
X67IF1121-1

X67IF1121-1

1 General information

Serial interfaces (barcode scanners for example) are often scattered throughout systems. This interface module
from the remote X67 system is the optimal choice for this area of application: RS232 and RS485/RS422 connection
options directly where they are needed, distributed on the machine or system.
In addition, there are digital inputs and outputs on the same module so that corresponding 24 V sensors/actuators
can also be connected.

■ RS232 and RS485/RS422 usable in parallel
■ 2 digital channels, configurable as inputs or outputs
■ 2 digital inputs
■ Connection of barcode readers, ID systems and sensors on one module

1.1 Other applicable documents

For additional and supplementary information, see the following documents.

Other applicable documents
Document name Title
MAX67 X67 system user's manual
MAEMV Installation / EMC guide

2 Order data
Order number Short description Figure

Communication modules
X67IF1121-1 X67 interface module, 1 RS232 interface, 1 RS422/485 inter-

face, 2 digital channels configurable as inputs or outputs, 24
VDC, 0.5 A, configurable input filter, 2 inputs, 24 VDC, sink, con-
figurable input filter

Table 1: X67IF1121-1 - Order data

Required accessories
For a general overview, see section "Accessories - General overview" of the X67 system user's manual.

Data sheet V 2.14 1

https://www.br-automation.com/download/10000017737
https://www.br-automation.com/download/10000457141

X67IF1121-1

3 Technical description

3.1 Technical data

Order number X67IF1121-1
Short description
Communication module 1x RS232 or 1x RS485/RS422, 2 digital inputs, 2 digi-

tal channels configurable as inputs or outputs using software
General information
Insulation voltage between channel and bus 500 Veff

B&R ID code 0xA90F
Sensor/Actuator power supply 0.5 A summation current
Status indicators RS232, RS485/RS422, I/O function per channel, supply voltage, bus function
Diagnostics

Outputs Yes, using LED status indicator and software
I/O power supply Yes, using LED status indicator and software
RS232 Yes, using LED status indicator
RS485/RS422 Yes, using LED status indicator

Connection type
X2X Link M12, B-coded
Interfaces and inputs/outputs 4x M12, A-coded
I/O power supply M8, 4-pin

Power consumption
Internal I/O 2.4 W
X2X Link power supply 0.75 W

Certifications
CE Yes
ATEX Zone 2, II 3G Ex nA IIA T5 Gc

IP67, Ta = 0 - Max. 60°C
TÜV 05 ATEX 7201X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

EAC Yes
KC Yes

Interfaces
Interface IF1

Signal RS232
Max. distance 900 m
Transfer rate Max. 115.2 kbit/s
FIFO buffer Software
Handshake lines No

Interface IF2
Signal RS485/RS422
Max. distance 1200 m
Transfer rate Max. 115.2 kbit/s
FIFO buffer Software
Terminating resistor Integrated in module

I/O power supply
Nominal voltage 24 VDC
Voltage range 18 to 30 VDC
Integrated protection Reverse polarity protection
Power consumption

Sensor/Actuator power supply Max. 12 W 1)

Sensor/Actuator power supply
Voltage I/O power supply minus voltage drop for short-circuit protection
Voltage drop for short-circuit protection at 0.5 A Max. 2 VDC
Summation current Max. 0.5 A
Short-circuit proof Yes
Digital inputs
Quantity Up to 4 if the 2 digital channels are used as digital inputs
Nominal voltage 24 VDC
Input characteristics per EN 61131-2 Type 1
Input voltage 18 to 30 VDC
Input current at 24 VDC Typ. 3.5 mA
Input circuit Sink
Input filter

Hardware ≤100 µs
Software Default 0 ms, configurable between 0 and 25 ms in 0.2 ms intervals

Input resistance Typ. 6.67 kΩ

Table 2: X67IF1121-1 - Technical data

2 Data sheet V 2.14

X67IF1121-1

Order number X67IF1121-1
Switching threshold

Low <5 V
High >15 VDC

Digital outputs
Quantity Up to 2 if the 2 digital channels are used as digital outputs
Variant Current-sourcing FET
Nominal voltage 24 VDC
Switching voltage I/O power supply minus residual voltage
Nominal output current 0.5 A
Total nominal current 1 A
Output circuit Source
Output protection Thermal shutdown in the event of overcurrent or short circuit, integrated protection

for switching inductive loads, reverse polarity protection of the output power supply
Diagnostic status Output monitoring with 10 ms delay
Leakage current when the output is switched off <120 μA
Peak short-circuit current <2.1 A
Switch-on in the event of overload shutdown or
short-circuit shutdown

Approx. 1 ms (depends on the module temperature)

Switching delay
0 → 1 <100 μs
1 → 0 <150 μs

Switching frequency
Resistive load Max. 1000 Hz
Inductive load See section "Switching inductive loads".

Braking voltage when switching off inductive loads Typ. 68 VDC
Electrical properties
Electrical isolation Bus isolated from channel and IF

Channel not isolated from channel and IF
Operating conditions
Mounting orientation

Any Yes
Installation elevation above sea level

0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP67
Ambient conditions
Temperature

Operation -25 to 60°C
Derating -
Storage -40 to 85°C
Transport -40 to 85°C

Mechanical properties
Dimensions

Width 53 mm
Height 85 mm
Depth 42 mm

Weight 195 g
Torque for connections

M8 Max. 0.4 Nm
M12 Max. 0.6 Nm

Table 2: X67IF1121-1 - Technical data

1) The power consumption of the sensors and actuators connected to the module is not permitted to exceed 12 W.

Data sheet V 2.14 3

X67IF1121-1

3.2 LED status indicators

Figure LED Description
Status indicator - X2X Link.
Green Red Description
Off Off No power supply via X2X Link
On Off X2X Link supplied, communication OK
Off On X2X Link supplied but X2X Link communication not functioning

Status indica-
tor 1

On On PREOPERATIONAL: X2X Link supplied, module not initialized
1 Orange Lit when the module is receiving data via the RS232 interface.

3 Orange Lit when the module is receiving or transmitting data via the
RS485/RS422 interface.

Status indicator for input/output 3 and digital input 1.
LED Description
Orange Input/output status of channel 3
Green Input status of channel 1

2

Orange and green1) Both channel 1 and channel 3 are active.
Status indicator for input/output 4 and digital input 2.
LED Description
Orange Input/output status of channel 4
Green Input status of channel 2

4

Orange and green1) Both channel 2 and channel 4 are active.
Status indicator for module function.
LED Status Description

Off No power to module
Single flash RESET mode
Blinking PREOPERATIONAL mode

Green

On RUN mode
Off No power to module or everything OK
On Error or reset status
Single flash Warning/Error on an I/O channel. Level monitoring for digital out-

puts has been triggered.

Status indicator 1:
Left: Green, Right: Red

Status indicator 2:
Left: Green, Right: Red

Status indica-
tor 2

Red

Double flash Supply voltage not in the valid range

1) Both LEDs are lit, but a mixed color is seen because there is only one light conductor.

3.3 Connection elements

X2X Link
Connection A: Input
Connection B: Output

24 VDC I/O power supply
Connection C: Supply
Connection D: Routing

Connection 1: RS232
Connection 3: RS485/RS422

Connection 2: Input 1 and input/output 3
Connection 4: Input 2 and input/output 4

3.4 X2X Link

This module is connected to X2X Link using pre-assembled cables. The connection is made using M12 circular
connectors.

Connection Pinout
Pin Name
1 X2X+
2 X2X
3 X2X⊥
4 X2X\

1

2

3

4

1

4

3

2

A

B

Shield connection made via threaded insert in the module.

A → B-coded (male), input
B → B-coded (female), output

4 Data sheet V 2.14

X67IF1121-1

3.5 24 VDC I/O power supply

The I/O power supply is connected via M8 connectors C and D. The I/O power supply is connected via connector
C (male). Connector D (female) is used to route the I/O power supply to other modules.

Information:
The maximum permissible current for the I/O power supply is 8 A (4 A per connection pin)!

Connection Pinout
Pin Name
1 24 VDC
2 24 VDC
3 GND
4 GND

1
2

3

4

3

1

4

2

C

D
C → Connector (male) in module, feed for I/O power supply
D → Connector (female) in module, relay of I/O power supply

3.6 Pinout

TxD\
TxD
RxD\
RxD
GND

Shield
1
2
3
4
5

X3
M12 ①

+24 VDC
AI-1
GND
AI-2
Shield

Shield
1
2
3
4
5

X2 and X4
M12 ①

Reserved
TxD
GND
RxD
Shield

Shield
1
2
3
4
5

X1
M12 ①

X67CA0A41.xxxx: M12 sensor cable, straight①
X67CA0A51.xxxx: M12 sensor cable, angled

3.6.1 RS232 interface

The input is connected using M12 circular connectors.
Connection Pinout

Pin Name
1 Reserved
2 TxD
3 GND
4 RxD
5 Shield

X1

2
1

4
3

5

Shield connection made via threaded insert in the module

X1 → A-keyed (female), output

Data sheet V 2.14 5

X67IF1121-1

3.6.2 RS485/RS422 interface

The input is connected using M12 circular connectors.
Connection Pinout

Pin RS422 RS485
1 TxD\ Reserved
2 TxD Reserved
3 RxD\ Data\
4 RxD Data
5 GND GND

X3

1
4

3
2

5

Shield connection made via threaded insert in the module

X3 → A-keyed (female), output

3.6.3 Connections X2 and X4

M12, 5-pin Pinout
Pin Name
1 24 VDC sensor/actuator supply1)

2 DI 1 or 2
3 GND
4 DI/DO 3 or 4
5 Shield2)

Connection 2

2
1

4
3

5

1
4

3
2

5

Connection 4

1) Sensors/Actuators are not permitted to be supplied externally.
2) Shielding also provided by threaded insert in the module.

X2 → A-keyed (female), input/output

3.7 Usage example

In the application displayed here, the proximity sensor and barcode reader are connected with the communication
module. The sensor activates the barcode scanner when a corresponding product arrives in the read area.

X67 I/O system
X20 control system

6 Data sheet V 2.14

X67IF1121-1

3.8 Input/Output circuit diagram

1

2

3

4

5

Control logic,
temperature

Output status 3/4

VDR

Input status 3/4

Short circuit and
overload protection

VDR

Filter (t)Input status 1/2

24 V 0.5 A digital I/O

1 1

2 2

3 3

4 4

+24 V

GND

Reverse polarity protection
C D

VDR
>30 V

Monitoring of the I/O power supply

2 + 4

I/O status
LED (green)

Filter (t)

I/O status
LED (orange)

cutoff

IN

IN

3.9 Switching inductive loads

C
oi

l r
es

is
ta

nc
e

[Ω
]

Coil inductance

Max. switching cycles / second
(with 90% duty cycle)

0.1 1 10 100 1000 5000
48

10 H 1 H 100 mH

10 mH
1000

100

Data sheet V 2.14 7

X67IF1121-1

4 Register description

4.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X67 system user's
manual.

4.2 Function model 2 - Stream and Function model 254 - Cyclic stream

Function models "Stream" and "Cyclic stream" use a module-specific driver for the operating system. The interface
can be controlled using library "DvFrame" and reconfigured at runtime.
Function model - Stream
In function model "Stream", the CPU communicates with the module acyclically. The interface is relatively conve-
nient, but the timing is very imprecise.
Function model - Cyclic stream
Function model "Cyclic stream" was implemented later. From the application's point of view, there is no difference
between function models "Stream" and "Cyclic stream". Internally, however, the cyclic I/O registers are used to
ensure that communication follows deterministic timing.

Information:
• In order to use function models "Stream" and "Cyclic stream", you must be using B&R con-

trollers of type "SG4".
• These function models can only be used in X2X Link and POWERLINK networks.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Module - Configuration
- AsynSize -

Configuration
1294 InputFilter UINT ●
1281 OutputEnable USINT ●
6273 CfO_ErrorID0007 USINT ●

Communication
Input state of digital inputs 1 to 4 USINT
DigitalInput01 Bit 0
... ...

135

DigitalInput04 Bit 3

●

Output status of the digital outputs USINT
DigitalOutput03 Bit 2

129

DigitalOutput04 Bit 3

●

Status of the digital outputs USINT
StatusDigitalOutput03 Bit 2

133

StatusDigitalOutput04 Bit 3

●

Status of the operating limits USINT137
StatusSupplyVoltage Bit 0

●

8 Data sheet V 2.14

X67IF1121-1

4.3 Function model 254 - Flatstream

Flatstream provides independent communication between an X2X Link master and the module. This interface was
implemented as a separate function model for the module. Serial information is transferred via cyclic input and
output registers. The sequence and control bytes are used to control the data stream (see "Flatstream communi-
cation" on page 21).
When using function model Flatstream, the user can choose whether to use library "AsFltGen" in AS for implemen-
tation or to adapt Flatstream handling directly to the individual requirements of the application.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Configuration - I/O and status
1294 InputFilter UINT ●
1281 OutputEnable USINT ●
6273 CfO_ErrorID0007 USINT ●

Configuration - Interface
260 IF1CfgPhy UDINT ●
772 IF2CfgPhy UDINT ●
268 IF1phyBaud UDINT ●
780 IF2phyBaud UDINT ●

Configuration - Handshake
284 IF1hshCfg UDINT ●
796 IF2hshCfg UDINT ●
292 IF1hssXOnOff UDINT ●
804 IF2hssXOnOff UDINT ●
298 IF1hssPeriod UINT ●
810 IF2hssPeriod UINT ●
274 IF1hshInvTxF UINT ●
786 IF2hshInvTxF UINT ●
324 IF1rxlLockUnlock UDINT ●
836 IF2rxlLockUnlock UDINT ●

Configuration - Frame
332 IF1rxCtoEomSize UDINT ●
844 IF2rxCtoEomSize UDINT ●
364 IF1txCtoEomSize UDINT ●
876 IF2txCtoEomSize UDINT ●
340 IF1rxEomChar01 UDINT ●
852 IF2rxEomChar01 UDINT ●
348 IF1rxEomChar23 UDINT ●
860 IF2rxEomChar23 UDINT ●
372 IF1txEomChar01 UDINT ●
884 IF2txEomChar01 UDINT ●
380 IF1txEomChar23 UDINT ●
892 IF2txEomChar23 UDINT ●

Communication
Input state of digital inputs 1 to 4 USINT
DigitalInput01 Bit 0
... ...

135

DigitalInput04 Bit 3

●

Output status of the digital outputs USINT
DigitalOutput03 Bit 2

129

DigitalOutput04 Bit 3

●

Error message status bits USINT
IF1StartBitError Bit 0
IF1StopBitError Bit 1
IF1ParityError Bit 2
IF1RXoverrun Bit 3
IF2StartBitError Bit 4
IF2StopBitError Bit 5
IF2ParityError Bit 6

6145

IF2RXoverrun Bit 7

●

Acknowledging the status bits USINT
IF1QuitStartBitError Bit 0
IF1QuitStopBitError Bit 1
IF1QuitParityError Bit 2
IF1QuitRXoverrun Bit 3
IF2QuitStartBitError Bit 4
IF2QuitStopBitError Bit 5
IF2QuitParityError Bit 6

6209

IF2QuitRXoverrun Bit 7

●

Status of the digital outputs USINT
StatusDigitalOutput03 Bit 2

133

StatusDigitalOutput04 Bit 3

●

Data sheet V 2.14 9

X67IF1121-1

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Status of the operating limits USINT137
StatusSupplyVoltage Bit 0

●

Flatstream1)

196 IF1CfgMTU UDINT ●
212 IF2CfgMTU UDINT ●
204 IF1forwardDelay UINT ●
220 IF2forwardDelay UINT ●

0 IF1InputSequence USINT ●
64 IF2InputSequence USINT ●
N IF1RxByteN (index N = 1 to 27) USINT ●

64 + N IF2RxByteN (index N = 1 to 27) USINT ●
32 IF1OutputSequence USINT ●
96 IF2OutputSequence USINT ●

32 + N IF1TxByteN (index N = 1 to 27) USINT ●
96 + N IF2TxByteN (index N = 1 to 27) USINT ●

1) A separate Flatstream is available for each interface.

4.4 Function model 254 - Bus controller

Function model "Bus controller" is a reduced form of function model "Flatstream". Instead of up to 27 Tx / Rx bytes,
a maximum of 7 Tx / Rx bytes can be used.

Information:
It is not possible to change or expand the predefined configuration in this function model!

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

Configuration - I/O and status
1294 - InputFilter UINT ●
1281 - OutputEnable USINT ●
6273 - CfO_ErrorID0007 USINT ●

Configuration - Interface
260 - IF1CfgPhy UDINT ●
772 - IF2CfgPhy UDINT ●
268 - IF1phyBaud UDINT ●
780 - IF2phyBaud UDINT ●

Configuration - Handshake
284 - IF1hshCfg UDINT ●
796 - IF2hshCfg UDINT ●
292 - IF1hssXOnOff UDINT ●
804 - IF2hssXOnOff UDINT ●
298 - IF1hssPeriod UINT ●
810 - IF2hssPeriod UINT ●
274 - IF1hshInvTxF UINT ●
786 - IF2hshInvTxF UINT ●
324 - IF1rxlLockUnlock UDINT ●
836 - IF2rxlLockUnlock UDINT ●

Configuration - Frame
332 - IF1rxCtoEomSize UDINT ●
844 - IF2rxCtoEomSize UDINT ●
364 - IF1txCtoEomSize UDINT ●
876 - IF2txCtoEomSize UDINT ●
340 - IF1rxEomChar01 UDINT ●
852 - IF2rxEomChar01 UDINT ●
348 - IF1rxEomChar23 UDINT ●
860 - IF2rxEomChar23 UDINT ●
372 - IF1txEomChar01 UDINT ●
884 - IF2txEomChar01 UDINT ●
380 - IF1txEomChar23 UDINT ●
892 - IF2txEomChar23 UDINT ●

Communication
Input state of digital inputs 1 to 4 USINT
DigitalInput01 Bit 0
... ...

135 18

DigitalInput04 Bit 3

●

Output status of the digital outputs USINT
DigitalOutput03 Bit 2

129 18

DigitalOutput04 Bit 3

●

10 Data sheet V 2.14

X67IF1121-1

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

Error message status bits USINT
IF1StartBitError Bit 0
IF1StopBitError Bit 1
IF1ParityError Bit 2
IF1RXoverrun Bit 3
IF2StartBitError Bit 4
IF2StopBitError Bit 5
IF2ParityError Bit 6

6145 16

IF2RXoverrun Bit 7

●

Acknowledging the status bits USINT
IF1QuitStartBitError Bit 0
IF1QuitStopBitError Bit 1
IF1QuitParityError Bit 2
IF1QuitRXoverrun Bit 3
IF2QuitStartBitError Bit 4
IF2QuitStopBitError Bit 5
IF2QuitParityError Bit 6

6209 16

IF2QuitRXoverrun Bit 7

●

Status of the digital outputs USINT
StatusDigitalOutput03 Bit 2

133 19

StatusDigitalOutput04 Bit 3

●

Status of the operating limits USINT137 -
StatusSupplyVoltage Bit 0

●

Flatstream2)

196 - IF1CfgMTU UDINT ●
212 - IF2CfgMTU UDINT ●
204 - IF1forwardDelay UINT ●
220 - IF2forwardDelay UINT ●

0 0 IF1InputSequence USINT ●
64 8 IF2InputSequence USINT ●
N N IF1RxByteN (index N = 1 to 7) USINT ●

64 + N 8 + N IF2RxByteN (index N = 1 to 7) USINT ●
32 0 IF1OutputSequence USINT ●
96 8 IF2OutputSequence USINT ●

32 + N N IF1TxByteN (index N = 1 to 7) USINT ●
96 + N 8 + N IF2TxByteN (index N = 1 to 7) USINT ●

1) The offset specifies the position of the register within the CAN object.
2) A separate Flatstream is available for each interface.

4.4.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X67
user's manual (version 3.30 or later).

4.4.2 CAN I/O bus controller

The module occupies 3 analog logical slots with CAN I/O.

Data sheet V 2.14 11

X67IF1121-1

4.5 Configuration - I/O and status

4.5.1 Configuring the input filter

Name:
InputFilter
The filter value for all digital inputs can be configured in this register.
The filter value can be configured in steps of 100 μs. It makes sense to enter values in steps of 2, however, since
the input signals are sampled every 200 μs.
Data type Values Filter

0 No software filter (bus controller default setting)
2 0.2 ms
... ...

USINT

250 25 ms - Higher values are limited to this value.

4.5.2 Input/output configuration channels 3 and 4

Name:
OutputEnable
This register configures channels 3 and 4 as either an input or output.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Name Value Information

0 - 1 Reserved -
0 Configured as input (bus controller default setting)2 Channel 03
1 Configured as output
0 Configured as input (bus controller default setting)3 Channel 04
1 Configured as output

4 - 7 Reserved -

4.5.3 Forward error to the application

Name:
CfO_ErrorID0007
This register sets which error messages are forwarded to the application.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Name Value Information

0 Ignore (bus controller default setting)0 StartBitError - IF1
1 Indicate faulty start bit
0 Ignore (bus controller default setting)1 StopBitError - IF1
1 Indicate faulty stop bit
0 Ignore (bus controller default setting)2 ParityError - IF1
1 Indicate faulty parity bit
0 Ignore (bus controller default setting)3 RXoverrun - IF1
1 Indicate overflow in the receive direction
0 Ignore (bus controller default setting)4 StartBitError - IF2
1 Indicate faulty start bit
0 Ignore (bus controller default setting)5 StopBitError - IF2
1 Indicate faulty stop bit
0 Ignore (bus controller default setting)6 ParityError - IF2
1 Indicate faulty parity bit
0 Ignore (bus controller default setting)7 RXoverrun - IF2
1 Indicate overflow in the receive direction

12 Data sheet V 2.14

X67IF1121-1

4.6 Configuration - Serial interface

4.6.1 Configuration - Interfaces

Name:
IF1CfgPhy to IF2CfgPhy
These registers are used to configure the interfaces. Only the corresponding interface values are permitted to be
used for each register.

• IF1CfgPhy configures RS232 interface
• IF2CfgPhy configures RS422/485 interface

After all other configuration registers have been written, the last write command must enable the interface. If pa-
rameters need to be changed, the interface must first be disabled.
Data type Values Bus controller default setting
UDINT See bit structure. 0x80245

Bit structure:
Bit Description Value Information

48 "0" - (low) bit is always 0
49 "1" - (high) bit is always 1
69 1 stop bit (bus controller default setting)
78 "N" - (no) no bit

0 - 7 Parity bit configuration1)

79 "O" - (odd) odd parity
2 1 stop bit (bus controller default setting)8 - 15 Number of stop bits
4 2 stop bits
7 7 data bits16 - 23 Number of data bits per character
8 8 data bits (bus controller default setting)
0 Interface disabled (bus controller default setting)
2 RS232 interface active
4 RS422 interface active2)

5 RS422 interface active as bus3)

6 RS485 interface active with echo

24 - 31 Interface mode

7 RS485 interface active without echo

1) ASCII-encoded decimal values
2) Connection between 2 stations
3) Connections between multiple stations possible. Transmit lines connected as with RS485 tri-state.

4.6.2 Setting the baud rate

Name:
IF1phyBaud to IF2phyBaud
This register sets the baud rate of the interface in bit/s.
Data type Value Function

1200 1.2 kbaud
2400 2.4 kbaud
4800 4.8 kbaud
9600 9.6 kbaud

19200 19.2 kbaud
38400 38.4 kbaud
57600 57.6 kbaud (bus controller default setting)

UDINT

115200 115.2 kbaud

Data sheet V 2.14 13

X67IF1121-1

4.7 Configuration - Handshake

In order to ensure serial communication runs smoothly, the size of the receive buffer being used in the module
must be made known. In addition, the user can specify a software- or hardware-based handshake algorithm.

4.7.1 RTS evaluation and frame detection

Name:
IF1hshCfg to IF2hshCfg
This register configures how the hardware RTS handshake line is controlled depending on the fill level of the receive
buffer in addition to generally enabling frame detection on the hardware side.
The RTS line is enabled as long as data is being sent. This Tx-Framing mode can be used to control external
interface converters.
Data type Values Bus controller default setting
UDINT See bit structure. 0

Bit structure:
Bit Description Value Information

0 RTS line freely available for other flow control methods (bus con-
troller default setting)

16 Tx frame detection switched on for RTS line

0 - 7 Frame detection

80 Tx frame detection switched on for RTS line (without echo)
0 RTS line freely available for other flow control methods (bus con-

troller default setting)
8 - 15 Flow control

16 RTS line controlled by the fill level of the receive buffer
16 - 31 Reserved 0

4.7.2 Software handshake control characters

Name:
IF1hssXOnOff to IF2hssXOnOff
These registers configure the XOn and XOff control characters, which are used for flow control via software hand-
shake. Valid XOn/XOff control characters must be defined in order to ensure proper functionality.
The default values are XOn (17) and XOff (19), but other values can also be used.
Data type Values Bus controller default setting
UDINT See bit structure. 0xFFFFFFFF

Bit structure:
Bit Description Value Information

19 Default XOff ASCII character0 - 15 XOff control character
65535 No software handshake (bus controller default setting)

17 Default XOn ASCII character16 - 31 XOn control character
65535 No software handshake (bus controller default setting)

4.7.3 Repeating the handshake

Name:
IF1hssPeriod to IF2hssPeriod
Some applications require periodic repetition of the current state for software-side handshakes. The repetition time
in milliseconds can be specified in this register for this purpose.
Data type Value Function

0 Automatic status repetition disabledUINT
500 to 10000 Repeat time in ms.

Bus controller default setting: 5000

14 Data sheet V 2.14

X67IF1121-1

4.7.4 Inverting RTS/CTS

Name:
IF1hshInvTxF to IF2hshInvTxF
This register can be used to create a logical inverse of the RTS/CTS signals.
Data type Values Bus controller default setting
UINT See the bit structure. 0

Bit structure:
Bit Name Value Information

0 No masking (bus controller default setting)0 - 7 Mask TX signal
1 Mask CTS signal
0 Inversion off (bus controller default setting)
1 CTS signal inversion on

16 RTS signal inversion on

8 - 15 Invert signals

17 CTS and RTS signal inversion on

4.7.5 Locking/unlocking the receive buffer

Name:
IF1rxlLockUnlock to IF2rxlLockUnlock
The two registers "Lock" and "Unlock" can be used for "flow control" monitoring of the communication. If the amount
of data from the module input exceeds the value of register "Lock", flow control switches to state "Passive". To
return to state "Active" or "Ready", the amount of data in the receive buffer must fall below the default value of
register "Unlock".

Information:
These registers simulate the behavior of a Schmitt trigger, so the value of register "Lock" must be
greater than the value of register "Unlock".

Data type Values Bus controller default setting
UDINT See bit structure. 0x4000200

Bit structure:
Bit Description Value Information

0 - 15 Lower limit of the receive buffer 0 to 4095 Bus controller default setting: 512
16 - 31 Upper limit of the receive buffer 0 to 4095 Bus controller default setting: 1024

Data sheet V 2.14 15

X67IF1121-1

4.8 Configuration - Frame

Different message end identifiers can be specified in order to correctly form the transmitted Tx frames and correctly
interpret the received Rx frames.

4.8.1 Configuring the receive frame

Name:
IF1rxCtoEomSize to IF2rxCtoEomSize
This register is used to configure the maximum number of bytes of the receive frame and the duration until a receive
timeout is triggered.
Data type Values Bus controller default setting
UDINT See bit structure. 0x40100

Bit structure:
Bit Description Value Information

0 Function disabled0 - 15 Maximum number of bytes of the receive frame
1 to 4096 Configurable receive frame length in characters.

Bus controller default setting: 256
0 Function disabled16 - 31 Duration until a receive timeout is triggered.

1 to 65535 Receive timeout in characters.
Bus controller default setting: 4

Maximum number of bytes of the receive frame

The message is considered to be ended as soon as a frame with the specified size in bytes is transferred. The
longest possible frame length is the size of the 4096-byte receive buffer. Larger frames cause the Receive Overrun
error.

Duration until a receive timeout is triggered.

The message is considered to be terminated when nothing is transfered for the specified duration. The time is
specified here in characters to ensure that it is independent of the transfer rate. The number of characters is then
multiplied by the time needed to transfer a character.

4.8.2 Configuring the transmit frame

Name:
IF1txCtoEomSize to IF2txCtoEomSize
This register is used to configure the maximum byte number of the transmit frame and the duration until a transmit
timeout is triggered.
Data type Values Bus controller default setting
UDINT See bit structure. 0x51000

Bit structure:
Bit Description Value Information

0 Function disabled0 - 15 Maximum number of bytes of the transmit frame
1 to 4096 Configurable transmit frame length in characters.

Bus controller default setting: 256
0 Function disabled16 - 31 Transmit timeout

1 to 65535 Transmit timeout in characters.
Bus controller default setting: 5

Maximum number of bytes of the transmit frame

The message is considered to be ended as soon as a frame with the specified size in bytes is transferred. The
longest possible frame length is the size of the 4096-byte transmit buffer. The configured transmit timeout is main-
tained after the frame has been sent.

Transmit timeout

No characters are transmitted for the specified time. The time is specified here in characters to ensure that it is
independent of the transfer rate. The number of characters is then multiplied by the time needed to transfer a
character.

16 Data sheet V 2.14

X67IF1121-1

4.8.3 Define receive terminator

Name:
IF1rxEomChar01 to IF2rxEomChar01
IF1rxEomChar23 to IF2rxEomChar23
A possible receive termination character can be configured in each register.
All 4 characters are equal. The message is considered to be terminated as soon as one of the defined characters
is transferred.
Data type Values Bus controller default setting
UDINT See bit structure. 0xFFFFFFFF

Bit structure:
Bit Description Value Information

0 to 255 Frame terminator (ASCII code)0 - 15 2. Character: IF1rxEomChar01
4. Character: IF1rxEomChar23 65535 Function disabled (bus controller default setting)

0 to 255 Frame terminator (ASCII code)16 - 31 1. Character: IF2rxEomChar01
3. Character: IF2rxEomChar23 65535 Function disabled (bus controller default setting)

4.8.4 Define transmit terminator

Name:
IF1txEomChar01 to IF2txEomChar01
IF1txEomChar23 to IF2txEomChar23
A possible transmit termination character can be configured in each register.
All 4 characters are equal. The message is considered to be terminated as soon as one of the defined characters
is transferred.
Data type Values Bus controller default setting
UDINT See bit structure. 0xFFFFFFFF

Bit structure:
Bit Description Value Information

0 to 255 Frame terminator (ASCII code)0 - 15 2. Character: IF1txEomChar01
4. Character: IF1txEomChar23 65535 Function disabled (bus controller default setting)

0 to 255 Frame terminator (ASCII code)16 - 31 1. Character: IF2txEomChar01
3. Character: IF2txEomChar23 65535 Function disabled (bus controller default setting)

4.9 Configuration - Flatstream MTU

Name:
IF1CfgMTU to IF2CfgMTU
These registers configure the Maximum Transmission Unit settings. For a description, see the corresponding sec-
tion in "Flatstream communication" on page 21.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 7 Number of unacknowledged sequences 1 to 7 Default = 1
0 Multiple segments not permitted (default)8 Flatstream mode (bit 0)
1 Multiple segments permitted within MTU
0 Maximum segment size is MTU size (default)9 Flatstream mode (bit 1)
1 Segment size can exceed MTU size

10 - 15 Reserved -
16 - 23 Number of enabled Tx and Rx bytes (InputMTU size) 1 to 27 Default = 71)

24 - 31 Number of enabled Tx and Rx bytes (OutputMTU size) 1 to 27 Default = 71)

1) The size cannot be altered in function model 254 - Bus controller. Fixed length = 7.

Data sheet V 2.14 17

X67IF1121-1

4.10 Communication

4.10.1 Digital inputs

Unfiltered
The input state is collected with a fixed offset to the network cycle and transferred in the same cycle.
Filtered
The filtered state is collected with a fixed offset to the network cycle and transferred in the same cycle. Filtering
takes place asynchronously to the network in multiples of 200 µs with a network-related jitter of up to 50 µs.

4.10.1.1 Input state of digital inputs 1 to 4

Name:
DigitalInput01 to DigitalInput04
This register contains the input state of digital inputs 1 to 4.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information
0 DigitalInput01 0 or 1 Input status of digital input 1
... ...
3 DigitalInput04 0 or 1 Input status of digital input 4

4.10.2 Digital outputs

The output state is transferred to the output channels with a fixed offset (<60 µs) based on the network cycle
(SyncOut).

4.10.2.1 Output status of the digital outputs

Name:
DigitalOutput03 to DigitalOutput04
This register is used to store the switching state of digital outputs 3 to 4.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 1 Reserved -
0 Digital output 03 reset2 DigitalOutput03
1 Digital output 03 set
0 Digital output 04 reset3 DigitalOutput04
1 Digital output 04 set

4 - 7 Reserved -

4.10.2.2 Status of the digital outputs

Name:
StatusDigitalOutput03 to StatusDigitalOutput04
This register is used to indicate the status of digital outputs 3 and 4.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 - 1 Reserved -
0 Channel 03: No error2 StatusDigitalOutput03
1 Channel 03: Short circuit or overload
0 Channel 04: No error3 StatusDigitalOutput04
1 Channel 04: Short circuit or overload

4 - 7 Reserved -

18 Data sheet V 2.14

X67IF1121-1

4.10.3 Error message status bits

Name:
IF1StartBitError to IF2StartBitError
IF1StopBitError to IF2StopBitError
IF1ParityError to IF2ParityError
IF1RXoverrun to IF2RXoverrun
This register transfers the individual bits that indicate an error. If a error occurs, the corresponding bit is set and
maintained until it is acknowledged.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No error0 IF1StartBitError
1 Start bit error occurred1)

0 No error1 IF1StopBitError
1 Stop bit error occurred1)

0 No error2 IF1ParityError
1 Parity bit error occurred1)

0 No error3 IF1RXoverrun
1 Receive buffer overflow occurred2)

0 No error4 IF2StartBitError
1 Start bit error occurred1)

0 No error5 IF2StopBitError
1 Stop bit error occurred1)

0 No error6 IF2ParityError
1 Parity bit error occurred1)

0 No error7 IF2RXoverrun
1 Receive buffer overflow occurred2)

1) This error can result from things such as mismatched interface configurations or problems with the wiring.
2) This data point reports a receive buffer overrun. The buffer capacity on the module is exhausted and all subsequent data arriving at the interface is lost. An

overrun always means that the data received on the module is not read fast enough by the higher-level system.
The solution here is to optimize the cycle times of all transfer routes and task classes involved and utilize the available handshake options.

4.10.4 Acknowledging the status bits

Name:
IF1QuitStartBitError to IF2QuitStartBitError
IF1QuitStopBitError to IF2QuitStopBitError
IF1QuitParityError to IF2QuitParityError
IF1QuitRXoverrun to IF2QuitRXoverrun
This register is used to transfer the individual bits that acknowledge an indicated error state. After one of the bits
has been set, it can be reset using the corresponding acknowledgment bit.
If the error is still actively pending, the error status bit is not deleted. The acknowledgment bit can only be reset
if the error status bit is no longer set.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No acknowledgment0 IF1QuitStartBitError
1 Acknowledge start bit error
0 No acknowledgment1 IF1QuitStopBitError
1 Acknowledge stop bit error
0 No acknowledgment2 IF1QuitParityError
1 Acknowledge parity bit error
0 No acknowledgment3 IF1QuitRXoverrun
1 Acknowledge receive buffer overflow error
0 No acknowledgment4 IF2QuitStartBitError
1 Acknowledge start bit error
0 No acknowledgment5 IF2QuitStopBitError
1 Acknowledge stop bit error
0 No acknowledgment6 IF2QuitParityError
1 Acknowledge parity bit error
0 No acknowledgment7 IF2QuitRXoverrun
1 Acknowledge receive buffer overflow error

Data sheet V 2.14 19

X67IF1121-1

4.10.5 Status of the operating limits

Name:
StatusSupplyVoltage
This register can be used to read the status of the operating limits.
Data type Value
USINT See bit structure.

Bit structure:
Bit Description Value Information

0 I/O power supply within the warning limits (18 to 30 V)0 StatusSupplyVoltage
1 I/O power supply outside the warning limits (<18 V or >30 V)

1 - 7 Reserved 0

20 Data sheet V 2.14

X67IF1121-1

4.11 Flatstream communication

4.11.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

Data sheet V 2.14 21

X67IF1121-1

4.11.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

22 Data sheet V 2.14

X67IF1121-1

4.11.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

Data sheet V 2.14 23

X67IF1121-1

4.11.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

4.11.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

4.11.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

24 Data sheet V 2.14

X67IF1121-1

4.11.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

4.11.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

4.11.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

4.11.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
Data sheet V 2.14 25

X67IF1121-1

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

4.11.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

26 Data sheet V 2.14

X67IF1121-1

4.11.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

Data sheet V 2.14 27

X67IF1121-1

4.11.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

28 Data sheet V 2.14

X67IF1121-1

4.11.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

Data sheet V 2.14 29

X67IF1121-1

4.11.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

30 Data sheet V 2.14

X67IF1121-1

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

Data sheet V 2.14 31

X67IF1121-1

4.11.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

32 Data sheet V 2.14

X67IF1121-1

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

Data sheet V 2.14 33

X67IF1121-1

4.11.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

34 Data sheet V 2.14

X67IF1121-1

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

Data sheet V 2.14 35

X67IF1121-1

4.11.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

36 Data sheet V 2.14

X67IF1121-1

4.11.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

Data sheet V 2.14 37

X67IF1121-1

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

38 Data sheet V 2.14

X67IF1121-1

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

Data sheet V 2.14 39

X67IF1121-1

4.11.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

40 Data sheet V 2.14

X67IF1121-1

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

Data sheet V 2.14 41

X67IF1121-1

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

42 Data sheet V 2.14

X67IF1121-1

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

Data sheet V 2.14 43

X67IF1121-1

4.11.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

4.11.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Receiver
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

44 Data sheet V 2.14

X67IF1121-1

4.11.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

4.11.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

4.11.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in microseconds. This is the amount of time the module
has to wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle.
The program routine for receiving sequences from a module can therefore be run in a task class whose cycle time
is slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

Data sheet V 2.14 45

X67IF1121-1

4.11.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

46 Data sheet V 2.14

X67IF1121-1

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

Data sheet V 2.14 47

X67IF1121-1

4.11.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

48 Data sheet V 2.14

X67IF1121-1

4.12 Serial with FlatStream

When using FlatStream communication, the module acts as a bridge between the X2X Link master and an intelligent
field device connected to the module. FlatStream mode can be used for either point-to-point connections as well
as for multidrop systems. Specific algorithms such as timeout and checksum monitoring are usually managed
automatically. During normal operation, the user does not have access to these details.
In a serial network, the module is always the master (DTE). Various adjustments can be made to ensure that
signals are transmitted without errors.
The user can, for example, define a handshake algorithm or set the baud rate in order to adapt the transmission
quality to the requirements of the application.
Operation
When using FlatStream, the general structure of the FlatStream frame must be maintained.

Input/Output sequence Tx/Rx bytes
(unchanged) Control byte (unchanged) Serial frame (without hand-

shake or similar measures)

4.13 Acyclic frame size

Name:
AsynSize
When the stream is used, data is exchanged internally between the module and CPU. For this purpose, a defined
amount of acyclic bytes is reserved for this slot.
Increasing the acyclic frame size leads to increased data throughput on this slot.

Information:
This configuration involves a driver setting that cannot be changed during runtime!

Data type Value Information
- 8 to 28 Acyclic frame size in bytes. Default = 24

4.14 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

4.15 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is performed
in each cycle.

Minimum I/O update time
200 µs

Data sheet V 2.14 49

	X67IF1121-1
	1 General information
	1.1 Other applicable documents

	2 Order data
	3 Technical description
	3.1 Technical data
	3.2 LED status indicators
	3.3 Connection elements
	3.4 X2X Link
	3.5 24 VDC I/O power supply
	3.6 Pinout
	3.6.1 RS232 interface
	3.6.2 RS485/RS422 interface
	3.6.3 Connections X2 and X4

	3.7 Usage example
	3.8 Input/Output circuit diagram
	3.9 Switching inductive loads

	4 Register description
	4.1 General data points
	4.2 Function model 2 - Stream and Function model 254 - Cyclic stream
	4.3 Function model 254 - Flatstream
	4.4 Function model 254 - Bus controller
	4.4.1 Using the module on the bus controller
	4.4.2 CAN I/O bus controller

	4.5 Configuration - I/O and status
	4.5.1 Configuring the input filter
	4.5.2 Input/output configuration channels 3 and 4
	4.5.3 Forward error to the application

	4.6 Configuration - Serial interface
	4.6.1 Configuration - Interfaces
	4.6.2 Setting the baud rate

	4.7 Configuration - Handshake
	4.7.1 RTS evaluation and frame detection
	4.7.2 Software handshake control characters
	4.7.3 Repeating the handshake
	4.7.4 Inverting RTS/CTS
	4.7.5 Locking/unlocking the receive buffer

	4.8 Configuration - Frame
	4.8.1 Configuring the receive frame
	4.8.2 Configuring the transmit frame
	4.8.3 Define receive terminator
	4.8.4 Define transmit terminator

	4.9 Configuration - Flatstream MTU
	4.10 Communication
	4.10.1 Digital inputs
	4.10.1.1 Input state of digital inputs 1 to 4

	4.10.2 Digital outputs
	4.10.2.1 Output status of the digital outputs
	4.10.2.2 Status of the digital outputs

	4.10.3 Error message status bits
	4.10.4 Acknowledging the status bits
	4.10.5 Status of the operating limits

	4.11 Flatstream communication
	4.11.1 Introduction
	4.11.2 Message, segment, sequence, MTU
	4.11.3 The Flatstream principle
	4.11.4 Registers for Flatstream mode
	4.11.4.1 Flatstream configuration
	4.11.4.1.1 Number of enabled Tx and Rx bytes

	4.11.4.2 Flatstream operation
	4.11.4.2.1 Format of input and output bytes
	4.11.4.2.2 Transport of payload data and control bytes
	4.11.4.2.3 Control bytes
	4.11.4.2.4 Communication status of the CPU
	4.11.4.2.5 Communication status of the module
	4.11.4.2.6 Relationship between OutputSequence and InputSequence

	4.11.4.3 Synchronization
	4.11.4.4 Transmitting and receiving
	4.11.4.5 Transmitting data to a module (output)
	4.11.4.6 Receiving data from a module (input)
	4.11.4.7 Details
	4.11.4.8 Flatstream mode
	4.11.4.9 Adjusting the Flatstream

	4.11.5 Example of function "Forward" with X2X Link
	4.11.5.1 Function principle
	4.11.5.2 Configuration
	4.11.5.2.1 Number of unacknowledged sequences
	4.11.5.2.2 Delay time

	4.11.5.3 Transmitting and receiving with Forward
	4.11.5.4 Errors when using Forward

	4.12 Serial with FlatStream
	4.13 Acyclic frame size
	4.14 Minimum cycle time
	4.15 Minimum I/O update time

