12.2 AM050

12.2.1 Allgemeines

Die AM050 ist ein Standard-Analogmischmodul.

12.2.2 Bestelldaten

Bestellnummer	Kurzbeschreibung	Abbildung
3AM050.6	2005 Analoges Mischmodul, 4 Eingänge, 0 bis 10 V, 12 Bit, 4 Ausgänge, ±10 V, 12 Bit, Feldklemme 1 x TB170 gesondert bestellen!	annum ⁿ
3TB170.9	2005 Feldklemme, 20pol., Schraubklemme	
3TB170.91	2005 Feldklemme, 20pol., Federzugklemme	
		AMoso AMoso

Tabelle 229: AM050 Bestelldaten

12.2.3 Technische Daten

Produktbezeichnung	AM050
Allgemeines	
C-UL-US gelistet	JA
B&R ID-Code	\$88
Steckplatz Basiseinheit Erweiterungseinheit	JA JA
Eingänge Eingangssignal	4 0 - 10 V
Ausgänge Ausgangssignal	4 ±10 V

Tabelle 230: AM050 Technische Daten

Produktbezeichnung	AM050
Potenzialtrennung Kanal - SPS Kanal - Kanal	JA NEIN
Betriebsarten Normalbetrieb Sonderbetriebsart 1 Sonderbetriebsart 2	zyklische Messung mit optionaler Mittelwertbildung Software-Taktung direkt Software-Taktung mit Zeitvorgabe (2000 - 65535 μs)
Wandlungszeit für alle Kanäle Normal- und Sonderbetrieb Normalbetrieb mit aktivierter Mittel- wertbildung	<1 ms <1,5 ms
Leistungsaufnahme 5 V 24 V gesamt	max. 1,5 W max. 5 W max. 6,5 W
Analogeingänge	
Eingangssignal nominal min./max. zulässig	0 bis +10 V -20 bis +20 V
Wandlungsverfahren	sukzessive Approximation
Digitale Wandlerauflösung	12 Bit
Ausgabeformat	INT \$0000 - \$7FF8 (1 LSB = \$0008 = 2,441 mV)
Nichtlinearität	±1 LSB
Differenzeingangswiderstand	2 ΜΩ
Eingangsfilter	Tiefpass 1. Ordnung / Eckfrequenz: 450 Hz
Grundgenauigkeit bei 25 °C	±0,1 % ¹⁾
Offset-Drift	max. ±0,0025 %/°C ¹⁾
Gain-Drift	max. ±0,0075 %/°C ²⁾
Wiederholgenauigkeit	±0,025 % ¹⁾
Übersprechen zwischen den Kanälen	-66 dB
Gleichtaktunterdrückung DC 50 Hz	50 dB 45 dB
Maximale Aussteuerung gegenüber Erd- potenzial	±50 VDC
Gleichtaktaussteuerbarkeit zwischen zwei Kanälen	±10 VDC
Analogausgänge	
Ausgangssignal	±10 V
Digitale Wandlerauflösung	12 Bit
Ausgabeformat	INT \$8080 - \$7F80 (1 LSB = \$0010 = 4,90 mV)
Nichtlinearität	±4 LSB
Belastung	min. 1 kΩ

Tabelle 230: AM050 Technische Daten (Forts.)

Produktbezeichnung	AM050
Kurzschlusssicher	Strombegrenzung -15 mA bis -30 mA / +15 mA bis +30 mA
Ausgangsfilter	Tiefpass 1. Ordnung / Eckfrequenz: 1 kHz
Grundgenauigkeit bei 25 °C Offset gesamt	±0,06 % ¹⁾ ±0,3 % ¹⁾
Offset-Drift	max. ±0,0015 %/°C ¹⁾
Gain-Drift	max. ±0,0050 %/°C ²⁾
Fehler durch Laständerung	max. 0,013 % (von 10 M Ω -> 1 k Ω , ohmsch)
Wiederholgenauigkeit	±0,025 % ¹⁾
Ein-/Ausschaltverhalten	Freigaberelais intern, Grundeinstellung: Kurzschluss
Mechanische Eigenschaften	
Маßе	B&R 2005 einfachbreit

Tabelle 230: AM050 Technische Daten (Forts.)

- Bezogen auf den Messbereich.
 Bezogen auf den aktuellen Messwert.

12.2.4 Status-LEDs

Abbildung	LED	Beschreibung
	RUN	Eine leuchtende RUN-LED zeigt an, dass die Analog/Digital-Wandler und Digital/Analog-Wandler laufen.
	MODE	Die MODE-LED leuchtet kurz auf, wenn in einer der beiden Sonderbetriebsarten ein Startimpuls erkannt wurde.
AM oso		

Tabelle 231: AM050 Status-LEDs

12.2.5 Anschlussbelegung

	Anschluss	Bezeichnung
	1	+ Eingang 1
	2	- Eingang 1
	3	+ Eingang 2
	4	- Eingang 2
2	5	+ Eingang 3
3	6	- Eingang 3
5	7	+ Eingang 4
7 8	8	- Eingang 4
9 🔳 🔊	9	Schirm
11	10	Schirm
12 Ø	11	Schirm
14 (a)	12	Schirm
16 ()	13	+ Ausgang 1
18	14	- Ausgang 1
19	15	+ Ausgang 2
TB170	16	- Ausgang 2
	17	+ Ausgang 3
	18	- Ausgang 3
	19	+ Ausgang 4
	20	- Ausgang 4

Tabelle 232: AM050 Anschlussbelegung

Anschluss der Signalkabel

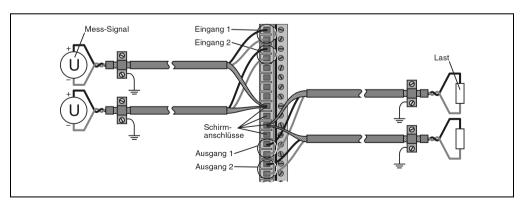


Abbildung 145: AM050 Anschluss der Signalkabel

Als Signalkabel für analoge Ein- und Ausgänge von Mischmodulen sind geschirmte Leitungen zu verwenden. Die Schirmerdung erfolgt für jeweils zwei Eingänge bzw. zwei Ausgänge an einem der dafür vorgesehenen Schirmanschlüsse der Feldklemme.

Aus EMV-Gründen wird empfohlen, nicht verwendete Eingänge kurzzuschließen.

Die Minus-Anschlüsse der Analogausgänge sind über 22 Ω auf die interne Bezugsmasse geschaltet. Für große Kabellängen wird schwimmender Anschluss empfohlen. Die Potenzialverschiebung zwischen den Minus-Anschlüssen darf dann maximal 4 V betragen.

Die vier Schirmanschlüsse sind gleichwertig und jeweils über 100 Ω Widerstände mit Erde ($\frac{1}{\pi}$, das heißt: Ableitblech und Hutschiene) verbunden.

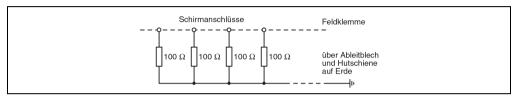


Abbildung 146: AM050 Schirmanschluss

12.2.6 Eingangsschema

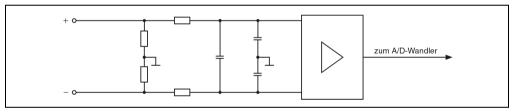


Abbildung 147: AM050 Eingangsschema

12.2.7 Ausgangsschema

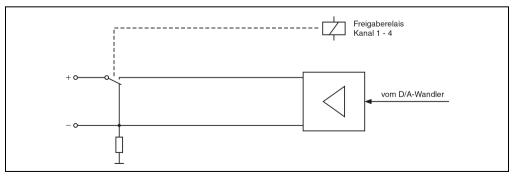


Abbildung 148: AM050 Ausgangsschema

12.2.8 Betriebsarten

Es sind drei Betriebsarten verfügbar:

- Normalbetrieb (Grundeinstellung)
- Sonderbetriebsart 1: Software-Taktung direkt
- Sonderbetriebsart 2: Software-Taktung mit Zeitvorgabe

Betriebsartwechsel

- Nach dem Einschalten oder nach einem Reset ist der Normalbetrieb eingestellt. Das Freigaberelais gibt die Ausgänge ca. 300 ms nach einem Reset frei.
- Ein Wechsel vom Normalbetrieb in eine der Sonderbetriebsarten ist jederzeit möglich.
 Dazu muss das Modusregister 2 auf den entsprechenden Wert gesetzt werden. Die Durchführung des Betriebsartwechsels wird im Statusregister 2 quittiert, das die tatsächliche Betriebsart anzeigt.
- Ein Wechsel aus einer Sonderbetriebsart in eine andere Betriebsart ist nicht möglich.

Normalbetrieb

Der Normalbetrieb ist nach dem Einschalten eingestellt.

Analogeingänge

Alle Kanäle werden zyklisch gewandelt und die Daten im vereinbarten INT-Format im Dual Ported RAM hinterlegt. Die Wandlungszeit für alle Kanäle ist <1 ms.

Nur im zyklischen Betrieb besteht die Möglichkeit, die Mittelwertbildung über das Modusregister 1 einzuschalten. Aufgrund der höheren Rechenzeit steigt die Wandlungszeit auf <1,5 ms an.

Analogausgänge

Alle Werte werden gelesen und auf die Analogausgangskanäle geschrieben. Die Updatezeit für die Analogausgänge ist in den oben angeführten Wandlungszeiten für die Analogeingänge berücksichtigt.

Sonderbetriebsart 1: Software-Taktung direkt

Das Modusregister 2 muss auf folgenden Wert gesetzt werden: %00010000

In dieser Betriebsart wird der Wandlungszyklus auf dem Modul durch das Applikationsprogramm gestartet, indem Bit 7 von Modusregister 8 auf 0 gesetzt wird (Startimpuls).

Alle Analogausgabewerte werden daraufhin sofort gelesen und auf die Ausgangskanäle geschrieben. Anschließend wird die Wandlung aller vier Eingangskanäle durchgeführt, ohne dass auf weitere Startimpulse reagiert wird. Der Abschluss des Zyklusses wird durch Setzen von Bit 7 im Statusregister 2 gemeldet.

Anwendungsbeispiel: Jitterarme Messwerterfassung in Superschnellen Taskklassen (z. B. für Regler).

Modusregister 8	Analogmischmodul	Zeit
Schreibzugriff mit Bit 7 = 0 (Startimpuls)	Modul in Warteschleife	t_0
	Bit 7 in Statusregister 2 = 0	t_0 + 20 bis 40 μs
	Analogausgabewerte aus dem DPR lesen (Beginn)	1)
	Analogausgabewerte aus dem DPR lesen (Ende)	1)
	Analogausgänge 1 - 4 aktualisieren	t_ao = t_0 + 328,5 bis 330 μs
	Start Messung Eingangskanal 1	t_ao + 1 * 85 μs
	Start Messung Eingangskanal 2	t_ao + 2 * 85 μs
	Start Messung Eingangskanal 3	t_ao + 3 * 85 μs
	Start Messung Eingangskanal 4	t_ao + 4 * 85 μs
	Messwerte ins DPR schreiben (Beginn)	1)
	Messwerte ins DPR schreiben (Ende)	1)
	Bit 7 in Statusregister 2 = 1 (Zyklusende)	t_0 + 900 μs
Nächster Startimpuls möglich	Modul in Warteschleife	

Tabelle 233: AM050 Sonderbetriebsart 1: Software-Taktung direkt

¹⁾ Das Lesen der Analogausgabewerte aus dem Dual Ported RAM (DPR) bzw. das Schreiben der Messwerte in das Dual Ported RAM kann durch Buszugriffe auf das Modul unterbrochen werden. Es wird daher empfohlen, die Behandlung der betreffenden I/O-Variablen in den Sonderbetriebsarten nur über "Direkt_IO"-FUBs vorzunehmen.

Sonderbetriebsart 2: Software-Taktung mit Zeitvorgabe

Das Modusregister 2 muss auf folgenden Wert gesetzt werden: %00110000

Der Ablauf ähnelt der Sonderbetriebsart 1. In der Sonderbetriebsart 2 besteht aber die Möglichkeit, den Zeitpunkt vorzugeben, an dem der nächste Wandlungszyklus abgeschlossen sein muss. Die Zeitvorgabe wird in µs als UINT in den Modusregistern 7 + 8 eingetragen. Dieser Schreibzugriff wirkt zugleich als Startimpuls (unabhängig von Bit 7 im Modusregister 8). Weitere Schreibzugriffe bleiben bis zum Abschluss des Zyklusses wirkungslos.

Das Lesen der Analogausgangswerte und die Wandlung aller vier Eingangskanäle wird aber nicht sofort gestartet, sondern erst 1000 µs vor Ende der Zeitvorgabe. Der Abschluss des Zyklusses wird durch Setzen von Bit 7 im Statusregister 2 gemeldet. Das Zeitraster gegenüber der Sonderbetriebsart 1 wird unverändert beibehalten.

Wertebereich für die Zeitvorgabe: 2000 bis 65535 µs

Anwendungsbeispiel: Äquidistante Messwerterfassung für Regler in normalen Taskklassen

mit der Möglichkeit zur Messzeitpunktberechnung in der Haupt-CPU (z. B. über die Timer-Funktion "TIM musec" oder "TIM ticks" -> Anwen-

derprogramm).

Beispiel: Task 1 befindet sich in der Taskklasse 1 mit einer Zykluszeit von 10 ms. Jeweils am Ende des Zyklusses müssen die aktuellen Analogwerte für den nächsten Zyklus zur Verfügung stehen.

Dazu wird mit der Funktion "TIM_musec" die aktuelle Zeit gemessen. Wenn die Messung 2 ms ergibt, muss die Analogumwandlung in 8 ms abgeschlossen sein. Für die Definition der Zeitvorgabe wird daher mit der Funktion "IO_data" der Wert 8000 in die Modusregister 7 + 8 geschrieben.

Wenn die Zeitmessung im nächsten Zyklus z. B. 2,2 ms ergibt, muss in die Modusregister 7 + 8 der Wert 7800 geschrieben werden.

Modusregister 7 + 8	Analogmischmodul	Zeit
Zeitvorgabe in µs als UINT schreiben	Modul in Warteschleife	t_0
	Bit 7 in Statusregister 2 = 0	t_0 + 20 bis 40 μs
	Warteschleife	je nach t_Vor
	Starte internen Zyklus	t_St = t_Vor - 1000 μs
	Analogausgabewerte aus dem DPR lesen (Beginn)	1)
	Analogausgabewerte aus dem DPR lesen (Ende)	1)
	Analogausgänge 1 - 4 aktualisieren	$t_ao = t_St + 328,5$ bis 330 μ s
	Start Messung Eingangskanal 1	t_ao + 1 * 85 μs
	Start Messung Eingangskanal 2	t_ao + 2 * 85 μs
	Start Messung Eingangskanal 3	t_ao + 3 * 85 μs
	Start Messung Eingangskanal 4	t_ao + 4 * 85 μs

Tabelle 234: AM050 Sonderbetriebsart 2: Software-Taktung mit Zeitvorgabe

Modusregister 7 + 8	Analogmischmodul	Zeit
	Messwerte ins DPR schreiben (Beginn)	1)
	Messwerte ins DPR schreiben (Ende)	1)
	Bit 7 in Statusregister 2 = 1 (Zyklusende)	t_Vor - 100 μs
	Ablauf Zeitvorgabe	t_Vor
Nächster Startimpuls möglich	Modul in Warteschleife	

Tabelle 234: AM050 Sonderbetriebsart 2: Software-Taktung mit Zeitvorgabe (Forts.)

12.2.9 Zusammenhang zwischen Wandlerwert und Ein-/Ausgangssignal

Eingangsspannung 0 - 10 V

Der Wandlerwert (INT-Format) ändert sich mit einer Schrittweite von 8 (0, 8, 16, ...).

Eingongoonennung	Wandlerwert			
Eingangsspannung	hexadezimal	dezimal		
Fehlerzustand	\$8000	-32768		
≤0 V	\$0000	0		
2,441 mV	\$0008	8		
9,997 V \$7FF0		32752		
≥10 V	\$7FF8	32760		

Tabelle 235: AM050 Zusammenhang zwischen Eingangsspannung und Wandlerwert

12.2.10 Ausgangsspannung ±10 V

Der Wandlerwert (INT-Format) ändert sich mit einer Schrittweite von 16 (..., -32, -16, 0, 16, 32, ...).

Wandlerwert		Ausgangsspannung		
hexadezimal	hexadezimal dezimal			
≤\$8080	-32640	-10 V		
\$FFF0	-16	-4,901 mV		
\$0000	0	0 V		
\$0010	16	4,901 mV		
≥\$7F80	32640	10 V		

Tabelle 236: AM050 Zusammenhang zwischen Ausgangsspannung und Wandlerwert

Das Lesen der Analogausgabewerte aus dem Dual Ported RAM (DPR) bzw. das Schreiben der Messwerte in das Dual Ported RAM kann durch Buszugriffe auf das Modul unterbrochen werden. Es wird daher empfohlen, die Behandlung der betreffenden I/O-Variablen in den Sonderbetriebsarten nur über "Direkt IO"-FUBs vorzunehmen.

12.2.11 Variablendeklaration

Die Variablendeklaration erfolgt über das B&R Automation Studio™:

Funktion	Variablendeklaration				
	Gültigkeitsb.	Datentyp	Länge	Modultyp	Kanal
Analoger Eingang einzeln (Kanal x)	tk_global	INT	1	Analog In	1 4
Analoger Ausgang einzeln (Kanal x)	tk_global	INT	1	Analog Out	1 4
Modusregister 1	tk_global	USINT	1	Status Out	0
Modusregister 2	tk_global	USINT	1	Status Out	1
Modusregister 7 + 8 Zeitvorgabe in Sonderbetriebsart 2 "Software-Taktung mit Zeitvorgabe"	tk_global	UINT	1	Status Out	6
Modusregister 8 Startimpuls in der Sonderbetriebsart 1 "Software-Taktung direkt"	tk_global	USINT	1	Status Out	7
Statusregister 1	tk_global	USINT	1	Status In	0
Statusregister 2	tk_global	USINT	1	Status In	1

Tabelle 237: AM050 Variablendeklaration

Modusregister 1

Die Bits 0 und 2 - 7 müssen mit 0 beschrieben werden.

Mittelwertbildung

Im Normalbetrieb kann die Mittelwertbildung aktiviert werden. Es ist zu beachten, dass sich die Wandlungszeit auf <1,5 ms erhöht.

MW = 0..... Mittelwertbildung ausgeschaltet (Grundeinstellung)

MW = 1..... Mittelwertbildung eingeschaltet

Wenn diese Option eingeschaltet ist, wird immer der Mittelwert gebildet und an die Zentraleinheit übergeben. Die Berechnung des Mittelwertes erfolgt nach der Formel:

Der positive Endwert bei eingeschalteter Mittelwertbildung beträgt \$7FF7 statt \$7FF8.

Modusregister 2

Die Bits 0 - 3 sowie 6 und 7 müssen mit 0 beschrieben werden.

SWT_DIR 0 Normalbetrieb (Grundeinstellung)

1 Sonderbetriebsart 1 (Software-Taktung direkt)

SWT_TIM SWT_TIM ist nur aktiv, wenn SWT_DIR auf 1 gesetzt ist!

0 Betriebsart abhängig von SWT_DIR (Grundeinstellung)

1 Sonderbetriebsart 2 (Software-Taktung mit Zeitvorgabe)

Der Wechsel aus einer Sonderbetriebsart in eine andere Betriebsart ist nicht möglich!

Modusregister 7 + 8 (UINT)

In der Sonderbetriebsart 2 "Software-Taktung mit Zeitvorgabe" wird in diesen beiden Registern der Zeitpunkt in μ s definiert, nach dem ein Wandlungszyklus für alle Analogeingänge und Analogausgänge abgeschlossen sein muss.

Wertebereich: 2000 bis 65535 µs

Modusregister 8

7

Die Bits 0 - 6 müssen mit 0 beschrieben werden.

Modusregister 8	Bit	Beschreibung
	7	TRIGn - Startimpuls
	6	0
	5	0
	4	0
	3	0
	2	0
	1	0
	0	0
0 0 0 0 0 0 0		

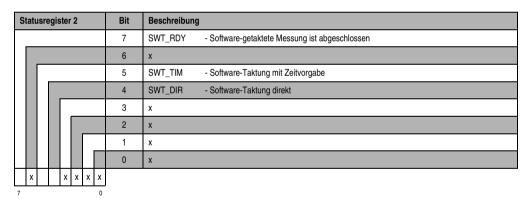
TRIGn TRIGn ist nur in der Betriebsart "Software-Taktung direkt" aktiv (SWT_DIR auf 1, SWT_TIM auf 0)

Ein Schreibzugriff mit TRIGn = 0 löst einen Wandlungszyklus aus.

Ein Schreibzugriff mit TRIGn = 1 wird ignoriert.

0

Statusregister 1


Statusregister 1	Bit	Beschreibung
	7	x
	6	x
	5	x
	4	х
	3	x
	2	x
	1	MW - Mittelwertbildung eingeschaltet
	0	I_ERR - Modulfehler
x x x x x x		
7 0		

I_ERR 0...... Datenwerte im Dual Ported RAM (DPR) entsprechen Definitionen

1..... Es liegt ein interner Fehler vor. Kontaktieren Sie bitte B&R.

MW Mittelwertbildung im Normalbetrieb aktiv (Einstellung von Modusregister 1 wird wiedergegeben)

Statusregister 2

SWT_DIR und SWT_TIM zeigen die tatsächliche Betriebsart an, in der sich das Modul befindet. SWT_TIM

SWT_RDY SWT_RDY ist nur aktiv, wenn eine Sonderbetriebsart eingestellt ist.

......Messung oder Wartezeit läuft
Der letzte Zyklus ist abgeschlossen