
 X20CS1070

X20CS1070

1 General information

1.1 Other applicable documents

For additional and supplementary information, see the following documents.

Other applicable documents
Document name Title
MAX20 X20 system user's manual
MAEMV Installation / EMC guide

1.2 Order data

Order number Short description Figure
X20 electronics module communication

X20CS1070 X20 interface module, 1 CAN bus interface, max. 1 Mbit/s, object
buffer in the transmit and receive directions
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O power supply con-
nected through

X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-
ternal I/O power supply connected through
Terminal blocks

X20TB06 X20 terminal block, 6-pin, 24 VDC keyed
X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20CS1070 - Order data

1.3 Module description

In addition to the standard I/O, complex devices often need to be connected. The X20CS communication modules
are intended precisely for cases like this. As normal X20 electronics modules, they can be placed anywhere on
the remote backplane.

• CAN bus interface for serial, remote connection of complex devices to the X20 system
• Integrated terminating resistor

Data sheet V3.40 1

https://www.br-automation.com/download/10000017209
https://www.br-automation.com/download/10000457141


X20CS1070 

2 Technical description

2.1 Technical data

Order number X20CS1070
Short description
Communication module 1x CAN bus
General information
B&R ID code 0x1FD1
Status indicators Data transfer, terminating resistor, operating state, module status
Diagnostics

Module run/error Yes, using LED status indicator and software
Data transfer Yes, using LED status indicator
Terminating resistor Yes, using LED status indicator

Power consumption
Bus 0.01 W
Internal I/O 1.44 W

Additional power dissipation caused by actuators
(resistive) [W]

-

Certifications
CE Yes
UKCA Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

DNV Temperature: B (0 to 55°C)
Humidity: B (up to 100%)

Vibration: B (4 g)
EMC: B (bridge and open deck)

LR ENV1
KR Yes
ABS Yes
BV EC33B

Temperature: 5 - 55°C
Vibration: 4 g

EMC: Bridge and open deck
EAC Yes
KC Yes

Interfaces
Interface IF1

Signal CAN bus
Variant Connection via 12-pin terminal block X20TB12
Max. distance 1000 m
Transfer rate Max. 1 Mbit/s
Terminating resistor Integrated in module
Controller SJA 1000

Electrical properties
Electrical isolation CAN (IF1) isolated from bus and I/O power supply
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating See section "Derating".
Storage -40 to 85°C
Transport -40 to 85°C

Table 2: X20CS1070 - Technical data

2 Data sheet V3.40



 X20CS1070

Order number X20CS1070
Relative humidity

Operation 5 to 95%, non-condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20TB06 or X20TB12 separately. 

Order 1x bus module X20BM11 separately.
Pitch 12.5+0.2 mm

Table 2: X20CS1070 - Technical data

2.2 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" in the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash RESET mode
Double flash BOOT mode (during firmware update)1)

Blinking PREOPERATIONAL mode

r Green

On RUN mode
Off No power to module or everything OK
Single flash I/O error occurred

• CAN bus: Warning, passive or off
• Buffer overflow

e Red

On Error or reset status
e + r Red on / Green single flash Invalid firmware
Tx Yellow On The module is sending data via the CAN bus interface
Rx Yellow On The module is receiving data via the CAN bus interface

 
 

T Yellow On Terminating resistor integrated in the module switched on

1) Depending on the configuration, a firmware update can take up to several minutes.

2.3 Pinout

CAN high

CAN ground

Tx

X2
0 

C
S 

10
70 r e

Rx

CAN low

CAN ground

T

2.4 Terminating resistor

On Off

Switch for terminating resistor

A terminating resistor is integrated in the communication module. It can be turned on and off with a switch on the
bottom of the housing. An active terminating resistor is indicated by the "T" LED.

Data sheet V3.40 3



X20CS1070 

2.5 Derating

There is no derating when operated below 55°C.
During operation over 55°C, the power dissipation of the modules to the left and right of this module is not permitted
to exceed 1.15 W!
For an example of calculating the power dissipation of I/O modules, see section "Mechanical and electrical config-
uration - Power dissipation of I/O modules" in the X20 user's manual.

N
ei

gh
bo

rin
g 

X2
0 

m
od

ul
e

N
ei

gh
bo

rin
g 

X2
0 

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n 
≤ 

1.
15

 W
 

X2
0 

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n 
> 

1.
15

 W

X2
0 

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n 
> 

1.
15

 W

Th
is

 m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n 
≤ 

1.
15

 W
  

4 Data sheet V3.40



 X20CS1070

3 Function description

3.1 The CAN object

A CAN object always consists of 4 bytes identifier and a maximum of 8 following data bytes. This also results
in the relationship between CAN object length and the amount of CAN payload data. This is important because
the number of CAN user data bytes must always be determined by the frame length when communicating using
"Flatstream".
Composition of a CAN object or CAN frame

Byte Explanation Information
1 ID bits 0 to 7
2 ID bits 8 to 15
3 ID bits 16 to 23
4

Identifier

ID bits 24 to 31
5 - 12 CAN payload data 0 to 8 CAN payload data bytes

Identifier
The 32 bits (4 bytes) of the CAN identifier are used as follows:

Bit Description Value Information
0 Standard frame format (SFF) with 11-bit identifier0 Frame format
1 Extended frame format (EFF) with 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier of the telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

3.1.1 Data stream of the CAN module

In function model 254, the data packets of a data stream to be transferred are referred to as frames.

Information:
The following applies to the CAN module:

• A frame always contains a CAN object and thus cannot be longer than 12 bytes.
• The CAN object is only applied to the transmit buffer after the frame has been completed.
• The CAN payload data length is firmly related to the frame length or the actual size of the CAN

object. The following applies:
° CAN payload data length = Frame length - 4
° Frame length = CAN payload data length + 4

Data sheet V3.40 5



X20CS1070 

3.2 Flatstream communication

3.2.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transfer to be adapted to individual demands. Although this method is not
100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R PLC

B&R PLC

B&R PLC
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass controller requests directly on to the field device.

6 Data sheet V3.40



 X20CS1070

3.2.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are lined up together again. The receiver stores the
incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transfer was faulty and that all affected sequences must be repeated.

Data sheet V3.40 7



X20CS1070 

3.2.3 The Flatstream principle

Requirements
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the remote station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its remote station, it should first create a transmit array
that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently without
having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

Controller fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the remote station detects the incremented SequenceCounter. The
current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

8 Data sheet V3.40



 X20CS1070

3.2.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The controller communicates directly with the field device via registers "OutputSequence" and "In-
putSequence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

3.2.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
names. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Information:
Registers are described in "Flatstream registers" on page 44.

3.2.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control or secure communication, i.e. the transmitter
uses them to give instructions to apply data and the receiver confirms a successfully transferred sequence.

Information:
Registers are described in "Flatstream registers" on page 44.

3.2.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

3.2.4.2.2 Transport of payload data and control bytes

The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the controller can be used. The corresponding counterparts
are located in the module and are not accessible to the user. For this reason, the names were chosen from the
point of view of the controller.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

Data sheet V3.40 9



X20CS1070 

Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

3.2.4.2.3 Communication status

The communication status is determined via registers "OutputSequence" and "InputSequence".

• OutputSequence contains information about the communication status of the controller. It is written by the
controller and read by the module.

• InputSequence contains information about the communication status of the module. It is written by the
module and should only be read by the controller.

Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the controller

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

10 Data sheet V3.40



 X20CS1070

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part indicates
to the remote station whether a channel should be opened or whether data should be accepted. The high part is
to acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized",
i.e. it is possible to send messages in this direction. The status bit of the remote station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the remote station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

Data sheet V3.40 11



X20CS1070 

3.2.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (controller as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the controller to the module.
Algorithm
1) The controller must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The controller must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the controller registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The controller continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the controller can transmit data to the module.

Synchronization in the input direction (controller as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the controller.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The controller is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The controller has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The controller is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the controller.

12 Data sheet V3.40



 X20CS1070

3.2.4.4 Transmitting and receiving

If a channel is synchronized, then the remote station is ready to receive messages from the transmitter. Before the
transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

Data sheet V3.40 13



X20CS1070 

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

14 Data sheet V3.40



 X20CS1070

3.2.4.4.1 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Controller fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The controller must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The controller must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V3.40 15



X20CS1070 

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter  = 1 OutputSyncBit = 1 OutputSequenceCounter  = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

16 Data sheet V3.40



 X20CS1070

3.2.4.4.2 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

Data sheet V3.40 17



X20CS1070 

General flowchart

Se
gm

en
t d

at
a 

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

18 Data sheet V3.40



 X20CS1070

3.2.4.4.3 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments
for transmitted sequences. The transmitter can identify the last successfully transferred sequence from the remote
station's SequenceAck and continue the transfer from this point.

Information:
This situation is very unlikely when operating without "Forward" functionality.

Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

Data sheet V3.40 19



X20CS1070 

3.2.4.5 Flatstream mode

In the input direction, the transmit array is generated automatically. Flatstream mode offers several options to the
user that allow an incoming data stream to have a more compact arrangement. These include:

• Standard
• MultiSegmentMTUs allowed
• Large segments allowed:

Once enabled, the program code for evaluation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Standard

By default, both options relating to compact transfer in the input direction are disabled.
1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence

begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.
2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does

not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

MultiSegmentMTUs allowed

With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

20 Data sheet V3.40



 X20CS1070

Large segments allowed:

When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

Data sheet V3.40 21



X20CS1070 

3.2.4.6 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

22 Data sheet V3.40



 X20CS1070

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

Data sheet V3.40 23



X20CS1070 

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

24 Data sheet V3.40



 X20CS1070

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

Data sheet V3.40 25



X20CS1070 

3.2.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

3.2.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic synchronization of
MTU and module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Recipients
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

26 Data sheet V3.40



 X20CS1070

3.2.5.2 Configuration

The Forward function must only be enabled for the input direction. Flatstream modules have been optimized in
such a way that they support this function. In the output direction, the Forward function can be used as soon as
the size of OutputMTU is specified.

Information:
Registers are described in "Flatstream registers" on page 44.

3.2.5.2.1 Delay time

The delay time is specified in microseconds. This is the amount of time the module has to wait after sending a
sequence until it is permitted to write new data to the MTU in the following bus cycle. The program routine for
receiving sequences from a module can therefore be run in a task class whose cycle time is slower than the bus
cycle.

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the controller is processing all of the incoming InputSequences
and InputMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed
reception in the input direction. In this way, the controller has more time to process the incoming InputSequence
or InputMTU.

Data sheet V3.40 27



X20CS1070 

3.2.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The controller must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The controller must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The controller must split up the message into valid segments and create the necessary control bytes.
- The controller must add the segments and control bytes to the transmit array.
2) Transmit:
- The controller must transfer the current part of the transmit array to OutputMTU.
- The controller must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The controller is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The controller must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The controller must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The controller must apply data from InputMTU and append it to the end of the receive array.
- The controller must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

28 Data sheet V3.40



 X20CS1070

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The controller is permitted to consider all sequences up to
the one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

3.2.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for transfer via X2X Link in case such interference should occur. For example, if an
invalid checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last
valid data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle,
the same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).

Data sheet V3.40 29



X20CS1070 

Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

30 Data sheet V3.40



 X20CS1070

4 Commissioning

4.1 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream transfer.
For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

4.2 Using this module with SGC target systems

Information:
This module can only be used with SGC target systems if the function model is set to "Flatstream"
or "Flat".

5 UL certificate information

To install the module according to the UL standard, the following rules must be observed.

Information:
• Use copper conductors only. Minimum temperature rating of the cable to be connected to the

field wiring terminals: 61°C, 28 - 14 AWG.
• All models are intended to be used in a final safety enclosure that must conform with require-

ments for protection against the spread of fire and have adequate rigidity per UL 61010-1 and
UL 61010-2-201.

• The external circuits intended to be connected to the device shall be galv. separated from mains
supply or hazardous live voltage by reinforced or double insulation and meet the requirements
of SELV/PELV circuit.

• If the equipment is used in not specified manner, the protection provided by the equipment
may be impaired.

• Repairs can only be made by B&R.

Data sheet V3.40 31



X20CS1070 

6 Register description

6.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X20 system user's
manual.

6.2 Function model 0 - Flat

In function model "Flat", CAN information is transferred via cyclic input and output registers. All data for a CAN
object (8 CAN data bytes, identifier, status, etc.) is accessible as individual data points (see also "The CAN object"
on page 5).

Information:
• Libraries "ArCAN" and "CAN_Lib" cannot be used.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Interface - Configuration
257 ConfigBaudrate USINT ●
259 ConfigSJW USINT ●
261 ConfigSPO USINT ●
266 ConfigTXtrigger UINT ●
270 CfO_Fifosize_01 UINT ●
673 Cfo_FIFOTXlimit USINT ●
677 Cfo_TXRXinfoFlags USINT ●

Stream filter - configuration
385 CfO_IF1DefaultCANFilterMode USINT ● ●

380 + N*16 CfO_IF1CANFilter0N (index N = 1 to 4) UDINT ● ●
388 + N*16 CfO_IF1CANFilterMask0N (index N = 1 to 4) UDINT ● ●

Interface - Communication
641 TXCount USINT ●
513 TXCountReadBack USINT ●
545 TXCountLatchReadBack USINT ●
515 RXCount USINT ●
547 RXCountLatch USINT ●

Transmit buffer
645 TXDataSize USINT ●
652 TXIdent UDINT ●

Index * 2 + 657 TXDataByte0 to TXDataByte7 USINT ●
Index * 4 + 658 TXDataWord0 to TXDataWord3 UINT ●
Index * 8 + 660 TXDataLong0 to TXDataLong1 UDINT ●

Receive buffer 0
517 RXDataSize0 USINT ●
524 RXIdent0 UDINT ●

Index * 2 + 529 RXData0Byte0 to RXData0Byte7 USINT ●
Index * 4 + 530 RXData0Word0 to RXData0Word3 UINT ●
Index * 8 + 532 RXData0Long0 to RXData0Long1 UDINT ●

Receive buffer 1
549 RXDataSize1 USINT ●
556 RXIdent1 UDINT ●

Index * 2 + 561 RXData1Byte0 to RXData1Byte7 USINT ●
Index * 4 + 562 RXData1Word0 to RXData1Word3 UINT ●
Index * 8 + 564 RXData1Long0 to RXData1Long1 UDINT ●

32 Data sheet V3.40



 X20CS1070

6.3 Function model 2 - Stream and Function model 254 - Cyclic stream

Function models "Stream" and "Cyclic stream" use a module-specific driver of the controller's operating system.
The interface can be controlled using libraries "ArCAN" and "CAN_Lib" and reconfigured at runtime.
Function model "Stream"
In function model "Stream", the controller communicates with the module acyclically. The interface is relatively
convenient to operate, but the timing is very imprecise.
Function model "Cyclic stream"
Function model "Cyclic stream" was implemented later. From the application's point of view, there is no difference
between function models "Stream" and "Cyclic stream". Internally, however, the cyclic I/O registers are used to
ensure that communication follows deterministic timing.

Information:
• B&R controllers of type "SG4" must be used in order to use function models "Stream" and

"Cyclic stream".
• These function models can only be used in X2X Link and POWERLINK networks.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Module - Configuration
- AsynSize -

Interface - Configuration
270 CfO_Fifosize_01 UINT ●

6273 CfO_ErrorID0007 USINT ●
Stream filter - configuration

385 CfO_IF1DefaultCANFilterMode USINT ● ●
380 + N*16 CfO_IF1CANFilter0N (index N = 1 to 4) UDINT ● ●
388 + N*16 CfO_IF1CANFilterMask0N (index N = 1 to 4) UDINT ● ●

Interface - Communication
CAN error state USINT
CANwarning Bit 0
CANpassive Bit 1
CANbusoff Bit 2

6145

CANRXoverrun Bit 3

●

CAN error acknowledgment USINT
QuitCANwarning Bit 0
QuitCANpassive Bit 1
QuitCANbussoff Bit 2

6209
 
 
 

QuitCANRXoverrun Bit 3

●

Data sheet V3.40 33



X20CS1070 

6.4 Function model 254 - Flatstream

Flatstream provides independent communication between an X2X Link master and the module. This interface
was implemented as a separate function model for the CAN module. CAN information (identifier, status, etc.) is
transferred via cyclic input and output registers. The sequence and control bytes are used to control this data
stream (see "Flatstream communication" on page 6).
When using function model Flatstream, the user can choose whether to use library "AsFltGen" in Automation Studio
for implementation or to adapt Flatstream handling directly to the individual requirements of the application.

Information:
• Libraries "ArCAN" and "CAN_Lib" cannot be used.
• Higher data rates can be achieved between X2X master and module compared to function model

"Flat".
Read WriteRegister Name Data type

Cyclic Acyclic Cyclic Acyclic
Interface - Configuration

257 ConfigBaudrate USINT ●
259 ConfigSJW USINT ●
261 ConfigSPO USINT ●
266 ConfigTXtrigger UINT ●
270 CfO_Fifosize_01 UINT ●

6273 CfO_ErrorID0007 USINT ●
Stream filter - configuration

385 CfO_IF1DefaultCANFilterMode USINT ● ●
380 + N*16 CfO_IF1CANFilter0N (index N = 1 to 4) UDINT ● ●
388 + N*16 CfO_IF1CANFilterMask0N (index N = 1 to 4) UDINT ● ●

Interface - Communication
CAN error state USINT
CANwarning Bit 0
CANpassive Bit 1
CANbusoff Bit 2

6145

CANRXoverrun Bit 3

●

CAN error acknowledgment USINT
QuitCANwarning Bit 0
QuitCANpassive Bit 1
QuitCANbussoff Bit 2

6209

QuitCANRXoverrun Bit 3

●

Flatstream - Configuration
193 outputMTU USINT ●
195 inputMTU USINT ●
197 mode USINT ●
199 forward USINT ●
206 forwardDelay UINT ●

Flatstream - Communication
0 InputSequence USINT ●

Index * 1 + 0 RxByte1 to RxByte27 USINT ●
32 OutputSequence USINT ●

Index * 1 + 32 TxByte1 to TxByte27 USINT ●

34 Data sheet V3.40



 X20CS1070

6.5 Function model 254 - Bus controller

Function model "Bus controller" is a reduced form of function model "Flatstream". Instead of up to 27 Tx/Rx bytes,
a maximum of 7 Tx/Rx bytes can be used.

Read WriteRegister Offset1) Name Data type
Cyclic Acyclic Cyclic Acyclic

Interface - Configuration
257 - ConfigBaudrate USINT ●
259 - ConfigSJW USINT ●
261 - ConfigSPO USINT ●
266 - ConfigTXtrigger UINT ●
270 - CfO_Fifosize_01 UINT ●

6273 - CfO_ErrorID0007 USINT ●
Stream filter - configuration

385 - CfO_IF1DefaultCANFilterMode USINT ● ●
380 + N*16 - CfO_IF1CANFilter0N (index N = 1 to 4) UDINT ● ●
388 + N*16 - CfO_IF1CANFilterMask0N (index N = 1 to 4) UDINT ● ●

Interface - Communication
CAN error state USINT
CANwarning Bit 0
CANpassive Bit 1
CANbusoff Bit 2

6145 -

CANRXoverrun Bit 3

●

CAN error acknowledgment USINT
QuitCANwarning Bit 0
QuitCANpassive Bit 1
QuitCANbussoff Bit 2

6209 -

QuitCANRXoverrun Bit 3

●

Flatstream - Configuration
193 - outputMTU USINT ●
195 - inputMTU USINT ●
197 - mode USINT ●
199 - forward USINT ●
206 - forwardDelay UINT ●

Flatstream - Communication
0 0 InputSequence USINT ●

Index * 1 + 0 Index * 1 + 0 RxByte1 to RxByte7 USINT ●
32 0 OutputSequence USINT ●

Index * 1 + 32 Index * 1 + 0 TxByte1 to TxByte7 USINT ●

1) The offset specifies the position of the register within the CAN object.

6.5.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X20
user's manual (version 3.50 or later).

6.5.2 CAN I/O bus controller

The module occupies 1 analog logical slot on CAN I/O.

Data sheet V3.40 35



X20CS1070 

6.6 Interface - Configuration

6.6.1 Transfer rate

Name:
ConfigBaudrate
"Baud rate" in the Automation Studio I/O configuration.
Configuration of the CAN transfer rate for the interface.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Description Value Information

0 Interface disabled (bus controller default setting)
1 10 kbit/s
2 20 kbit/s
3 50 kbit/s
4 100 kbit/s
5 125 kbit/s
6 250 kbit/s
7 500 kbit/s
8 800 kbit/s

0 - 3 Transfer rate

9 1000 kbit/s
4 - 7 Reserved -

6.6.2 Synchronization jump width

Name:
ConfigSJW
"Synchronization jump width" in the Automation Studio I/O configuration.
The synchronization jump width (SJW) is used to resynchronize the sample point within a CAN telegram.
For a more detailed description of the synchronization jump width, see the CAN specification.
Data type Values Explanation
USINT 1 to 4 Synchronization jump width.

Bus controller default setting: 3

6.6.3 Offset for the sampling point

Name:
ConfigSPO
"Sampling point offset" in the Automation Studio I/O configuration.
Offset for the sample point of the individual bits on the CAN bus.
For a more detailed description of the sampling point offset, see the CAN specification.
Data type Values Explanation
USINT 0 to 1 Bus controller default setting: 0

6.6.4 Starting the transmission procedure

Name:
ConfigTXtrigger
"TX objects / TX triggers" in the Automation Studio I/O configuration.
Defines the number of CAN objects that must be transferred to the transmit buffer before the transmission procedure
is started.
Data type Values Explanation
UINT 0 to 8 Number of CAN objects in the transmit buffer before transmission is started.

Bus controller default setting: 1

36 Data sheet V3.40



 X20CS1070

6.6.5 Configuring error messages

Name:
CfO_ErrorID0007
The error messages to be transferred must first be configured with this register. If the corresponding enable bit is
not set, no error state will be reported to the higher-level system when the error occurs.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Description Value Information

0 Disabled (bus controller default setting)0 CANwarning
1 Enabled
0 Disabled (bus controller default setting)1 CANpassive
1 Enabled
0 Disabled (bus controller default setting)2 CANbussoff
1 Enabled
0 Disabled (bus controller default setting)3 CANRXoverrun
1 Enabled

4 - 7 Reserved -

6.6.6 Size of the transmit buffer

Name:
Cfo_FIFOTXlimit
"TX FIFO size" in the Automation Studio I/O configuration.
Determines the size of the transmit buffer for the respective interface.
Data type Values Explanation
USINT 0 to 18 Size of the transmit buffer

6.6.7 FIFO memory size

Name:
CfO_Fifosize_01
"FIFO memory size" in the Automation Studio I/O configuration.
Determines the size of the FIFO memory for the respective interface.
Data type Values Explanation
UINT 20 to 4096 Size of the FIFO memory in bytes

6.6.8 Displaying unprocessed elements remaining in the transmit/receive buffer

Name:
Cfo_TXRXinfoFlags
These registers can be used to configure for the interface that the number of unprocessed elements in the transmit
or receive buffer is indicated in the upper 4 bits of registers "TXCountReadBack" and "RXCount".
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Registers "TXCountReadBack" on page 41 and "TXCount-
LatchReadBack" on page 41 are use to read back "TXCount".

0 TxFifoInfo 
"Mode of channel TXCountReadBack" in the Automation Stu-
dio I/O configuration 1 The lower 4 bits of registers "TXCountReadBack" on page 41

and "TXCountLatchReadBack" on page 41 are used to read
back "TXCount".
The upper 4 Bits are used to return the number of frames in the
transmit buffer that have not been transmitted.

0 Registers "RXCount" on page 41 and "RXCountLatch" on
page 42 are used to indicate the number of telegrams that
have been received.

1 RxFifoInfo 
"Mode of channel RXCount" in the Automation Studio I/O con-
figuration

1 The lower 4 bits of registers "RXCount" on page 41 and "RX-
CountLatch" on page 42 are used to indicate the number of
telegrams received.
The upper 4 bits are used to indicate the number of received but
not acknowledged telegrams in the receive buffer.

2 - 7 Reserved -

Data sheet V3.40 37



X20CS1070 

6.6.9 Stream filter

Up to 4 stream filters can be configured per CAN interface. These determine which CAN IDs are forwarded to the
controller via the cyclic stream.
The filters are run through in numerical order. The first filter matching the incoming CAN message is used; all other
filters are ignored. If no filter matches the incoming CAN message, a global configuration determines whether the
message is rejected or accepted (default: accept message).
Each filter has a configurable ID and configurable filter mask. Only those bits of the ID are compared that are set
to 0 in the mask.

6.6.9.1 CANFilterMode

Name:
CfO_IF1DefaultCANFilterMode
These registers specify the default settings for IDs that do not match any of the set filters.
Data type Values Information

0 No filter response, the CAN frame is discarded.USINT
1 No filter response, the CAN frame is transferred via the stream.

6.6.9.2 CAN filter

Name:
CfO_IF1CANFilter01 to CfO_IF1CANFilter04
The filter properties are defined in these registers.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 to 28 Filter ID x Identifier value for filtering.1)

0 Standard frame format (SFF) with 11-bit identifier.
Possible filter ID values: 0 to 2047 (0x7FF)

29 Frame format

1 Extended frame format (EFF) with 29-bit identifier.
Possible filter ID values: 0 to 536 870 911 (0x1FFFFF)

30 Reserved -
0 Filter inactive31 Enable
1 Filter active

1) This value is linked with the identifier value and mask value (see example).

38 Data sheet V3.40



 X20CS1070

Examples

Example 1
The following example shows the correlation between filter mask, filter ID and the actual received 11-bit CAN
messages.
Filter mask1) Filter ID CAN message ID Information
000 0011 1110 110 0100 0000 110 0110 1010 Relevant bits of filter ID and CAN message are identical.

→ The filter responds, and the frame is discarded or forwarded according to the mode
setting.

000 0011 1110 110 0100 0000 110 0110 1011 Relevant bits not identical
→ Next filter or default mode is executed.

000 0011 1111 110 0100 0000 110 0110 1011 Relevant bits of filter ID and CAN message are identical.
→ The filter responds, and the frame is discarded or forwarded according to the mode
setting.

000 0001 1111 110 0100 0000 110 0110 1011 Relevant bits not identical
→ Next filter or default mode is executed.

1) Red = Relevant bits

Example 2
Configuration of 2 filters with different filter mode.

Mode Filter ID Filter mask Description
Filter 1 ignore 16#300 16#07F CANopen PDO2
Filter 2 accept 16#005 16#780 NodeID 5
Default ignore

With CANopen, the 11-bit CAN IDs (COB IDs) are composed of a 4-bit function code and 7-bit NodeID. All CANopen
PDO2 objects are initially rejected here. After that, only the frames from the CAN device with NodeID 5 are ac-
cepted.

6.6.9.3 CANFilterMask

Name:
CfO_IF1CANFilterMask01 to CfO_IF1CANFilterMask04
The filter mask and filter mode are defined in these registers.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 to 28 Filter mask x Comparison bit pattern for filter ID1)

0 The frame format of the received message must match the con-
figuration in "CfO_IF1CANFilter" on page 38.

29 Frame format mask

1 The filter applies to both frame formats. 11-bit and 29-bit identi-
fiers are filtered.

30 Reserved -
0 The CAN frame is transferred when the filter responds.31 Mode
1 The CAN frame is discarded when the filter responds.

1) Only those bits of the ID are compared that are set to 0 in the mask (see "Examples" on page 39).

Data sheet V3.40 39



X20CS1070 

6.7 Interface - Communication

6.7.1 CAN error state

Name:
CAN error state
The bits in this register indicate the error states defined in the CAN protocol. If an error occurs, the corresponding bit
is set. For an error bit to be reset, the corresponding bit must be acknowledged (see "CAN error acknowledgment"
on page 40).
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 No error0 CANwarning
1 CANwarning error on IF1
0 No error1 CANpassive
1 CANpassive error on IF1
0 No error2 CANbusoff
1 CANbusoff error on IF1
0 No error3 CANRXoverrun
1 CANRXoverrun error on IF1

4 - 7 Reserved -

CANwarning

A faulty frame was detected on the CAN bus. This can include bit errors, bit stuffing errors, CRC errors, format
errors in the telegram and acknowledgment errors, for example.

CANpassive

The internal transmit and/or receive error counter is greater than 127. CAN communication continues to run, but
the interface can only issue a "passive error frame". Likewise, "error passive stations" have less ability to send
new telegrams altogether.

CANbusoff

The internal transmit error counter is greater than 255. The bus is switched off, and CAN communication with the
module no longer takes place.

CANRXoverrun

An overflow occurred in the module's receive buffer.

6.7.2 CAN error acknowledgment

Name:
CAN error acknowledgment
By setting the respective bit in this register, the error assigned to the bit is acknowledged and the corresponding bit
in register "CAN error state" is cleared. The application thus informs the module that it has detected the error state.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Description Value Information

0 No acknowledgment0 QuitCANwarning
1 Acknowledge CANwarning error on IF1
0 No acknowledgment1 QuitCANpassive
1 Acknowledge CANpassive error on IF1
0 No acknowledgment2 QuitCANbussoff
1 Acknowledge CANbusoff error on IF1
0 No acknowledgment3 QuitCANRXoverrun
1 Acknowledge CANRXoverrun error on IF1

4 - 7 Reserved -

40 Data sheet V3.40



 X20CS1070

6.7.3 New CAN telegram for transmit buffer

Name:
TXCount
By increasing this value, the application informs the module that a new CAN telegram should be transferred to
the transmit buffer.
Data type Values
USINT 0 to 255

6.7.4 Reading back "TXCount"

Name:
TXCountReadBack
The value of "TXCount" is copied from the module to this register. This allows the application task to verify that the
data for the CAN telegram has been correctly applied by the module.
The meaning of the value depends on bit "TxFifoInfo". This is located in register "Cfo_TXRXinfoFlags" on page
37.
Data type Values Bit "TxFifoInfo" Explanation

0 Read back "TXCount"USINT 0 to 255
1 See the bit structure.

Bit structure:
Bit Explanation Values Information

0 - 3 Read back "TXCount" 0 to 15 Only the lower 4 bits
4 - 7 Number of still untransmitted frames in the transmit buffer 0 to 15 If this number exceeds value 15 (maximum 18 possible), value

15 is returned.

6.7.5 Reading back "TXCount" from the previous cycle

Name:
TXCountLatchReadBack
The module copies the value of "TXCount" from the previous cycle into this register. In the event of a transfer error
on the X2X Link or POWERLINK network, this can be used to verify whether the error occurred on the path from
the controller to the module or on the path from the module to the controller (see "Consideration of error cases
during transmission" on page 43).
The meaning of the value depends on bit "TxFifoInfo" in register "Cfo_TXRXinfoFlags" on page 37.
Data type Values Bit "TxFifoInfo" Explanation

0 Read back "TXCount" from the previous cycleUSINT 0 to 255
1 See the bit structure.

Bit structure:
Bit Explanation Values Information

0 - 3 Read back "TXCount" from the previous cycle 0 to 15 Only the lower 4 bits
4 - 7 Number of still untransmitted frames in the transmit buffer 0 to 15 From the previous cycle

6.7.6 Counter for received CAN telegrams

Name:
RXCount
This counter is incremented by 1 with each CAN telegram received. The application task can thus detect the receipt
of new data and retrieve it accordingly from the "RXData" registers.
The meaning of the value depends on bit "RxFifoInfo" in register "Cfo_TXRXinfoFlags" on page 37.
Data type Values Bit "RxFifoInfo" Explanation

0 Counter for received telegramsUSINT 0 to 255
1 See the bit structure.

Bit structure:
Bit Explanation Values Information

0 - 3 Counter for received telegrams 0 to 15 Only the lower 4 bits
4 - 7 Number of still unacknowledged telegrams in the receive buffer 0 to 15

Data sheet V3.40 41



X20CS1070 

6.7.7 Reading back "RXCount" from the previous cycle

Name:
RXCountLatch
This register always contains the value of "RXCount" from the previous cycle. This can be used to detect transfer
errors from the module to the controller (see "Consideration of error cases during transmission" on page 43).
The meaning of the value depends on bit "RxFifoInfo" in register "Cfo_TXRXinfoFlags" on page 37.
Data type Values Bit "RxFifoInfo" Explanation

0 Counter for received telegrams from the previous cycleUSINT 0 to 255
1 See the bit structure.

Bit structure:
Bit Explanation Values Information

0 - 3 Counter for received telegrams from the previous cycle 0 to 15 Only the lower 4 bits
4 - 7 Number of telegrams in the receive buffer from the previous cy-

cle
0 to 15

6.8 Transmit buffer

6.8.1 Number of CAN payload data bytes

Name:
TXDataSize
Amount of CAN payload data bytes to be transmitted. If the value is less than 0, this CAN telegram is marked
as invalid and thus not accepted into the transmit buffer. This is useful in connection with transfer error detection
between the module and controller (see "Consideration of error cases during transmission" on page 43).
Data type Values Explanation
USINT -128 to 8 Amount of CAN payload data to be transmitted

6.8.2 Identifier of the CAN telegram

Name:
TXIdent
Identifier of the CAN telegram to be transmitted. The frame format and identifier format are also defined in this
register.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Standard frame format (SFF) with 11-bit identifier0 Frame format
1 Extended frame format (EFF) with 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier of the telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

6.8.3 Configuration of the CAN payload data to be transmitted

Name:
TXDataByte0 to TXDataByte7
TXDataWord0 to TXDataWord3
TXDataLong0 to TXDataLong1
CAN payload data in the transmit direction. Depending on requirements, the 8 payload data bytes of a telegram
can be used as 8 individual bytes, 4 word or 2 long data points.
Data type Values Description
USINT 0 to 255 Transmitted CAN payload data as bytes
UINT 0 to 65535 Transmitted CAN payload data as word
UDINT 0 to 4,294,967,295 Transmitted CAN payload data as long

42 Data sheet V3.40



 X20CS1070

6.8.4 Consideration of error cases during transmission

Data may be lost on the POWERLINK or X2X Link network due to transfer interference. A one-time failure of cyclic
data is tolerated by the I/O systems. This is possible because all I/O data is re-transferred in the following cycle. A
transfer error is not visible at the I/O variables; these remain frozen at the value of the last cycle.
This toleration of one-time I/O failures may result in loss or delayed transmission of CAN telegrams. The counter
feedback is calculated on the module and used to detect these cases.

Registers for counter feedback: • "TXCountReadBack" on page 41
• "TXCountLatchReadBack" on page 41

6.9 Receive buffers 0 and 1

6.9.1 Number of valid CAN payload data bytes

Name:
RXDataSize0
RXDataSize1
Number of valid CAN payload data bytes.
This register also indicates a general error or a gap in the input data stream by the value -1 (0xFF). Details about
the error that has occurred are indicated in register "CAN error state" on page 40.
Data type Values Explanation

1 to 8 Amount of CAN payload dataUSINT
-1 Error

6.9.2 Identifier of the received data

Name:
RXIdent0
RXIdent1
Identifier to which the received data is assigned. The frame format and identifier format can also be read from
this register.
Data type Values
UDINT See the bit structure.

Bit structure:
Bit Description Value Information

0 Standard frame format (SFF) with 11-bit identifier0 Frame format
1 Extended frame format (EFF) with 29-bit identifier
0 Data frame1 Frame type
1 Remote frame (RTR)

2 Reserved -
3 - 31 CAN identifier of the telegram to be transmitted x Extended frame format (EFF) with 29 bits

Standard frame format (SFF) with 11 bits1)

1) Only bits 21 to 31 are used; bits 3 to 20 = 0.

Data sheet V3.40 43



X20CS1070 

6.9.3 Configuration of the CAN payload data to be received

Name:
RXData0Byte0 to RXData0Byte7
RXData0Word0 to RXData0Word3
RXData0Long0 to RXData0Long1

RXData1Byte0 to RXData1Byte7
RXData1Word0 to RXData1Word3
RXData1Long0 to RXData1Long1
The CAN object's payload data that should be transferred from the receive buffer to the controller in the current
cycle are stored in these registers. If new data is received or if there are still additional CAN objects in the receive
buffer, these registers are overwritten with the new data in the next cycle.
To ensure as far as possible that no CAN objects are lost, it is necessary that the application responds immediately
to a change of "RXCount" and recopies the data from these registers.
The maximum 8 bytes of a CAN telegram can optionally be used as 8 individual bytes, 4 words or 2 long data points.
Data type Values Description
USINT 0 to 255 Received CAN payload data as bytes
UINT 0 to 65535 Received CAN payload data as word
UDINT 0 to 4,294,967,295 Received CAN payload data as long

6.10 Flatstream registers

At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.

Information:
For detailed information about Flatstream, see "Flatstream communication" on page 6.

6.10.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.
Data type Values
USINT See the register overview.

6.10.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.

• "T" - "Transmit" → Controller transmits data to the module.
• "R" - "Receive" → Controller receives data from the module.

Data type Values
USINT 0 to 255

44 Data sheet V3.40



 X20CS1070

6.10.3 Communication status of the controller

Name:
OutputSequence
This register contains information about the communication status of the controller. It is written by the controller
and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the controller. The
controller uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be
synchronized when this happens).
OutputSyncBit
The controller uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the controller
has received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the controller is ready to receive data.

Data sheet V3.40 45



X20CS1070 

6.10.4 Communication status of the module

Name:
InputSequence
This register contains information about the communication status of the module. It is written by the module and
should only be read by the controller.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The
module uses InputSequenceCounter to direct the controller to accept a sequence (the input direction must be
synchronized when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the controller. This indicates
that the module is ready to receive data.

6.10.5 Flatstream mode

Name:
FlatstreamMode
A more compact arrangement can be achieved with the incoming data stream using this register.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

46 Data sheet V3.40



 X20CS1070

6.10.6 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

6.10.7 Delay time

Name:
ForwardDelay
This register is used to specify the delay time in microseconds.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

6.11 Acyclic frame size

Name:
AsynSize
When using the stream, the data is exchanged internally between the module and controller. A defined number of
acyclic bytes is reserved for this slot for this purpose.
Increasing the acyclic frame size results in increased data throughput on this slot.

Information:
This configuration involves a driver setting that cannot be changed during runtime!

Data type Values Information
- 8 to 28 Acyclic frame size in bytes. Default = 24

6.12 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

6.13 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is performed
in each cycle.

Minimum I/O update time
200 µs

Data sheet V3.40 47


	X20CS1070
	1 General information
	1.1 Other applicable documents
	1.2 Order data
	1.3 Module description

	2 Technical description
	2.1 Technical data
	2.2 LED status indicators
	2.3 Pinout
	2.4 Terminating resistor
	2.5 Derating

	3 Function description
	3.1 The CAN object
	3.1.1 Data stream of the CAN module

	3.2 Flatstream communication
	3.2.1 Introduction
	3.2.2 Message, segment, sequence, MTU
	3.2.3 The Flatstream principle
	3.2.4 Registers for Flatstream mode
	3.2.4.1 Flatstream configuration
	3.2.4.2 Flatstream operation
	3.2.4.2.1 Format of input and output bytes
	3.2.4.2.2 Transport of payload data and control bytes
	Control bytes

	3.2.4.2.3 Communication status
	Relationship between OutputSequence and InputSequence


	3.2.4.3 Synchronization
	3.2.4.4 Transmitting and receiving
	3.2.4.4.1 Transmitting data to a module (output)
	3.2.4.4.2 Receiving data from a module (input)
	3.2.4.4.3 Details

	3.2.4.5 Flatstream mode
	3.2.4.6 Adjusting the Flatstream

	3.2.5 Example of function "Forward" with X2X Link
	3.2.5.1 Function principle
	3.2.5.2 Configuration
	3.2.5.2.1 Delay time

	3.2.5.3 Transmitting and receiving with Forward
	3.2.5.4 Errors when using Forward



	4 Commissioning
	4.1 Usage after the X20IF1091-1
	4.2 Using this module with SGC target systems

	5 UL certificate information
	6 Register description
	6.1 General data points
	6.2 Function model 0 - Flat
	6.3 Function model 2 - Stream and Function model 254 - Cyclic stream
	6.4 Function model 254 - Flatstream
	6.5 Function model 254 - Bus controller
	6.5.1 Using the module on the bus controller
	6.5.2 CAN I/O bus controller

	6.6 Interface - Configuration
	6.6.1 Transfer rate
	6.6.2 Synchronization jump width
	6.6.3 Offset for the sampling point
	6.6.4 Starting the transmission procedure
	6.6.5 Configuring error messages
	6.6.6 Size of the transmit buffer
	6.6.7 FIFO memory size
	6.6.8 Displaying unprocessed elements remaining in the transmit/receive buffer
	6.6.9 Stream filter
	6.6.9.1 CANFilterMode
	6.6.9.2 CAN filter
	6.6.9.3 CANFilterMask


	6.7 Interface - Communication
	6.7.1 CAN error state
	6.7.2 CAN error acknowledgment
	6.7.3 New CAN telegram for transmit buffer
	6.7.4 Reading back "TXCount"
	6.7.5 Reading back "TXCount" from the previous cycle
	6.7.6 Counter for received CAN telegrams
	6.7.7 Reading back "RXCount" from the previous cycle

	6.8 Transmit buffer
	6.8.1 Number of CAN payload data bytes
	6.8.2 Identifier of the CAN telegram
	6.8.3 Configuration of the CAN payload data to be transmitted
	6.8.4 Consideration of error cases during transmission

	6.9 Receive buffers 0 and 1
	6.9.1 Number of valid CAN payload data bytes
	6.9.2 Identifier of the received data
	6.9.3 Configuration of the CAN payload data to be received

	6.10 Flatstream registers
	6.10.1 Number of enabled Tx and Rx bytes
	6.10.2 Transport of payload data and control bytes
	6.10.3 Communication status of the controller
	6.10.4 Communication status of the module
	6.10.5 Flatstream mode
	6.10.6 Number of unacknowledged sequences
	6.10.7 Delay time

	6.11 Acyclic frame size
	6.12 Minimum cycle time
	6.13 Minimum I/O update time



