subsection*{7.1.4 Wiring the enable inputs to the required safety category / SIL / PL}

This section uses the example of safety function STO to illustrate the different wiring variations of the enable inputs on the 8D1 module to achieve the required safety category / SIL / PL.

\section*{Danger!}

All faults (e.g. cross faults) that are not detected can result in the loss of the safety function.
Appropriate measures must be taken to justify the exclusion of errors. For instance, faults caused by a short circuit between any two wires can be excluded per EN ISO 13849-2, appendix D.5, if one of the following conditions is met:
- The wires are permanently installed and protected against external damage (e.g. using a cable duct or armored conduit).
- The wires are installed in different plastic-sheathed cables or within an area for electrical equipment \({ }^{6}\).
- The wires are each individually protected by a ground connection.

For more fault exclusions, see EN ISO 13849-2, appendix D.5.

\section*{Danger!}

In order to achieve safety category 3 / SIL 3 / PL 3, it must be ensured that an individual fault does not result in loss of the safety function.

\subsection*{7.1.4.1 STO, category 3 / SIL 3 / PL e (variant A)}

An enable input on the 8D1 module is supplied with +24 V via a switching contact of a safe emergency switching-off device. Activating emergency switch-off S1 opens both switching contacts of the emergency switching-off device and disconnects the enable input over two channels.


Figure 14: STO, category 3 / SIL 3 / PL e (variant A)
This circuit covers a portion of the wiring and insulation faults for the supply lines to the emergency switching-off device and to the enable inputs.

The following fault events can occur in the external wiring: \({ }^{7)}\)
\begin{tabular}{|c|c|c|}
\hline Fault event & Error description & Effect \\
\hline 1 & Interruption of the power supply cable to connection 13 & Power to the motor is cut off. \\
\hline 2 & Interruption of the power supply cable to connection 23 & Power to the motor is cut off. \\
\hline 3 & Short circuit between connections 13 and 23 & Fuse F1 is triggered immediately. \\
\hline 4 & Short circuit between connections 13 and 0 V & Fuse F1 is triggered immediately. \\
\hline 5 & Short circuit between connections 23 and +24 V & Fuse F1 is triggered immediately. \\
\hline 6 & Short circuit between connections 13 and 24 & Fuse F1 is triggered in the operating state. Power to the motor is cut off. \\
\hline 7 & Short circuit between connections 23 and 14 & Fuse F1 is triggered in the operating state. Power to the motor is cut off. \\
\hline 8 & Short circuit between connections 13 and 14 & Error not detected \\
\hline 9 & Short circuit between connections 23 and 24 & Error not detected \\
\hline 10 & Interruption of the power supply cable to connection 14 & Power to the motor is cut off. \\
\hline 11 & Interruption of the power supply cable to connection 24 & Power to the motor is cut off. \\
\hline 12 & Short circuit between connections 14 and 0 V & Fuse F1 is triggered in the operating state. Power to the motor is cut off. \\
\hline 13 & Short circuit between connections 24 and +24 V & Fuse F1 is triggered in the operating state. Power to the motor is cut off. \\
\hline 14 & Short circuit between connections 14 and +24 V & Error not detected \\
\hline 15 & Short circuit between connections 24 and +0 V & Error not detected \\
\hline 16 & Short circuit between connections 14 and 24 & Fuse F1 is triggered in the operating state. Power to the motor is cut off. \\
\hline
\end{tabular}

Table 104: List of possible fault events

\section*{Danger!}

A 2-pole category 3 or 4 / SIL 3 / PL e switching device with a positively driven normally closed contact must be used for the shown S1 switch per EN 60947-5-1. A 2-pole category 3 or 4 / SIL 3 / PL e switching device must be used for the shown K1 relay.
The information in the user documentation for the switching devices must be observed!
The following fault events (per List of possible fault events) must be evaluated with regard to the safety-critical influence on switching device K1 or must be able to be excluded by suitable wiring measures (short-circuit-proof wiring).
- Fault event 8
- Fault event 9
- Fault event 14
- Fault event 15

\subsection*{7.1.4.2 STO, category 3 / SIL 3 / PL e (variant B)}

The enable input of the 8D1 module is supplied via a safe digital output (Out1+, Out1-). If the safety function is requested, then the safe digital output cuts off the enable input.


Figure 15: STO, category 3 / SIL 3 / PL e (variant B)

\section*{Safety technology}

The consideration of fault events in the external wiring for fault exclusion purposes is not necessary since faults are detected by the safe digital output.
For additional information about the use, compatibility and wiring of safe output modules, see the "Integrated safety technology user's manual".
The most current version of the "Integrated safety technology user's manual" is available for download on the B\&R website (www.br-automation.com)!

\section*{Danger!}

A safe category 3 or 4 / SIL 3 / PL e digital output module must be used for the shown DO1 safe digital output.
The information in the user documentation for the safe digital output module must be observed!
7.1.5 Wiring the enable inputs per required safety category / SIL / PL and functionality (STO, SS1, SS2, SLS, SOS)

The following illustrates exemplary circuit suggestions for the external wiring of the enable input of the 8D1 module. They vary in their safety classification per EN 60204-1, ISO 13849 and EN 61800-5-2 as well as with regard to the safety function (STO, SS1, SS2, SLS, SOS).

\section*{Information:}

The following wiring suggestions do not include a line contactor since one is not necessary to comply with the required safety category / SIL / PL.

\subsection*{7.1.5.1 STO, SLS, SOS - Safety category 3 / SIL 3 / PL e}

8D1


Figure 16: STO, SLS, SOS - Safety category 3 / SIL 3 / PL e

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

STO
Activating emergency switch-off S1 de-energizes the switching contacts of emergency switching-off device K1. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case.

\section*{SLS}

Safety function SLS is activated by opening switch S2. The switching contacts of overspeed monitor K2 are opened if the monitor's set speed limit is exceeded. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor K2 is exceeded.

\section*{SOS}

Safety function SOS is activated by opening switch S2. The switching contacts of standstill monitor K2 are opened when the standstill monitor is activated. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor K2 is activated.

\section*{Information:}

Safety function SLS or SOS can be implemented depending on the function of switching device K2 (overspeed monitor or standstill monitor).

\section*{Danger!}

2-pole category 3 or 4 / SIL 3 / PL e switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. 2-pole category 3 or 4 / SIL 3 / PL e switching devices must be used for the shown K1 and K2 relays.

The information in the user documentation for the switching devices must be observed!
7.1.5.2 SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant A)

\section*{8D1 with electronics option}


Figure 17: SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant A)

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

\section*{Information:}

With this wiring, input X24A / Trigger of the 8D1 module must be configured as quick stop for the respective axis.

\section*{SS1}

Activating emergency switch-off S1 triggers an active braking procedure via an undelayed switching contact of emergency switching-off device K1 on input X24A / Trigger of the 8D1 module. After a defined amount of time, the delayed switching contacts of emergency switching-off device K1 are de-energized. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off in every case after a defined amount of time.

\section*{SLS}

Opening switch S2 activates safety function SLS and triggers an active braking procedure on input X23A / Trigger of the 8D1 module. After a defined amount of time, speed monitoring is activated on overspeed monitor K2. If the configured speed limit is exceeded, the enable input of the 8D1 module is cut off via the undelayed switching contacts of overspeed monitor K2. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor K2 is exceeded.

\section*{SS2}

Opening switch S2 activates safety function SS2 and triggers an active braking procedure on input X23A / Trigger of the 8D1 module. After a defined amount of time, standstill monitoring is activated on standstill monitor K2. If the configured tolerance limit is exceeded (standstill monitor K2 is activated), the enable input of the 8D1 module is cut off via the undelayed switching contacts of standstill monitor K2. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor K2 is activated.

\section*{Information:}

Safety function SLS or SS2 can be implemented depending on the function of switching device K2 (overspeed monitor or standstill monitor).

\section*{Danger!}

2-pole category 3 or 4 / SIL 3 / PL e switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. 2-pole category 3 or 4 / SIL 3 / PL e switching devices must be used for the shown K1 and K2 relays.
The information in the user documentation for the switching devices must be observed!
7.1.5.3 SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant B)

8D1


Figure 18: SS1, SLS, SS2 - Safety category 3 / SIL 3 / PL e (variant B)

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

SS1
Activating emergency switch-off S1 triggers an active braking procedure over the POWERLINK network via an undelayed switching contact of emergency switching-off device K1 on digital input "EmergencyStop" on the controller (see "Example code" on page 177). After a defined amount of time, the delayed switching contacts of emergency switching-off device K1 are de-energized. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off in every case after a defined amount of time.

\section*{SLS}

Opening switch S2 activates safety function SLS and triggers active braking via the POWERLINK network on digital input "nLimit" on the controller (see "Example code" on page 177). After a defined amount of time, speed monitoring is activated on overspeed monitor K2. If the configured speed limit is exceeded, the enable input of the 8D1 module is cut off via the undelayed switching contacts of overspeed monitor K2. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor K2 is exceeded.

\section*{SS2}

Opening switch S2 activates safety function SS2 and triggers an active braking procedure via the POWERLINK network on digital input "nLimit" on the controller (see "Example code" on page 177). After a defined amount of time, standstill monitoring is activated on standstill monitor K2. If the configured tolerance limit is exceeded (standstill monitor K2 is activated), the enable input of the 8D1 module is cut off via the undelayed switching contacts of standstill monitor K2. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor K2 is activated.

\section*{Information:}

Safety function SLS or SS2 can be implemented depending on the function of switching device K2 (overspeed monitor or standstill monitor).

\section*{Danger!}

2-pole category 3 or 4 / SIL 3 / PL e switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. 2-pole category 3 or 4 / SIL 3 / PL e switching devices must be used for the shown K1 and K2 relays.
The information in the user documentation for the switching devices must be observed!

\section*{Example code}

Issuing the stop command via POWERLINK:
```

if (! statStopActive)
{
/* Move stop not active: check move stop inputs */
if (DI_EmergencyStop == INPUT_LEVEL_LOW)
{
/* Move stop with emergency stop deceleration */
MC_Stop_O.Deceleration = E_STOP_DECELERATION;
MC_Stop_0.Execute = 1;
statStopActive = 1;
}
else if (cmdStopAxis1)
{
/* Move stop with application deceleration */
MC_Stop_0.Deceleration = APPLICATION_DECELERATION;
MC_Stop_0.Execute = 1;
statStopActive = 1;
}
}
else
{
/* Move stop is active, wait until it is finished */
if (DI_EmergencyStop == INPUT_LEVEL_HIGH \&\&
cmdStopAxis1 == 0 \&\&
MC_Stop_0.Done == 1)
{
/* Move stop complete */
MC_Stop_0.Execute = 0;
statStopActive = 0;
}
}
MC_Stop_0.Axis = AxisRef1;
MC_Stop(\&MC_Stop_0);

```

8D1


Figure 19: STO, SLS, SOS - Safety category 3 / SIL 2 / PL d

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

\section*{STO}

The enable input of the 8D1 module is cut off by activating emergency switch-off S1. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case.

\section*{SLS}

Safety function SLS is activated by opening switch S2. The switching contact of overspeed monitor S3 is opened if the monitor's configured speed limit is exceeded. The enable input of the 8D1 module is cut off. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor S3 is exceeded.

\section*{SOS}

Safety function SOS is activated by opening switch S2. If standstill monitor S3 is activated, then the switching contact of the overspeed monitor is opened. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor S3 is activated.

\section*{Information:}

Safety function SLS or SOS can be implemented depending on the function of switching device S3 (overspeed monitor or standstill monitor).

\section*{Danger!}

1-pole category 3 / SIL 2 / PL d switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. A 1-pole category 3 / SIL 2 / PL d switching device must be used for the shown S3 switching device.
The information in the user documentation for the switching device must be observed!

8D1 with electronics option


Figure 20: SS1, SLS, SS2 - Safety category 3 / SIL 2 / PL d (variant A)

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

\section*{Information:}

With this wiring, input X24A / Trigger of the 8D1 module must be configured as quick stop for the respective axis.

\section*{SS1}

Activating emergency switch-off S1 causes relay K1 to drop out. This triggers an active braking procedure via input X24A / Trigger of the 8D1 module.

After a defined amount of time, auxiliary dropout delay relay K 1 is de-energized. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off in every case after a defined amount of time.

\section*{SLS}

Opening switch S2 activates safety function SLS and triggers an active braking procedure via input X23A / Trigger of the 8D1 module. After a defined amount of time, speed monitoring is activated on overspeed monitor S3. If the configured speed limit is exceeded, the enable input of the 8D1 module is cut off via the undelayed switching contact of overspeed monitor S3. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor S3 is exceeded.

\section*{SS2}

Opening switch S2 activates safety function SS2 and triggers an active braking procedure via input X23A / Trigger of the 8D1 module. After a defined amount of time, standstill monitoring is activated on standstill monitor S3. If the configured tolerance limit is exceeded (standstill monitor S3 is activated), the enable input of the 8D1 module is cut off via the undelayed switching contact of standstill monitor S3. The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor S3 is activated.

\section*{Information:}

Safety function SLS or SS2 can be implemented depending on the function of switching device S3 (overspeed monitor or standstill monitor).

\section*{Danger!}

1-pole category 3 / SIL 2 / PL d switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. 1-pole category 3 / SIL 2 / PL d switching devices must be used for the shown K1 relay and switching device S3.
The information in the user documentation for the switching devices must be observed!


Figure 21: SS1, SLS, SS2 - Safety category 3 / SIL 2 / PL d (variant B)

\section*{Danger!}

The brake shown in this figure as well as the brake controller provided by the ACOPOSmotor Compact module (8D1) are not part of the safety function!

\section*{Information:}

The module-internal encoder of the ACOPOSmotor Compact module (8D1) does not have certification for safe position evaluation and is therefore not suitable for implementing this safety function.

SS1
Activating emergency switch-off S1 triggers an active braking procedure via digital input "EmergencyStop" on the controller (see "Example code" on page 177).
After a defined amount of time, auxiliary dropout delay relay K 1 is de-energized. This cuts off the enable input of the 8D1 module. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off in every case after a defined amount of time.

\section*{SLS}

Opening switch S2 activates safety function SLS and triggers an active braking procedure via digital input "nLimit" on the controller (see "Example code" on page 177). After a defined amount of time, speed monitoring is activated on overspeed monitor S3. If the configured speed limit is exceeded, the enable input of the 8D1 module is cut off via the undelayed switching contact of overspeed monitor S 3 . The supply of power to the motor is cut off as a result.
This ensures that the supply of power to the motor is cut off immediately in every case when the speed limit set on overspeed monitor S 3 is exceeded.

\section*{SS2}

Opening switch S2 activates safety function SS2 and triggers an active braking procedure via digital input "nLimit" on the controller (see "Example code" on page 177). After a defined amount of time, standstill monitoring is activated on standstill monitor S3. If the configured tolerance limit is exceeded (standstill monitor S3 is activated), the enable input of the 8D1 module is cut off via the undelayed switching contact of standstill monitor S3. The supply of power to the motor is cut off as a result.

This ensures that the supply of power to the motor is cut off immediately in every case if standstill monitor S3 is activated.

Safety function SLS or SS2 can be implemented depending on the function of switching device S3 (overspeed monitor or standstill monitor).

\section*{Danger!}

2-pole or 1-pole category 3 / SIL 2 / PL d switching devices with a positively driven normally closed contact must be used for the shown S1 and S2 switches per EN 60947-5-1. 1-pole category 3 / SIL 2 / PL d switching devices must be used for the shown K1 relay and switching device S3.
The information in the user documentation for the switching devices must be observed!

\section*{8 Accessories}

\subsection*{8.1 Cables}

\subsection*{8.1.1 Hybrid cable}

\subsection*{8.1.1.1 Power supply cables}

\subsection*{8.1.1.1.1 8D1CHxxxx.11120-0 - Order data}
\begin{tabular}{|c|c|c|c|}
\hline Order number & Short description & \multicolumn{2}{|l|}{Figure} \\
\hline & Supply cable & \multicolumn{2}{|l|}{\multirow{5}{*}{max \(/ 1 /\)}} \\
\hline 8D1CH0003.11120-0 & ACOPOSmotor compact power supply cable, length \(3 \mathrm{~m}, 2 \times 2.5\) \(\mathrm{mm}^{2}+1 \times\left(4 \times 0.34 \mathrm{~mm}^{2}\right)+1 \times\left(2 \times 0.34 \mathrm{~mm}^{2}\right)+1 \times 0.34 \mathrm{~mm}^{2}+\mathrm{PA}\) pipe \(2.0 \mathrm{~mm} / 1.0 \mathrm{~mm}, 1 \times 9\)-pin female hybrid connector, can be used in cable drag chains & & \\
\hline 8D1CH0005.11120-0 & ACOPOSmotor compact power supply cable, length \(5 \mathrm{~m}, 2 \times 2.5\) \(\mathrm{mm}^{2}+1 \times\left(4 \times 0.34 \mathrm{~mm}^{2}\right)+1 \mathrm{x}\left(2 \times 0.34 \mathrm{~mm}^{2}\right)+1 \times 0.34 \mathrm{~mm}^{2}+\mathrm{PA}\) pipe \(2.0 \mathrm{~mm} / 1.0 \mathrm{~mm}, 1 \times 9\)-pin female hybrid connector, can be used in cable drag chains & & \\
\hline 8D1CH0010.11120-0 & ACOPOSmotor compact power supply cable, length \(10 \mathrm{~m}, 2 \mathrm{x}\) \(2.5 \mathrm{~mm}^{2}+1 \mathrm{x}\left(4 \mathrm{x} 0.34 \mathrm{~mm}^{2}\right)+1 \mathrm{x}\left(2 \times 0.34 \mathrm{~mm}^{2}\right)+1 \mathrm{x} 0.34 \mathrm{~mm}^{2}\) + PA pipe \(2.0 \mathrm{~mm} / 1.0 \mathrm{~mm}, 1 \times 9\)-pin female hybrid connector, can be used in cable drag chains & & \\
\hline 8D1CH0015.11120-0 & ACOPOSmotor compact power supply cable, length \(15 \mathrm{~m}, 2 \mathrm{x}\) \(2.5 \mathrm{~mm}^{2}+1 \mathrm{x}\left(4 \times 0.34 \mathrm{~mm}^{2}\right)+1 \mathrm{x}\left(2 \times 0.34 \mathrm{~mm}^{2}\right)+1 \mathrm{x} 0.34 \mathrm{~mm}^{2}\) + PA pipe \(2.0 \mathrm{~mm} / 1.0 \mathrm{~mm}, 1 \times 9\)-pin female hybrid connector, can be used in cable drag chains & & \\
\hline
\end{tabular}

Table 105: 8D1CH0003.11120-0, 8D1CH0005.11120-0, 8D1CH0010.11120-0, 8D1CH0015.11120-0 - Order data

\subsection*{8.1.1.1.2 8D1CHxxxx.11120-0 - Technical data}


Table 106: 8D1CH0003.11120-0, 8D1CH0005.11120-0, 8D1CH0010.11120-0, 8D1CH0015.11120-0 - Technical data
\begin{tabular}{|c|c|c|c|c|}
\hline Order number & 8D1CH0003.11120-0 & 8D1CH0005.11120-0 & 8D1CH0010.11120-0 & 8D1CH0015.11120-0 \\
\hline \multicolumn{5}{|l|}{Mechanical properties \({ }^{1)}\)} \\
\hline \multicolumn{5}{|l|}{Dimensions} \\
\hline Length & 3 m & 5 m & 10 m & 15 m \\
\hline Diameter & \multicolumn{4}{|c|}{\(11.7 \mathrm{~mm} \pm 0.3 \mathrm{~mm}\)} \\
\hline \multicolumn{5}{|l|}{Bend radius} \\
\hline Single bend & \multicolumn{4}{|c|}{\(\geq 3 \mathrm{x}\) cable diameter} \\
\hline Moving & \multicolumn{4}{|c|}{\(\geq 12.5 x\) cable diameter} \\
\hline \multicolumn{5}{|l|}{Drag chain data} \\
\hline Acceleration & \multicolumn{4}{|c|}{\(50 \mathrm{~m} / \mathrm{s}^{2}\) (depends on the length of the travel path)} \\
\hline Flex cycles & \multicolumn{4}{|c|}{\(\geq 3,000,000\)} \\
\hline Velocity & \multicolumn{4}{|c|}{Max. \(300 \mathrm{~m} / \mathrm{min}\)} \\
\hline Torsional strength & \multicolumn{4}{|c|}{\(\pm 30^{\circ} / \mathrm{m}\)} \\
\hline Weight & 0.950 kg & 1.4 kg & 2.60 kg & 3.75 kg \\
\hline
\end{tabular}

Table 106: 8D1CH0003.11120-0, 8D1CH0005.11120-0, 8D1CH0010.11120-0, 8D1CH0015.11120-0 - Technical data
1) Values refer to the raw cable being used.

\section*{Accessories}

\subsection*{8.1.1.2 Power cables}

\subsection*{8.1.1.2.1 8D1CHxxxx.11110-0 - Order data}
\begin{tabular}{|c|c|c|}
\hline Order number & Short description & Figure \\
\hline & Power cable & \\
\hline 8D1CH00X5.11110-0 & ACOPOSmotor compact power cable, length \(0.5 \mathrm{~m}, 1 \times 9-\mathrm{pin}\) female hybrid connector, \(1 \times 9\)-pin male hybrid connector, can be used in cable drag chains & 뚠 \\
\hline 8D1CH0001.11110-0 & ACOPOSmotor compact power cable, length \(1 \mathrm{~m}, 1 \mathrm{x} 9\)-pin female hybrid connector, \(1 \times 9\)-pin male hybrid connector, can be used in cable drag chains & \\
\hline 8D1CH0002.11110-0 & ACOPOSmotor compact power cable, length \(2 \mathrm{~m}, 1 \mathrm{x} 9-\mathrm{pin}\) female hybrid connector, \(1 \times 9\)-pin male hybrid connector, can be used in cable drag chains & \\
\hline 8D1CH0003.11110-0 & ACOPOSmotor compact power cable, length \(3 \mathrm{~m}, 1 \mathrm{x} 9\)-pin female hybrid connector, \(1 \times 9\)-pin male hybrid connector, can be used in cable drag chains & \\
\hline 8D1CH0005.11110-0 & ACOPOSmotor compact power cable, length \(5 \mathrm{~m}, 1 \mathrm{x} 9\)-pin female hybrid connector, \(1 \times 9\)-pin male hybrid connector, can be used in cable drag chains & \\
\hline 8D1CH0010.11110-0 & ACOPOSmotor compact power cable, length \(10 \mathrm{~m}, 1 \times 9-\mathrm{pin}\) female hybrid connector, 1 x 9 -pin male hybrid connector, can be used in cable drag chains & \\
\hline 8D1CH0015.11110-0 & ACOPOSmotor compact power cable, length \(15 \mathrm{~m}, 1 \times 9\)-pin female hybrid connector, 1 x 9 -pin male hybrid connector, can be used in cable drag chains & \\
\hline
\end{tabular}

Table 107: 8D1CH00X5.11110-0, 8D1CH0001.11110-0, 8D1CH0002.11110-0, 8D1CH0003.11110-0, 8D1CH0005.11110-0, 8D1CH0010.11110-0, 8D1CH0015.11110-0 - Order data

\subsection*{8.1.1.2.2 8D1CHxxxx.11110-0 - Technical data}


Table 108: 8D1CH00X5.11110-0, 8D1CH0001.11110-0, 8D1CH0002.11110-0, 8D1CH0003.11110-0, 8D1CH0005.11110-0, 8D1CH0010.11110-0, 8D1CH0015.11110-0 - Technical data
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Order number & \[
\begin{gathered}
\text { 8D1CH00X5. } \\
11110-0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1CH0001. } \\
& 11110-0
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1CH0002. } \\
11110-0
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1CH0003. } \\
\text { 11110-n }
\end{gathered}
\] & \[
\begin{gathered}
\text { 8D1CH0005. } \\
\text { 11110-0 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 8D1CH0010. } \\
& \text { 11110-0 }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8D1CH0015. } \\
11110-0
\end{gathered}
\] \\
\hline \multicolumn{8}{|l|}{Bend radius} \\
\hline Single bend & \multicolumn{7}{|c|}{\(\geq 3 \mathrm{x}\) cable diameter} \\
\hline Moving & \multicolumn{7}{|c|}{\(\geq 12.5 \mathrm{x}\) cable diameter} \\
\hline Drag chain data & \multicolumn{7}{|l|}{} \\
\hline Acceleration & \multicolumn{7}{|c|}{\(50 \mathrm{~m} / \mathrm{s}^{2}\) (depends on the length of the travel path)} \\
\hline Flex cycles & \multicolumn{7}{|c|}{\(\geq 3,000,000\)} \\
\hline Velocity & \multicolumn{7}{|c|}{Max. \(300 \mathrm{~m} / \mathrm{min}\)} \\
\hline Torsional strength & \multicolumn{7}{|c|}{\(\pm 30^{\circ} / \mathrm{m}\)} \\
\hline Weight & 0.55 kg & 0.65 kg & 0.90 kg & 1.15 kg & 1.40 kg & 2.75 kg & 3.90 kg \\
\hline
\end{tabular}

Table 108: 8D1CH00X5.11110-0, 8D1CH0001.11110-0, 8D1CH0002.11110-0, 8D1CH0003.11110-0, 8D1CH0005.11110-0, 8D1CH0010.11110-0, 8D1CH0015.11110-0 - Technical data
1) Values refer to the raw cable being used.

\section*{Accessories}

\subsection*{8.1.2 M8 sensor cables}

\begin{tabular}{|l|l|}
\hline Length & Tolerances for cable lengths \\
\hline 0 to \(<1 \mathrm{~m}\) & +2 cm \\
\hline 1 m to \(<10 \mathrm{~m}\) & +5 cm \\
\hline 10 m to xx m & +10 cm \\
\hline
\end{tabular}

\subsection*{8.1.2.1 Technical data}


Table 109: X67CA0Dxx - Technical data
1) \(x x . x x x x:\) Group number and cable length
2) In cable drag chain operation
8.1.2.2 X67CA0D40.xxxx


\subsection*{8.1.2.3 X67CA0D50.xxxx}


\section*{9 Standards and certifications}

\subsection*{9.1 International and national certifications}

Products and services from B\&R comply with applicable regulations, directives and standards. These are national, European and international regulations, mainly from organizations such as ISO, IEC and CENELEC. We are committed to ensuring the reliability of our products in industrial environments.

\section*{Information:}

Certifications that apply to a particular module are available at the following places:
- The data sheet's technical data under "General information \(\rightarrow\) Certifications"
- At www.br-automation.com under "Products" in the "General information \(\rightarrow\) Certifications" area of the technical data
- On the side of the module housing

\subsection*{9.1.1 EU directives and standards (CE)}

\section*{CE marking}

Europe (EU)

The respective product complies with all applicable EU directives and relevant harmonized standards.

Certification of these products is performed in cooperation with accredited testing laboratories.

EMC Directive 2014/30/EU
All devices meet the protection requirements of the "Electromagnetic Compatibility" directive and are designed for typical industrial use.

Applicable standards from this directive:
EN 61800-3 Adjustable speed electrical power drive systems
- Part 3: EMC requirements and specific test methods

\section*{Low Voltage Directive 2014/35/EU}

The low voltage directive applies to electrical equipment with a nominal voltage from 50 to 1000 VAC and from 75 to 1500 VDC.
All devices within the area of application of this directive satisfy the its protection requirements.

Applicable standard from this directive:

The corresponding declaration of conformity is available for download on the B\&R website. The editions of the applied standards are located in the declaration of conformity.

Declaration of conformity
Website > Downloads > Certificates > Declarations of conformity > Declaration Servos ACOPOSmotor Compact

\section*{Ecodesign Directive (EU) No. 2019/1781}

Decentralized motion control does not have a nominal voltage range of 100 VAC to 1000 VAC. The devices are operated with DC voltage from an ACOPOSmulti system, ACOPOS P3 or power supply unit.
Decentralized motion control is thus excluded from the scope of Regulation (EU) 2019/1781.

\section*{Machinery Directive 2006/42/EC \\ Standard safety technology \\ No mark \\ Functional safety \\ open - ■ SAFETY}

Europe (EU)

In accordance with the Machinery Directive, safety technology products are designed, developed, tested and labeled for special applications providing protection to machinery and personnel.

Certification of these products is performed exclusively in cooperation with EU-authorized bodies (notified bodies).

Applicable standards from this directive:
\begin{tabular}{ll} 
IEC 61508-1 & Functional safety of electrical/electronic/programmable electronic safety-related systems \\
IEC 61508-2 & -Part 1: General requirements \\
IEC 61508-3 & Functional safety of electrical / electronic / programmable electronic safety-related systems \\
& - Part 2: Requirements for electrical/electronic/programmable electronic safety-related systems \\
IEC 61508-4 & Functional safety of electrical / electronic / programmable electronic safety-related systems \\
& - Part 3: Software requirements \\
EN 61800-5-2 & Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 4: Definitions and abbre- \\
& viations \\
EN 62061 & Adjustable speed electrical power drive systems \\
EN ISO 13849-1 & - Part 5-2: Safety requirements - Functional \\
& Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems \\
& Safety of machinery - Safety-related parts of control systems \\
& - Part 1: General principles for design
\end{tabular}

The declaration of conformity, certificates and additional safety-related information are available for download on the \(B \& R\) website. The editions of the applied standards are located in the declaration of conformity.

\section*{Declaration of conformity}

Website > Downloads > Certificates > Declarations of conformity > Declaration FS Servos ACOPOSmotor Compact

\section*{Certificates}

Website > Downloads > Certificates > Safety technology > ACOPOSmotor Compact > TÜV certificate - Functional safety ACOPOSmotor Compact

\subsection*{9.1.1.1 Requirements for immunity to interference}
- EN 61800-3 requirements apply.
- For all modules that have certified safety functions, stricter requirements apply for section "High-frequency disturbances" per EN 61800-5-2.
\begin{tabular}{|c|c|c|}
\hline Immunity & Testing performed per & Requirements per \\
\hline \multirow[b]{2}{*}{Electrostatic discharge (ESD)} & \multirow[t]{2}{*}{EN 61000-4-2} & EN 61800-3: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 61800-5-2: Product standard Adjustable speed electrical power drive systems \\
\hline \multirow[t]{2}{*}{High-frequency electromagnetic fields (HF field)} & \multirow[t]{2}{*}{EN 61000-4-3} & EN 61800-3: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 61800-5-2: Product standard Adjustable speed electrical power drive systems \\
\hline \multirow[t]{2}{*}{High-speed transient electrical disturbances (Burst)} & \multirow[t]{2}{*}{EN 61000-4-4} & EN 61800-3: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 61800-5-2: Product standard Adjustable speed electrical power drive systems \\
\hline \multirow[t]{2}{*}{Surge voltages (Surge)} & \multirow[t]{2}{*}{EN 61000-4-5} & EN 61800-3: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 61800-5-2: Product standard Adjustable speed electrical power drive systems \\
\hline \multirow[t]{2}{*}{Conducted disturbances} & \multirow[t]{2}{*}{EN 61000-4-6} & EN 61800-3: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 61800-5-2: Product standard Adjustable speed electrical power drive systems \\
\hline
\end{tabular}

\section*{Performance criteria for operating behavior}
\begin{tabular}{|c|l|l|}
\hline Criteria (PC) & During test & After test \\
\hline A & \begin{tabular}{l} 
The system shall continue to operate as intended. \\
No loss of function or operating behavior.
\end{tabular} & The system shall continue to operate as intended. \\
\hline B & \begin{tabular}{l} 
Degradation of operating behavior accepted. \\
The operating mode is not permitted to change. \\
Irreversible loss of stored data is not permitted.
\end{tabular} & \begin{tabular}{l} 
The system shall continue to operate as intended. \\
Temporary degradation of operating behavior must be self-re- \\
coverable.
\end{tabular} \\
\hline C & \begin{tabular}{l} 
Loss of functions accepted, but no destruction of hardware or \\
software (program or data).
\end{tabular} & \begin{tabular}{l} 
The system shall continue to operate as intended automatically, \\
after manual restart or power off / power on.
\end{tabular} \\
\hline FS & Functional safety - Behavior of test object per EN 61800-5-2, item 6.2.5.3 \\
\hline
\end{tabular}

\subsection*{9.1.1.1.1 High-frequency interference}

The following limit values are applicable for industrial environments (category C3).
Electrostatic discharge (ESD)
\begin{tabular}{|l|l|l|l|l|}
\hline Testing performed per EN 61000-4-2 & Requirements per EN 61800-3 & PC & \begin{tabular}{l} 
Requirements per EN 61800-5-2 1) \\
Increased immunity to interference
\end{tabular} & \begin{tabular}{l} 
PC \\
\hline \begin{tabular}{l} 
Contact discharge (CD) on conductive accessible \\
parts
\end{tabular} \\
\hline Air discharge (AD) on insulating accessible parts
\end{tabular} \(4 \pm 4 \mathrm{kV}\) \\
\hline
\end{tabular}
1) The total number of discharges depends on the required safety integrity level (SIL) and listed in EN 61800-5-2.

High-frequency electromagnetic fields (HF field)
\begin{tabular}{|c|c|c|c|c|}
\hline Testing performed per EN 61000-4-3 & Requirements per EN 61800-3 & PC & Requirements per EN 61800-5-2 Increased immunity to interference & PC \\
\hline \multirow[t]{3}{*}{Housing, completely wired} & \[
\begin{array}{|l|}
\hline 80 \mathrm{MHz} \text { to } 1 \mathrm{GHz} \\
10 \mathrm{~V} / \mathrm{m} \\
80 \% \text { amplitude modulation ( } 1 \mathrm{kHz} \text { ) } \\
\hline
\end{array}
\] & \multirow[t]{3}{*}{A} & \[
\begin{aligned}
& 80 \mathrm{MHz} \text { to } 1 \mathrm{GHz} \\
& 20 \mathrm{~V} / \mathrm{m} \\
& 80 \% \text { amplitude modulation }(1 \mathrm{kHz})
\end{aligned}
\] & \multirow[t]{3}{*}{FS} \\
\hline & \[
\begin{array}{|l}
\hline 1.4 \mathrm{GHz} \text { to } 2 \mathrm{GHz} \\
3 \mathrm{~V} / \mathrm{m} \\
80 \% \text { amplitude modulation }(1 \mathrm{kHz}) \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \text { 1.4 GHz to } 2 \mathrm{GHz} \\
& 10 \mathrm{~V} / \mathrm{m} \\
& 80 \% \text { amplitude modulation }(1 \mathrm{kHz})
\end{aligned}
\] & \\
\hline & \[
\begin{array}{|l|}
\hline 2 \mathrm{GHz} \text { to } 2.7 \mathrm{GHz} \\
1 \mathrm{~V} / \mathrm{m} \\
80 \% \text { amplitude modulation }(1 \mathrm{kHz})
\end{array}
\] & & \[
\begin{array}{|l|}
\hline 2 \mathrm{GHz} \text { to } 6 \mathrm{GHz} \\
3 \mathrm{~V} / \mathrm{m} \\
80 \% \text { amplitude modulation }(1 \mathrm{kHz})
\end{array}
\] & \\
\hline
\end{tabular}

\section*{High-speed transient electrical disturbances (Burst)}
\begin{tabular}{|l|l|l|l|l|}
\hline Testing performed per EN 61000-4-4 & Requirements per EN 61800-3 & PC & \begin{tabular}{l} 
Requirements per EN 61800-5-2 1) \\
Increased immunity to interference
\end{tabular} \\
\hline Power supply connections & \begin{tabular}{l}
\(\pm 2 \mathrm{kV}\) \\
1 min \\
Direct coupling
\end{tabular} & B \\
\hline \begin{tabular}{l}
\(\pm 4 \mathrm{kV}\) \\
Direct coupling
\end{tabular} \\
\hline \begin{tabular}{l} 
Connections for process measurement, open-loop \\
and closed-loop process control
\end{tabular} & \begin{tabular}{l}
\(\pm 2 \mathrm{kV}\) \\
1 min
\end{tabular} & \begin{tabular}{ll}
\(\pm 4 \mathrm{kV}\) \\
\hline Signal interfaces & \begin{tabular}{l}
\(\pm 1 \mathrm{kV}\) \\
1 min
\end{tabular}
\end{tabular} & \\
\hline
\end{tabular}
1) The duration of the effect depends on the required safety integrity level (SIL) and listed in EN 61800-5-2.

Surge voltages (Surge)
\begin{tabular}{|c|c|c|c|c|}
\hline Testing performed per EN 61000-4-5 & Requirements per EN 61800-3 & PC & Requirements per EN 61800-5-2 \({ }^{1)}\) Increased immunity to interference & PC \\
\hline \multirow[t]{2}{*}{Power supply connections} & \[
\begin{array}{|l|}
\hline \pm 1 \mathrm{kV} \\
\mathrm{DM} \\
\text { Symmetrical } \\
\hline
\end{array}
\] & \multirow[t]{3}{*}{B} & \(\pm 2 \mathrm{kV}\)
DM
Symmetrical & \multirow[t]{3}{*}{FS} \\
\hline & \(\pm 2 \mathrm{kV}\)
CM
Asymmetrical & & \[
\begin{array}{|l|}
\hline \pm 4 \mathrm{kV} \\
\mathrm{CM} \\
\text { Asymmetrical } \\
\hline
\end{array}
\] & \\
\hline Connections for process measurement, open-loop and closed-loop process control & \[
\begin{aligned}
& \pm 1 \mathrm{kV} \\
& \mathrm{CM} \\
& \text { Asymmetrical } \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{|l|}
\hline \pm 2 \mathrm{kV} \\
\mathrm{CM} \\
\text { Asymmetrical } \\
\hline
\end{array}
\] & \\
\hline Signal interfaces & --- & & \[
\begin{aligned}
& \hline \pm 0.5 \mathrm{kV} \\
& \mathrm{CM} \\
& \text { Asymmetrical }
\end{aligned}
\] & \\
\hline
\end{tabular}
1) The number of pulses depends on the required safety integrity level (SIL) and listed in EN 61800-5-2.

Conducted disturbances
\begin{tabular}{|l|l|l|l|l|}
\hline Testing performed per EN 61000-4-6 & Requirements per EN 61800-3 & PC & \begin{tabular}{l} 
Requirements per EN 61800-5-2 \\
Increased immunity to interference
\end{tabular} \\
\hline Power supply connections & 150 kHz to 80 MHz & A & \begin{tabular}{l}
150 kHz to 80 MHz \\
20 V \\
\(80 \%\) amplitude modulation (1 kHz)
\end{tabular} \\
\hline \begin{tabular}{ll} 
Connections for process measurement, open-loop \\
and closed-loop process control
\end{tabular} & \begin{tabular}{l}
10 V \\
\(80 \%\) amplitude modulation (1 kHz)
\end{tabular} & FS \\
\hline Signal interfaces & & \\
\hline
\end{tabular}

\subsection*{9.1.1.2 Emission requirements}
\begin{tabular}{|l|l|l|}
\hline Phenomenon & Testing performed per & Limit values per \\
\hline Radiated emissions & EN 55011 & \begin{tabular}{l} 
EN 61800-3: Product standard - \\
Adjustable speed electrical power drive systems
\end{tabular} \\
\hline
\end{tabular}

The following limit values are applicable for industrial environments (category C3).

\section*{Radiated emissions}
\begin{tabular}{|l|l|l|}
\hline Testing performed per EN \(\mathbf{5 5 0 1 1}\) & \multicolumn{2}{|l|}{ Limit values per EN 61800-3 } \\
\cline { 2 - 3 } & Frequency band & Quasi-peak value \\
\hline \begin{tabular}{ll} 
Electric field / Measured from 10 m & 30 MHz to 230 MHz \\
30 MHz to 1 GHz
\end{tabular} & \(50 \mathrm{~dB}(\mu \mathrm{VV} / \mathrm{m})\) \\
\cline { 2 - 3 } & 230 MHz to 1 GHz & \(60 \mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})\) \\
\hline
\end{tabular}

\subsection*{9.1.1.3 Climate conditions}
\begin{tabular}{|c|c|c|}
\hline Test & Testing performed per & Requirements per \\
\hline \multirow[t]{2}{*}{Operation} & \multirow[t]{2}{*}{---} & \begin{tabular}{l}
EN 61800-2: Product standard - \\
Adjustable speed electrical power drive systems
\end{tabular} \\
\hline & & EN 60721-3-3 / class 3K3 \\
\hline \multirow[t]{2}{*}{Storage} & \multirow[t]{2}{*}{---} & EN 61800-2: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 60721-3-1 / class 1K4 / class 1K3 \\
\hline \multirow[t]{2}{*}{Transport} & \multirow[t]{2}{*}{---} & EN 61800-2: Product standard Adjustable speed electrical power drive systems \\
\hline & & EN 60721-3-2 / class 2K3 \\
\hline
\end{tabular}

\section*{Operation}
\begin{tabular}{|l|l|}
\hline & Requirements per EN 60721-3-3 / class 3K3 \\
\hline Ambient temperature during operation & 5 to \(40^{\circ} \mathrm{C}\) \\
\hline Relative humidity during operation & \(5-85 \%\), non-condensing \\
\hline
\end{tabular}

\section*{Storage}
\begin{tabular}{|l|l|l|}
\hline & Requirements per EN 60721-3-1 / class 1K4 & Requirements per EN 60721-3-1 / class 1K3 \\
\hline Storage temperature & -25 to \(55^{\circ} \mathrm{C}\) & --- \\
\hline Relative humidity during storage & --- & 5 to \(95 \%\), non-condensing \\
\hline
\end{tabular}

\section*{Transport}
\begin{tabular}{|l|l|}
\hline & Requirements per EN 60721-3-2 \(/\) class 2K3 \\
\hline Transport temperature & -25 to \(70^{\circ} \mathrm{C}\) \\
\hline Relative humidity during transport & Max. \(95 \%\) at \(40^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\subsection*{9.1.1.4 Electrical safety}

Overvoltage category
\begin{tabular}{|l|l|}
\hline Requirement per EN 61800-2 & Explanation \\
\hline Overvoltage category III & \begin{tabular}{l} 
Equipment supplied from the mains power supply and permanently connected in fixed installations (including and \\
downstream of the main distribution board).
\end{tabular} \\
\hline
\end{tabular}

\section*{Pollution degree}
\begin{tabular}{|l|l|}
\hline Requirement per EN 61800-2 & Explanation \\
\hline Pollution degree 2 & \begin{tabular}{l} 
Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by con- \\
densation must be expected when the module is out of operation.
\end{tabular} \\
\hline
\end{tabular}

Degree of protection provided by enclosures (IP code)
\begin{tabular}{|l|l|l|l|}
\hline Requirement & \begin{tabular}{l} 
Explanation of code num- \\
bers per EN 60529
\end{tabular} & Explanation for the protection of equipment & Explanation for the protection of personnel \\
\hline IP 65 & \begin{tabular}{l} 
First number \\
IP6x
\end{tabular} & Dust-proof. & \begin{tabular}{l} 
Protected against touching dangerous parts with fin- \\
gers.
\end{tabular} \\
\hline \begin{tabular}{l} 
Second number \\
IP \(\times 5\)
\end{tabular} & Protection against water jets (nozzle) from any angle. & --- \\
\hline
\end{tabular}

\subsection*{9.1.2 UL / CSA - ACOPOSmotor Compact (8D1)}

POWER
CONVERSION
EQUIPMENT
E225616

\section*{Underwriters Laboratories (UL)}

Products with this mark are tested by Underwriters Laboratories and listed with the file number E225616.

The mark is valid for the USA and Canada and simplifies the certification of your machines and systems in this economic area.

Standards applied:

UL 61800-5-1
CSA-C22.2 No. 274

Standard for adjustable speed electrical power drive systems Adjustable speed drives

\section*{Certificate}

Website > Downloads > Certificates > UL > ACOPOSmotor > E225616 UL certificate of compliance ACOPOSmotor Compact

\section*{CONDITIONS OF ACCEPTABILITY for 8D1}

For use only in complete equipment where the acceptability of the combination is determined by UL LLC.
1. These devices shall not to be directly connected to the supply mains of OVC III. Instead they are intended for connection to UL certified dc sources. The power supply shall provide galvanic isolation from mains, its maximum ampacity shall not exceed 60A at 58VDC. The devices shall be protected by supplementary or a branch circuit type dc fuse or circuit breaker with maximum rating not exceeding 35A. This supplementary fuse or circuit breaker are not necessary for \(8 \mathrm{BOCO32OHx00.B00}\) or 80 PS 080 X 3 .
2. Enclosure Type rating 1

\subsection*{9.1.3 UKCA}

\section*{UK Conformity Assessed (UKCA)}

All directives applicable to the respective product and their relevant standards are met. Products with this marking are permitted to be imported into Great Britain (England, Wales, Scotland).
Certification of these products is carried out exclusively in cooperation with accredited testing laboratories.

The corresponding UK declaration of conformity is available for download on the B\&R website. For information about the editions of applicable standards, see the UK declaration of conformity.

\subsection*{9.2 Standards and definitions for safety technology}

\section*{Stop functions per EN 60204-1 (Electrical equipment of machines, Part 1: General requirements)}

There are three categories of stop functions:
\begin{tabular}{|cll|}
\hline Category & Description \\
\hline 0 & Stopping by immediate removal of power to the machine actuators (i.e. an uncontrolled stop). \\
\hline 1 & A controlled stop with power left available to the machine actuators to allow for stopping. Power is only interrupted when standstill is achieved. \\
\hline 2 & A controlled stop with power left available to the machine actuators. \\
\hline
\end{tabular}

Table 110: Overview of stop function categories
The necessary stop functions must be determined based on a risk assessment of the machine. Category 0 and category 1 stop functions must be functional regardless of operating mode. A category 0 stop must have priority. Stop functions must have priority over assigned start functions. Resetting the stop function is not permitted to trigger a dangerous state.

\section*{Emergency stops per EN 60204-1 (Electrical equipment of machines - Part 1: General requirements)}

In addition to the requirements for stop functions, the emergency stop function has the following requirements:
- It must have priority over all other functions and operations in all operating modes.
- Power to the machine actuators that can cause a hazardous situation shall be removed as quickly as possible without creating other hazards.
- A reset is not permitted to initiate a restart.

Emergency stops must be category 0 or category 1 stop functions. The necessary stop function must be determined based on a risk assessment of the machine.

\section*{Performance levels (PL) per EN ISO 13849-1 (Safety of machinery - Safety-related parts of control systems, Part 1: General principles for design)}

The safety-related parts of control systems must meet one or more of the requirements for five defined performance levels. These performance levels define the required behavior of safety-related controller parts with regard to their resistance to errors.
\begin{tabular}{|c|c|c|c|}
\hline Performance level (per EN ISO 13849-1) & Safety integrity level - SIL (per IEC 61508-2) & Short description & System behavior \\
\hline a & --- & Safety-related components must be designed and built in such away that they can meet the expected operational requirements (no specific safety measures are implemented). & \begin{tabular}{l}
Caution! \\
The occurrence of a fault can result in the loss of the safety function.
\end{tabular} \\
\hline b & 1 & Safety-related components must be designed and built in such a way that only reliable components and safety principles are used (e.g. preventing short circuits by using sufficient distances, reducing the probability of errors by using oversized components, defining the failure route, idle current principle). & \begin{tabular}{l}
Caution! \\
The occurrence of a fault can result in the loss of the safety function.
\end{tabular} \\
\hline c & 1 & Safety-related components must be designed so that their safety functions are checked at suitable intervals by the machine control system (e.g. automatic or manual check during startup). & \begin{tabular}{l}
Caution! \\
An error between checks can result in the loss of the safety function. The loss of the safety function is detected during the check.
\end{tabular} \\
\hline d & 2 & Safety-related parts shall be designed so that a single fault does not result in the loss of the safety function. Individual errors should - if possible - be detected the next time (or before) the safety function is required. & \begin{tabular}{l}
Caution! \\
The safety function is always retained when a fault occurs. Some but not all errors are detected. An accumulation of undetected errors can result in loss of the safety function.
\end{tabular} \\
\hline e & 3 & Safety-related parts shall be designed so that a single fault does not result in the loss of the safety function. Individual errors must be detected the next time (or before) the safety function is required. If this type of detection is not possible, an accumulation of faults is not permitted to result in the loss of the safety function. & \begin{tabular}{l}
Information: \\
The safety function is always retained when a fault occurs. The faults are detected in time to prevent loss of the safety function.
\end{tabular} \\
\hline
\end{tabular}

Table 111: Overview of performance levels (PL)

A suitable performance level must be selected separately for each drive system (or for each axis) based on a risk assessment. This risk assessment is a part of the total risk assessment for the machine.

The following risk graph (per EN ISO 13849-1, appendix A) provides a simplified procedure for risk assessment:


Figure 22: Risk diagram for determining the \(P L_{r}\) for each safety function per EN ISO 13849-1, appendix A

\section*{Legend}

1 Starting point for assessing the impact on risk reduction
L Low contribution to risk reduction
H High contribution to risk reduction
\(\mathrm{PL}_{r} \quad\) Required performance level
SIL Safety Integrity Level per IEC 61508-2

\section*{Risk parameters}

\section*{S Severity of injury}

S1 Slight (normally reversible injury)
S2 Serious (normally irreversible injury or death)
F Frequency and/or duration of the exposure to the hazard
F1 Seldom to less often and/or exposure time is short.
F2 Frequent to continuous and/or exposure time is long
P Possibility of avoiding hazard or limiting harm
P1 Possible under specific conditions
P2 Scarcely possible
The performance level to be used is determined by starting at the specified starting point and taking the risk parameters \(S, F\) and \(P\) into account.

\section*{10 Disposal}

\section*{Separation of materials}

To ensure that devices can be recycled in an environmentally friendly manner, it is necessary to separate out the different materials. Disposal must be carried out in accordance with applicable legal regulations.
\begin{tabular}{|l|l|l|}
\hline Component & Disposal & Note \\
\hline Motors & Electronic recycling & \begin{tabular}{l} 
A magnetized rotor is not permitted to be transported or delivered outside the stator \\
under any circumstances!
\end{tabular} \\
\hline Gearbox (without oil) & Metal waste & \\
\hline Waste oil (gearbox) & Special waste & \\
\hline Coolant & Special waste & For liquid-cooled motors only. Consists of water / oil with additives. \\
\hline Modules, cables & Electronic recycling & \\
\hline Batteries & Special waste & Danger of fire: Do not store batteries together with conductive materials during disposal. \\
\hline Cardboard/Paper packaging & Paper/Cardboard recycling & \\
\hline
\end{tabular}

\subsection*{10.1 Safety}

\subsection*{10.1.1 Protective equipment}

Always wear suitable safety clothing and equipment for your personal protection.

\subsection*{10.1.2 Rotor with rare earth magnets}

In B\&R motors, rotors are installed with rare earth magnets with high magnetic energy densities.

\section*{Warning!}

Personal injury and damage to property due to rare earth magnets!
The motors are not permitted to be disassembled into individual parts.
A magnetized rotor is not permitted to be transported or delivered outside the stator under any circumstances!
- Due to the surrounding magnetic fields, the functionality of a pacemaker can be impaired in such a way that it can result in bodily harm or even death of the carrier.
- The surrounding magnetic fields can affect or destroy electronic and mechanical measuring instruments.
- The strong magnetic attractive force can result in uncontrolled movements of the magnet or the attraction of other objects. Personal injury due to impacts or trapping is possible. If magnets are splintered during collision, personal injury cannot be ruled out.
- In potentially explosive atmospheres, a spark generated by magnets can result in serious explosions and cause personal injury and damage to property.```


[^0]:    1) Editorial corrections are not listed
