Technical Description

5E9000.29

Transponder Reader
4102 / 4150

Operating Instructions

Version V1.2 (Septmber 2007)

16 Oct 07, cHMI Rev. 1.2 Page: 1/31

Technical Description

Perfection in Automation

Model number: 5E9000.29
Project name: Transponder reader 22mm USB
Description: Transponder reader 22mm USB

Dimensions (WxHxD): Approx. 45 x 46 x 31 mm (without connecting cable)

1

2
3
4
5

6

7

(€1e LT - U) (o] ¢ =LA o] TSRO URUROUPTPRTRTN 3
I R Y- 1§V [0 (=] 1TSS 3
111 g goo U 1o o ISR RSP 3
112 LT gL (=0 TSSO PRSP 3
113 I LA oo =g Lo IS] = To T OSSOSO VRTURURUPRPN 3
1.1.4 INSEAITALION ...ttt ettt bt b bt R bt E e b bRt b bRt R et Rt R bRt bt n Rt nen 3
1.15 L@ 0T 11 o] o SRS 4
1.1.5.1 Protection against touching €leCtriCAl PAITS..........ccviiiiiiiiii e 4

1.2 Organization Of SAFEtY QUIABIINEScuoiiiiiieee ettt bbbttt e bbb e bt et e e e 4
G T €11 To =T 1T SOV P ST 4
[T (o] o OO OO OSSOSOV PR 5
L0 015y 1 11 [PPSR 6

Y LT oV OO U US PP 7
N Y/ V] T o[- o [PSSR 7
INSEAITALION ...ttt b bR b bR b bR Rt R ARt R bRt R Rt R bRt E b e Rt bbb bbb 8
5.1 INSAIIAION QIAGIAIMS.eititiiiitiieeieete ettt et b et h bt e bbb bt bt s b e b e eb e s e eb e eb et ekt e bt e ekt e b e e et e abe e ebeabe e ebe s 9
1T T OO TP URUPUURTPRTRN 10
ST R U T OSSOSO USSP 10
T N 11 0T R TP T USSP TP PR PR PSRRI 10
8.3 LED diSPIAY .. ettt bbb b E e R bR R bt R bt bbb bt b 11
(O] oLt et To I A {8 Tod o] OSSR U RSOOSR 12
% A I 10 1 To [USSR 13
N N 413 10310 [1 OSSPSR 14
0 T @ o 11 7=V o JESY £ (1 (0] = TSRS 17
7.3.1 CC "Check CheckSUM'™ COMMANG..........ciiiiiiiieiieie ettt bt bbbt b e bbbt s besbesbe et e neene e e eas 18
7.3.2 1o ot] 00100 T o OSSOSO 18
7.3.3 FF COMIMEANG ...ttt bbbt bbbt bt b st bbbtk b b st et bbb b st e 19
734 STACK COMIMEANT ...ttt ettt ettt e s e e s et et et sEeeb e e Reeb e e s e enees e et et e nbesbesbeaneereeneeneees 19
7.35 L2 To oT0] 001 0= oo (OO UUURUR USRI 19
7.4 4150 transponder-SPeCific COMIMANUSccviiiiiiieie ettt et et e st e st e e te et e e e ss et e resbesbeaneateeneenrees 20
74.1 rd (read) command for the 4150 tranSPONGETccvieiiieieeie et sre e neenae e eees 20
7.4.2 rdm (read multiple) command for the 4150 tranSPONUETcerieiriirieireiee e 20
7.4.3 wr (write) command for the 4150 tranSPONUETcc.iiiiieieiee et se bbbt enee e 21
7.4.4 wrm (write multiple) command for the 4150 tranSPONETcccveieiiiieiese e 21
745 li (login) command for the 4150 tranSPONAENcceiiiieiieierere s see e e saesreere e e eneeneens 22
7.4.6 re (Reset) command for the 4150 tranSPONGETcvreiiirieire bbb 22
7.4.7 wp (write password) command for the 4150 tranSPONUENc.coeiiiiiieiiee e 22
7.4.8 du (dump) command for the 4150 traNSPONAETccviiveiieriere e e e e be st e s te e ens e e e e eseesrees 23
7.5 4150 tranSPONAEr EITON MESSAGES .vveveerverrerrereesrerseseeseesessessessessesseassessessessessessesseaseessessessessessesseassensesessessesseseaseensensenes 24
Automation StUdio trANSPONAET SUPPOIT......cuiitiietirteeetert ettt sttt b ettt sb e bt bbbt nb st e bt e s s bt st s bt st ne bt eenes 26
ST X B 1] = 3 11 o] - YOS 26
ST A DAY -1 1 T 1] o] SRS 27
8.3 GENEraAl tECNICAL JALAe.veveiieiciicie et bbb bbb bt et s bt et s bt et sbe e be b e 31

16 Oct 07, cHMI Rev. 1.2 Page: 2/31

Technical Description

Perfection in Automation

1General information

1.1 Safety guidelines

1.1.1 Introduction

Programmable logic controllers (PLCs), operating and monitoring devices (industrial PCs, Power Panels, Mobile Panels, etc.) as
well as B&R uninterruptible power supplies have been designed, developed, and manufactured for conventional use in industry.
They were not designed, developed and manufactured for any use involving serious risks or hazards that could lead to death,
injury, serious physical damage, or loss of any kind without the implementation of exceptionally stringent safety precautions.

In particular, such risks and hazards include the use of these devices to monitor nuclear reactions in nuclear power plants, as
well as flight control systems, flight safety, the control of mass transportation systems, medical life support systems, and the
control of weapons systems.

When using programmable logic controllers and operating/monitoring devices as control systems together with a
Soft PLC (e.g. B&R Automation Runtime or comparable products) or a Slot PLC (e.g. B&R LS251 or comparable
products), safety precautions that apply to industrial control systems (e.g. the use of safety devices such as E-stop
circuits, etc.) must be observed in accordance with applicable national and international regulations.

The same applies to all other connected devices, e.g. drives.

All tasks such as installation, commissioning, and service must only be carried out by qualified personnel. Qualified personnel
are persons who are familiar with the transport, mounting, installation, commissioning, and operation of the product and who
have the appropriate qualifications (e.g. IEC 60364).

National accident prevention guidelines must be followed.

The safety guidelines, connection descriptions (type plate and documentation), and limit values listed in the technical data are to
be read carefully before installation and commissioning and must be observed.

1.1.2 Intended use

Electronic devices are generally not failsafe. In the event of a failure on the programmable control system, operating or
monitoring device, or uninterruptible power supply, the user is responsible for ensuring that other devices that may be connected,
e.g. motors, are in a secure state.

1.1.3 Transport and storage

During transport and storage, devices must be protected from excessive stress (mechanical load, temperature, humidity,
aggressive atmosphere, etc.).

1.1.4 |Installation

e Installation must take place according to the documentation using suitable equipment and tools.
e Devices must only be installed without voltage applied and by qualified personnel.
o General safety regulations and nationally applicable accident prevention guidelines must be observed.

e Electrical installation must be carried out according to the relevant guidelines (e.g. line cross section, fuse,
protective ground connection).

16 Oct 07, cHMI Rev. 1.2 Page: 3/31

Technical Description

Perfection in Automation

1.1.5 Operation

1.1.5.1 Protection against touching electrical parts

To operate programmable logic controllers, operating and monitoring devices, and uninterruptible power supplies, certain
components must carry dangerous voltage levels of over 42 VDC.

A life-threatening electrical shock could occur if you come into contact with these parts.
This could result in death, severe injury, or material damage.

Before turning on the programmable logic controller, the operational and monitoring devices and the uninterruptible power
supply, ensure that the housing is properly grounded (PE rail).

The ground connection must be established when testing the operating and monitoring devices or the uninterruptible power
supply, even when operating them for only a short time.

Before turning the device on, make sure that all voltage-carrying parts are securely covered.
During operation, all covers must remain closed.

1.2 Organization of safety guidelines

Safety notices in this document are organized as follows:

Safety notice Description
Danger! Disregarding the safety regulations and guidelines can be life-threatening.
Caution! Disregarding the safety regulations and guidelines can result in severe
injury or major damage to material.
Warning! Disregarding the safety regulations and guidelines can result in injury or
damage to material.
Information: Important information for preventing errors.

Table 1: Organization of safety notices

1.3 Guidelines

European dimension standards apply to all of the dimension diagrams in this document.

1©

16 Oct 07, cHMI Rev. 1.2 Page: 4/ 31

Technical Description

Perfection in Automation

2 Function

The necessary electronics and mechanics for a transponder reader/writer were designed for installation in a standard 22.5 mm
hole.

The device can be operated with Windows, Linux, or MAC-based operating systems.
The connection is made with USB.
Data is evaluated on the PC, not on the reading/writing device!

In Automationstudio 2.6.006 the transponder reader/writer is also implemented.

The following transponder types are supported:

o 4102
Read only
e 4150

Read and write

Both transponders can be delivered as a key ring accessory or in check card format.

Typical applications:

Admittance control

Key switch function
Assigning access levels
Suspending safety systems

Etc.

16 Oct 07, cHMI Rev. 1.2 Page: 5/31

Technical Description

Perfection in Automation

3 Construction

The 22 mm USB transponder reader consists of the following parts:

. Installation element for front mount installation including gasket and fastening ring.
The antenna (incl. cable) for reading and writing is integrated here.
. Electronic circuit board attached to the installation element (can also be screwed on).

Fastening screw
80 cm USB connecting cable

=
T

7106 |
e ET

16 Oct 07, cHMI Rev. 1.2 Page: 6/ 31

Perfection in Automation

Technical Description

4 Mechanics

4.1 Mylar design

16 Oct 07, cHMI

Rev. 1.2 Page: 7/ 31

Technical Description

Perfection in Automation

5 Installation

The installation element for front mount installation is inserted in a 22.5 mm hole and secured in place with the fastening nut.
The reading or writing electronics are snapped onto the back of the installation element.

It can be fastened with the screw that is provided.

When doing so, make sure that the antenna cable is not clamped down.

This is then inserted into the corresponding socket.

To connect to a USB interface (e.g. PC), the USB cable is inserted in the 4-pin socket.

I
T

r 1 oa

I ZD19 FT I

Complete device (without front plate)

To loosen the electronics from the installation element, press the latches outwards and pull out!

16 Oct 07, cHMI Rev. 1.2 Page: 8/31

- Technical Description

in Automation

5.1 Installation diagrams
27
B 2;25 ~
3 Lh b N 9.5
Bl) 5 3
I |
: =] |
£ - +-H— 18-
- ‘ ""ili WMM“ @ .
| 10.5 1 |

26,18
+
T@M
N
i

16 Oct 07, cHMI Rev. 1.2 Page: 9/31

Perfection in Automation

Technical Description

6 Interfaces
6.1 usB

4-pin PHR socket

Pin Assignment
1 GND
2 Data -
3 Data +
4 VCC

6.2 Antenna

2-pin PHR socket

Antenne

Pin Assignment
1 Antenna
2 Antenna

16 Oct 07, cHMI

Rev. 1.2 Page: 10/ 31

- Technical Description

Perfection in Automation

6.3 LED display

The LED is continuously lit if a transponder is not in range.
If a transponder is in range, the LED goes dark.

S

SES000. 29 Rev. C@
1 00 g
- 84060168498 LR

7106

16 Oct 07, cHMI Rev. 1.2 Page: 11 /31

Technical Description

Perfection in Automation

7 Operating Instructions

The transponder reader/writer works with the transponders 4102 and 4150.

A driver from Prolific is necessary for operation. (not for AutomationStudio) This creates a virtual COM port that the
transponder uses for communication.

This driver can be downloaded at no cost from Prolific's support page.

http://www.prolific.com.tw

driver for PL2303X : wd_pl2303h-hx-x_v

The connection is established with e.g. HyperTerminal.

21 20x
% New Connection % Transponder
Enter a name and choose an icon for the connection: Enter details for the phone number that you want to dial:
Name:
ITlanspunderl Country/region: I Ll
Area code: I
Phone number: I
Copnect using: |COMS =l
OK I Cancel I
Figure 1: HyperTerminal setup Figure 2: Selecting the interface in HyperTerminal

20
Poit Settings |
Bits per second: | 9600 |
Databits: [8 |
Paiity: |None =l
Stop bits: |1 =l
Flow control |None :I
Restore Defaulls |
0K | Concal | Aoy |

Figure 3: HyperTerminal connection settings

16 Oct 07, cHMI Rev. 1.2 Page: 12/ 31

http://tech.prolific.com.tw/

Technical Description

Perfection in Automation

7.1 Transponder 4102

This transponder can only be read. (read only)

The 40-bit unique ID number is programmed by laser.
Data is transferred using amplitude modulation.
Manchester data encoding is used.

The carrier frequency is 125 kHz.

The "tag" command can be used to query the status.
Format: :tag,SC,#crc <Return>

Example: tag,0,0,#crc <Return>

Example response with transponder 4102:

ack,0,4102,f080990414,#0532 Note: f080990414 stands for the 40-bit unique ID number.

16 Oct 07, cHMI Rev. 1.2 Page: 13/31

Technical Description

Perfection in Automation

7.2 Transponder 4150

This is a read/write transponder with a memory size of 1 Kbit.

It is organized into 32 words, each with 32 bits.

This data is stored in an EEProm memory.

100,000 delete and write procedures are guaranteed.

Data can be retained in the EEProm for at least 10 years.

In addition, this transponder has a 32-bit unique ID number. (read only)

The password function can be used to write-or read-protect individual registers.
Data is transferred by amplitude modulation.

The carrier frequency is 125 kHz.

Register overview and function:
The following table shows the internal memory assignments of the transponder 4150.

Register number Description

0 Password register. Write only.

1 Protection word register

2 Control word register

3to31 User memory. Read / Write.

32 Device serial number. Laser-programmed. Read only.
33 Device identification. Laser-programmed. Read only.
Register O:

The password is located in Register 0.

The password is always 0 when delivered.

This register can only be written.

Reading this register always returns the value 0, regardless of the password assigned.

Register 1:

The protection word is located in Register 1.

This register is always 0 when delivered.

The 32-bit protection word specifies the protected read and write area on the transponder.
If this register is 0, then all user registers (3-31) can be read and written.

Writing to this register specifies which registers should be read- or write-protected.

Bits 0 — 7 First register that should be read-protected. (First word read inhibited.)
Bits 8 — 15 Last register that should be read-protected. (Last word read inhibited.)
Bits 16 — 23 First register that should be write-protected. (First word write inhibited.)
Bits 24 — 31 Last register that should be write-protected. (Last word write inhibited.)

16 Oct 07, cHMI

Rev. 1.2 Page: 14 /31

Technical Description

Perfection in Automation

Register 2:

The 32-bit control word is located in Register 2.
This register is always 0 when delivered.
This register should normally not be modified since individual settings must be matched to your transponder reading device.

Bits 0 — 7 First word read (FWR), first read cell.
Bits 8 — 15 Last word read (FWR), last read cell.

Bit 16 Password check ON (1) / OFF (0).

Bit 17 Read after write ON (1) / OFF (0).

Bits 18 — 31 Available.

Registers 3 —31:

Registers 3 to 31 are available for the user to store data.
Register 32:

Register 32 holds the transponder's read-only serial number.
This unique number is programmed by laser when manufactured.
It can be read but not modified.

Register 33:

The identification number is also laser-programmed and can only be read.
The individual bits are assigned as follows:

Bit0=5 V4050 code = 32 hex.
Bit 6 = 15 Transponder chip version code.
Bits 16 — 23 Reserved

Bits 24 — 31 Check bits.

The following table provides an overview of when individual registers may be modified.

Write to Check password bit Write inhibit Write operation

register (Bit 16 control word) (protection word)

0 X X Only with command. Password writing possible.
1-2 X OFF Always login first.

1-2 X ON Always write-protected.

3-31 OFF OFF Freely programmable

3-31 ON OFF Login required.

3-31 X ON Login first. Then change protection word.
Information:

If you use your own password to protect the transponder and then forget the password, the protected area can no
longer be accessed!

16 Oct 07, cHMI Rev. 1.2 Page: 15/31

Technical Description

Perfection in Automation

General information:

All commands that are entered on the terminal are printed blue in this documentation.
Example: cc,0,#crc <Return>

Positive acknowledgements from the transponder reader/writer are shown in green.
Example: ack,0,0,#0236 <CR> <LF>

Negative acknowledgements from the transponder reader/writer are shown in red.
Example: nak,0,101,#02a3 <CR> <LF>

X[XXXXXXX] = A hex number with 1-8 digits.
SC = Sequence counter 0- 65535 dec.
crc = Checksum xxxx 4 digits hex.
<Return> = Return key (0x0d hex).

<CR> = Carriage return (0x0d hex).
<LF> = Line feed (Ox0Oa hex).

Checksum calculation:

Each command string contains a checksum (CRC) that has to be calculated by the program.

It is calculated by adding up all characters in the command string up to and including the # character in hexadecimal format.

Example: cc,0,0,#01cd <Return>

Cc = 63 Hex
Cc = 63 Hex
, = 2C Hex
0 = 30 Hex
, = 2C Hex
0 = 30 Hex
, = 2C Hex
=23 Hex
Sum = 1cd Hex

The checksum is always specified as a 4-digit hex number.

In this case, we also need to add a leading zero at the beginning.
Therefore, 0lcd.

The complete command thus looks like this:

Example: c¢c,0,0,#01cd <Return>
As an alternative, the three letters crc can be specified in place of the calculated checksum.

Example: cc,0,0,#crc <Return>

In this case, the transponder reader/writer does not check the checksum for the specified command string.

16 Oct 07, cHMI

Rev. 1.2 Page: 16 /31

Technical Description

Perfection in Automation

7.3 Command structure:

A complete command consists of a data string. The data string is subdivided into several blocks.
The individual blocks are separated by commas.

The command string must be completed by pressing <Return> (Enter).

All commands and parameters must be written in small letters.

Command structure:

Command , SC, Parl, Par2 , #crc , <Return>

There are some commands where Parl and Par2 are not used; there are also cases where additional ParX parameters are
needed.

The sequence counter (SC) is a number that must be specified by the user. It is then returned by the corresponding transponder
reader/writer as an echo. This number should normally be incremented by one for each command. It is needed so that the
response to a command can be assigned.

Command overview:

The following commands are currently implemented:

Command Description 4102 | 4150
Cc Switch CRC check ON/OFF Yes Yes
du Dump transponder register No Yes
id Read hardware/software version Yes Yes
li Login for transponder No Yes
rd Read transponder register No Yes
rdm Read multiple transponder registers No Yes
re Reset transponder No Yes
rf Carrier frequency ON/OFF Yes Yes
stack Output stack level Yes Yes
day Query status Yes Yes
wp Write password No Yes
wr Write register No Yes
wrm Write multiple registers No Yes

16 Oct 07, cHMI Rev. 1.2 Page: 17 /31

Technical Description

Perfection in Automation

7.3.1 cc "Check Checksum" command

This command can specify whether the transponder reader/writer should check the checksum when a command string is
received.

If this check is disabled, then commands that don't have a valid checksum can be entered.

Format: cc,SC,Parl, #crc <Return>

Parl: 1= Turn on checksum checking
0 = Turn off checksum checking

Example: cc,0,0,#01cd <Return> Turn off check.
ack,0,0,#0236 <CR> <LF>

Example: cc,0,1,#01ce <Return> Turn on check.
ack,0,0,#0236 <CR> <LF>

7.3.2 id command

The "id" command can be used to query the hardware and software version of the transponder reader/writer.
This guarantees that your application software is being operated with the correct readers.

Format: id,SC #crc <Return>
Example: id,0,#0178 <Return> Queries versions.
ack,0,0120,0105,#03bb Response.

Hardware version: 01.20
Software version: 01.05

16 Oct 07, cHMI Rev. 1.2 Page: 18/ 31

Technical Description

Perfection in Automation

7.3.3 rf command

The "rf" command can be used to turn the 125 kHz carrier frequency of the transponder reader/writer on or off.

Information:
Be aware that no transponders can be read if RF is turned off.

Format: rf,SC,Parl #crc <Return>

Parl: =1 for activated
= 0 for deactivated

Example: rf,0,1,#01e0 <Return> Turn on carrier.
ack,0,0,#0236 <CR> <LF>

Example: rf,0,0,#01df <Return> Turn off carrier.
ack,0,0,#0236 <CR> <LF>

7.3.4 stack command

The "stack" command can be used to output the stack level.
Format: stack,SC,#crc <Return>

Example: stack,0,#crc <Return>
ack,0,0,#0236 <CR> <LF>

7.3.5 tag command

The "tag" command can be used to query the status.
Format: :tag,SC,#crc <Return>
Example: tag,0,0,#crc <Return>

Possible responses:
nak,SC,3,#0244 -> No tag in range

or (4100 in range)
ack,SC,4102,XXXXXxXXxXxx,#CRC xx = 10-digit serial number (40-bit unique 1D number)

or (4x50 in range)
ack,SC,4150,#CRC

16 Oct 07, cHMI

Rev. 1.2 Page: 19/31

Technical Description

Perfection in Automation

7.4 4150 transponder-specific commands

The following is a brief overview of 4150 transponder registers:

Register number Description

0 Password register. Write only.

1 Protection word register

2 Control word register

3to31 User memory. Read / Write.

32 Device serial number. Laser-programmed. Read only.
33 Device identification. Laser-programmed. Read only.

When delivered, the password for the transponder is always 00000000.

Information:
Only modify registers 0, 1, and 2 if you are very familiar with the transponder.
Improper programming of these registers may make the transponder unusable.

7.4.1 rd (read) command for the 4150 transponder

This command allows you to read the individual 32-bit registers of the 4150 transponder.

For this to work, the transponder must not be password-protected or a valid li (login) needs to be performed beforehand.

Format: rd,SC,Parl,#crc <Return>
Parl: 1to 33 Register number. Decimal.

Example: rd,0,5,#01e2 <Return> Read Register 5.
ack,0,2031373a#03ca <CR> <LF> Register 5 contains the data "2031373a".

7.4.2 rdm (read multiple) command for the 4150 transponder

This command lets you read multiple words on the 4150 transponder.

Important! A read error aborts the procedure!

Format: rdm,SC,start_adr.number_of_words,#crc <Return>

Example: rdm,0,0,34,#crc -> Reads all words from the tag.

ack,0,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00
000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,0
0000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000,
00000000,00000000,00000000,00000000,00000000,00000000,011d7722,a001032,#3b66

16 Oct 07, cHMI

Rev. 1.2 Page: 20/ 31

Technical Description

Perfection in Automation

7.4.3 wr (write) command for the 4150 transponder

The "wr" command (write) is used to write individual 32-bit registers on the 4150 transponder.
For this to work, the transponder must not be password-protected or a valid li (login) must be carried out beforehand.

Information:

Be aware that Registers 1 and 2 are used for the control and protection words.
Only modify these registers if you are very familiar with their function.

In addition, a valid login is needed.

Format: wr,SC,Parl,Par2, #crc <Return>
Parl: = Register number. 1 to 31 decimal.
Par2: = Register data. 8 ASCII hex characters.

Example: wr,0,5,12345678,#03c5 <Return> Writes 12345678 to Register 5.
ack,0,0,#0236 <CR> <LF>

7.4.4 wrm (write multiple) command for the 4150 transponder

This command allows you to write multiple words to the 4150 transponder's registers.
ATTENTION! The number of words is limited to 2!

Format: wrm,SC,start_adr,XXXXXXXX,[XXXXxxxX],#crc <Return>

Example: wrm,0,4,12345678,33335555,#crc <Return> Writes 12345678 to Register 4 and 33335555 to Register 5.
ack,0,0,#0236 <CR> <LF>

16 Oct 07, cHMI Rev. 1.2 Page: 21/31

Technical Description

Perfection in Automation

7.4.5 i (login) command for the 4150 transponder

The "li* (login) command can be used to open a password-protected transponder so that all register contents can be edited.
Format: 1i,SC,Parl,#crc <Return>

Parl: = Password 8 ASCII hex characters

li,0,00000000,#032c <Return> Login with password 00000000

ack,0,0,#0236 <CR> <LF>

The password, protection word, and control word can only be modified after a valid login.

7.4.6 re (Reset) command for the 4150 transponder

If a password-protected transponder was opened with the "li" (login) command, it can be locked again with the reset command.
From this point on, password-protected areas can no longer be edited.

If the transponder is removed from the reading range of the transponder reader/writer, then it is locked automatically.

Format: re,SC,#crc Reset transponder.

re,0,#0182 <Return> Reset transponder.
ack,0,0,#0236 <CR> <LF>

7.4.7 wp (write password) command for the 4150 transponder

The "wp" (write password) command is used to write the password.

Before a new password can be written, a valid login must have been carried out.
Format: wp,SC,Parl #crc4 Write password.

Parl: = Password 8 ASCII hex characters

wp,0,12345678,#0362 <Return> Write password 12345678.
ack,0,0,#0236 <CR> <LF>

16 Oct 07, cHMI Rev. 1.2 Page: 22/ 31

Technical Description

Perfection in Automation

7.4.8 du (dump) command for the 4150 transponder

The "du" (dump) command allows you to display the complete data contents of the transponder.
Format: du,SC,#crc4

du,0,#0184 <Return> Display dump.

Dump of the 4150 Tag

00:00000000 00000000 00000000 00000003
04:00000004 00000005 00000006 00000007
08:88888888 99999999 10101010 00000011
12:00000012 00000013 00000014 00000015
16:16161616 17171717 18181818 19191919
20:00000020 00000021 00000022 00000023
24:24242424 25252525 26262626 27272727
28:00000028 00000029 00000030 00000031
32:0002ef3d df001032

ack,0,0,#0236

The two-digit number on the left is the register number. It is followed by the corresponding register data.

16 Oct 07, cHMI Rev. 1.2 Page: 23/31

Technical Description

Perfection in Automation

7.5 4150 transponder error messages

For each command transferred to the transponder reader/writer, the transponder reader/writer responds with an appropriate
return message that can be either positive or negative.

If a complete transferred command is detected without errors, a positive message is returned with ack (acknowledge).
Messages returned from the transponder reader/writer have the format shown below.

Format: ack,SC,DATA #crc

SC = The specified sequence counter returned as an echo.
DATA = Return data or O

Example: ack,0,0,#0236 <CR> <LF>

If a command is not recognized by the transponder reader/writer, a negative message is returned with nak (negative
acknowledgement).

Format: nak,SC,ERROR,#crc <CR> <LF>

SC = The specified sequence counter returned as an echo.
ERROR = Error number. (see below)

Example: nak,0,101,#02a3 <CR> <LF>
The following error numbers are currently defined for the 4150 transponder.

201 = Undefined command
202 = Read error

203 = Write error

204 = Password write error
205 = Login error

206 = Reset error

207 = Multiple write error
208 = Multiple read error
209 = Overflow block size

Example: Set Registers 4 to 8 to read-protected.

Before you perform this procedure, it's a good idea to write data to Registers 4 to 11 so that the effect can be seen.
Use the wr command for this.

Input: du,0,#0184 <Return> Display data contents

Dump of the 4150 Tag

00:00000000 00000000 00000000 00000000
04:372€3230 11111111 30393a30 77777777
08:4a757070 2052668 726d816¢ 6657200
12:00000000 00000000 00000000 00000000

ack,0,0,#0236

Input: 1i,0,00000000,#032x <Return> Login
Input: wr,0,1,00000804, #crc <Return>
This specifies that Registers 4 to 8 should be read-protected.

16 Oct 07, cHMI Rev. 1.2 Page: 24 /31

Technical Description

Perfection in Automation

Input: du,0,#0184 <Return> Display data contents
We see that Register 1 contains the data 00000804. Registers 4 through 11 contain the data 3723230, 11111111, 30393a30,
77777777, 4a757070, 2052668, 726d816¢, and 6¢657200.

Dump of the 4150 Tag

00:00000000 00000804 00000000 00000000
04:372e3230 11111111 30393a30 77777777
08:4a757070 2052668 726d816c 6c657200
12:00000000 00000000 00000000 00000000

ack,0,0,#0236

Input: re,0,#0182 <Return> Reset
Input: du,0,#0184 <Return> Display data contents

Dump of the 4150 Tag

00:00000000 00000804 00000000 00000000
04:00000000 00000000 00000000 00000000
08:00000000 2052668 726d816c 6c657200
12:00000000 00000000 00000000 00000000

ack,0,0,#0236
The output shows us that only 00000000 was read for Registers 4 through 8 since these registers are read-protected.
If you want to see the data in Registers 4 to 8, you must always log in before performing the read operation.

Input: 1i,0,00000000,#032x <Return> Login
Input: du,0,#0184 <Return> Display data contents

Dump of the 4150 Tag

00:00000000 00000804 00000000 00000000
04:372e3230 11111111 30393a30 77777777
08:4a757070 2052668 726d816c 6c657200
12:00000000 00000000 00000000 00000000

ack,0,0,#0236
The data is visible again after logging in.
Undo read protection for Registers 4 to 8.

Input: 1i,0,00000000,#032x <Return> Login
Input: wr,0,1,00000000,#0371 <Return> Delete Reg. 1
Input: du,0,#0184 <Return> Display data contents

Dump of the 4150 Tag

00:00000000 00000000 00000000 00000000
04:372e3230 11111111 30393a30 77777777
08:4a757070 2052668 726d816c 6c657200
12:00000000 00000000 00000000 00000000

ack,0,0,#0236

16 Oct 07, cHMI Rev. 1.2 Page: 25/ 31

Technical Description

Perfection in Automation

8 Automation Studio transponder support

Automation Studio supports the use of transponder readers with the two libraries AsUSB and DVFrame.

81 AsUSB library

The AsUSB library allows you to search transponder readers on the target using the function blocks UsbNodeListGet and
UsbNodeGet. The search is performed via the VendorID(0x67b) and the ProductID (0x2303). The ifName of the output structure
from the UsbNodeGet function block can be used to communicate with the DVFrame library with the transponder reader.

C example of searching a transponder on the target

#define TRANSPONDER_VENDOR_ID 0x067b
#define TRANSPONDER_PRODUCT_ID 0x2303
#define TRANSPONDER_BCD 0x0300

_INIT void init(void)

i

int i;

/* search transponder */
UsbNodeL istGetFub.enable = 1;
UsbNodeListGetFub.pBuffer = (UDINT)&usbNodelList;
UsbNodeListGetFub._bufferSize = sizeof(usbNodeList);
UsbNodeListGet(&UsbNodeListGetFub);
iT (UsbNodeListGetFub.status == OK && UsbNodeListGetFub.allNodes)

for (i=0;i<UsbNodeListGetFub.allNodes;i++)

{
UsbNodeGetFub.enable 1;
UsbNodeGetFub.nodeld usbNodeList[i];
UsbNodeGetFub.pBuffer = (UDINT)&usbDevice;
UsbNodeGetFub_bufferSize = sizeof(usbDevice);
UsbNodeGet(&UsbNodeGetFub) ;
if (UsbNodeGetFub.status == 0K)

/* TRANSPONDER ? */
iT (usbDevice.vendorld == TRANSPONDER_VENDOR_ID
&& ushDevice.productld == TRANSPONDER_PRODUCT_ID
&& usbDevice.bcdDevice == TRANSPONDER_BCD)

{

/* TRANSPONDER found */
strcpy(StringDevice, usbDevice.ifName);
break;

+

+

} /* endfor */
3

3

16 Oct 07, cHMI Rev. 1.2 Page: 26 /31

Technical Description

Perfection in Automation

82 DVFrame library
The DVFrame library allows you to exchange data with the transponder reader 5E9000.29.

The DVFrame library function blocks enable data to be transmitted and received as "frames". The frame driver takes care of the
hardware side of the data exchange, without modifying the data in the frame. This enables fast and easy application-specific
communication.

Further information can be found in the section of the Automation Studio help about the DVFrame library

FRM_xopen

To open the transponder reader device, the parameters FLAGS=2 and MODE=0 must be set using a parameter string in
parameter mode.

strcpy(StringMode, "/FLAGS=2 /MODE=0"");
/* initialize open structure */
FrameXOpenStruct.device = (UDINT) StringDevice;
FrameXOpenStruct.mode = (UDINT) StringMode;
FrameXOpenStruct.config = (UDINT)O;
FrameXOpenStruct.enable = 1;
FRM_xopen(&FrameXOpenStruct); /* open an interface */

FRM_ read

A frame end ID is implemented in the USB transponder driver. The frame terminator in the driver is Ox0a (LF). A complete frame
including frame terminator OxOa (LF) or the maximum length of a frame (=256 characters) is always received with the FRM_read
function block. According to the transponder description, frames longer than 256 are possible (up to 319 bytes, e.g. command
rdm,0,0,34 #crc). If the total length in the FRM_read is equal to 256 bytes, then the FRM_read function block must return up to a
length < 256 bytes, if called. A maximum of 4 frames with a total length of 256 bytes per device can be buffered intermediately in
the transponder driver. If multiple commands are sent with the FRM_write function block to the transponder and more than
4*256 bytes are received, then all additional data is rejected by the transponder reader in the driver. The sender of FRM_read
and FRM_write does not receive an error message.

Information: Between two instructions you have to wait for the answer
of the transponder reader/writer (ACK or NACK).

16 Oct 07, cHMI Rev. 1.2 Page: 27/ 31

Technical Description

Perfection in Automation

Automation Studio C-Example:

/* header files */

#include <bur/plctypes.h>
#include <string.h>
#include <dvframe.h>

/* variable declaration */

_LOCAL FRM_xopen_typ FrameXOpenStruct; /* variable of type FRMXOPEN */
_LOCAL FRM_close_typ FrameCloseStruct; /* variable of type FRMCLOSE */
_LOCAL XOPENCONFIG XOpenConfigStruct; [* variable of type XOPENCONFIG */
_LOCAL FRM_gbhuf_typ FrameGetBufferStruct; [* variable of type FRMGBUF */
_LOCAL FRM_rbuf_typ FrameReleaseBufferStruct; /* variable of type FRMRBUF */
_LOCAL FRM_robuf_typ FrameReleaseOutputBufferStruct; /* variable of type FRMROBUF */
_LOCAL FRM_write_typ FrameWriteStruct; [* variable of type FRMWRITE */
_LOCAL FRM_read_typ FrameReadStruct; [* variable of type FRMREAD */
_LOCAL USINT Error, Start, StartRead, Close, Stop,open;

_LOCAL UDINT Ident; [* pointer for Ident info */

_LOCAL UDINT* SendBuffer; [* pointer to send buffer */

_LOCAL UDINT* ReadBuffer; [* pointer to read buffer */

_LOCAL UINT SendBufferLength, ReadBufferLength;

_LOCAL USINT StringDevice[30]; /* initialize strings for FRM_xopen */
_LOCAL USINT WriteData[256], ReadData[256]; [* arrays for write and read data */

16 Oct 07, cHMI Rev. 1.2 Page: 28/ 31

Technical Description

Perfection in Automation

[* initialize program starts here */

/* cyclic program start here */
_CYCLIC void CyclicProgram(void)

{

if (Stop)

{
Start=0;
StartRead=0;

}

if (open)

{
open=0;
/* initialize start values */
Error = 0;

I* Start=1; */
StartRead = 0;
Close = 0;
Stop = 0;
strepy(StringDevice, "IF5.ST1");
[* initialize open structure */
FrameXOpenStruct.device = (UDINT) StringDevice;
FrameXOpenStruct.config = (UDINT)0;
FrameXOpenStruct.enable = 1;
FRM_xopen(&FrameXOpenStruct); /* open an interface */
Ident = FrameXOpenStruct.ident; [* get ident */
if (FrameXOpenStruct.status != 0) [* check status */
{
Error = 1; /* set error level for FRM_xopen */

}

}

if (Error == 0) && (Start == 1))

{
Start = 0;

/* initialize get buffer structure */
FrameGetBufferStruct.enable = 1;
FrameGetBufferStruct.ident = ldent;

FRM_gbuf(&FrameGetBufferStruct); /* get send buffer */
SendBuffer = (UDINT*) FrameGetBufferStruct.buffer; /* get adress of send buffer */
SendBufferLength = FrameGetBufferStruct.bufing; /* get length of send buffer */
if (FrameGetBufferStruct.status == 0) /* check status */

{

strepy(WriteData, "tag,0,0,#crc\r\n");
memcpy(SendBuffer, WriteData, strlen(WriteData)); /* copy write data into send buffer */

[* initialize write structure */
FrameWriteStruct.ident = Ident;
FrameWriteStruct.buffer = (UDINT) SendBuffer;
FrameWriteStruct.buflng = strlen(WriteData);
FrameWriteStruct.enable = 1;

16 Oct 07, cHMI Rev. 1.2 Page: 29/ 31

Technical Description

Perfection in Automation

FRM_write(&FrameWriteStruct); [* write data to interface */
/*StartRead = 1;*/

if (FrameWriteStruct.status != 0) /* check status */

{

[* initialize release output buffer structure */
FrameReleaseOutputBufferStruct.enable = 1;
FrameReleaseOutputBufferStruct.ident = Ident;
FrameReleaseOutputBufferStruct.buffer = (UDINT) SendBuffer;
FrameReleaseOutputBufferStruct.buflng = strlen(WriteData);
FRM_robuf(&FrameReleaseOutputBufferStruct); [* release output buffer */

}
}
else
{ .
strepy(WriteData, "tag,0,0,#crc\r\n");
}
}
if (StartRead == 1)
{
/* initialize read structure */
FrameReadStruct.enable = 1;
FrameReadStruct.ident = Ident;
FRM_read(&FrameReadStruct); /* read data form interface */
ReadBuffer = (UDINT*) FrameReadStruct.buffer; /* get adress of read buffer */
ReadBufferLength = FrameReadStruct.bufing; /* get length of read buffer */
if (FrameReadStruct.status == 0) /* check status */
{
memset (ReadData,0,sizeof(ReadData));
memcpy(ReadData, ReadBuffer,ReadBufferLength); /* copy read data into array */
[* initialize release buffer structure */
FrameReleaseBufferStruct.enable = 1;
FrameReleaseBufferStruct.ident = ldent;
FrameReleaseBufferStruct.buffer = (UDINT) ReadBuffer;
FrameReleaseBufferStruct.bufing = ReadBufferLength;
FRM_rbuf(&FrameReleaseBufferStruct); /* release read buffer */
StartRead = 0;
[*Start = 1; */
}
else
{
memset (ReadData,0,sizeof(ReadData));
}
}

16 Oct 07, cHMI Rev. 1.2 Page: 30/ 31

Technical Description

Perfection in Automation

8.3 General technical data

Transponder reader/writer

For transponders 4102 and 4150
amplitude modulation, carrier frequency 125kHz

Supply voltage

5 VDC + 20% (via USB)

Power consumption

Approx. 0.15 Watt

Read/write range in air

Min. 16 mm

Protection

IP65 (front side)

Environmental temperature

Operation 0to 50 °C
Storage -20 °C to +60 °C

Humidity 5% to 85%, non-condensing
Operation T =40 °C: 5% to 90%, non-condensing
Storage T > 40 °C: < 90%, non-condensing

16 Oct 07, cHMI

Rev. 1.2 Page: 31/31

	General information
	Safety guidelines
	Introduction
	Intended use
	Transport and storage
	Installation
	Operation
	Protection against touching electrical parts

	Organization of safety guidelines
	Guidelines

	Function
	Construction
	Mechanics
	Mylar design

	Installation
	Installation diagrams

	Interfaces
	USB
	Antenna
	LED display

	Operating Instructions
	Transponder 4102
	Transponder 4150
	Command structure:
	cc "Check Checksum" command
	id command
	rf command
	stack command
	tag command

	4150 transponder-specific commands
	rd (read) command for the 4150 transponder
	rdm (read multiple) command for the 4150 transponder
	wr (write) command for the 4150 transponder
	wrm (write multiple) command for the 4150 transponder
	li (login) command for the 4150 transponder
	re (Reset) command for the 4150 transponder
	wp (write password) command for the 4150 transponder
	du (dump) command for the 4150 transponder

	4150 transponder error messages

	Automation Studio transponder support
	AsUSB library
	DVFrame library
	General technical data

